Writing LCFG components

Innovative Learning Week
Wed 17th February 2016

Paul Anderson
Alastair Scobie
Stephen Quinney
Kenny MacDonald

L;' ﬁ LARGE SCALE UNIX CONFIGURATION SYSTEM

w o ——] component
compiler —
— schema
|—
— machine
— profile
|—

application to be configured

a schema
. component
a machine profile

A

o> @

(%

)

' ' : tc/chatt
application to be configured - “chatterd”
write a message to the log every 2 seconds
#!/bin/sh

The message to log comes from the command line argument
message=%1

Save the PID of the daemon so we can stop it when we want
echo $$ >/tmp/chatterd.pid

Log the start
echo "date : chatterd starting >>/var/log/chatterd

Chatter away

while true ; do
echo “date” : $message >>/var/log/chatterd
sleep 2

done
nothing LCFG-specific here!

just a simple demo application which is easier to

configure than a “real” application such as a web
server ...

a schema lusr/lib/icfg/defaults/server/chatter-1.def

/%
* LCFG chatter component : default resources
*/

#include "ngeneric-1.def" adds some standard resources
#include "om-1.def"

message hello world

the default value

the resource name

this tells the compiler what resources are supported

component - “chatter” Jusr/lib/lcfg/components/chatter

#!/bin/sh

Include the LCFG library functions
. /usr/lib/1lcfg/components/ngeneric

Called when configuration changed
Configure() { .. }

Called to start component
Start() { .. }

Called to stop component
Stop { .. }

Main function dispatches the methods
Dispatch "$@"

component - “chatter” - Start() be careful not to

start multiple
processes!

Called to start component
Start() {

only start it if it isn't already running
1.e. 1f the PID file does not exist
if ! test -f /tmp/chatterd.pid ; then

start the application as a background process
/etc/chatterd "$LCFG_chatter_message" &

the framework makes the resources
available as variables with names:

$ LCFG_component_resource the “&” starts the chatterd

application as an asynchronous
pass the value of the message resource background process

as an argument to the process

component - “chatter” - Stop()

Called to stop component
Stop() {

1if the PID file exists, it is running ...

if test -f /tmp/chatterd.pid ; then

read the process ID from the file
PID="cat /tmp/chatterd.pid

kill the process
kill $PID

remove the PID file
rm /tmp/chatterd.pid

fi
}

component - “chatter” - Configure()

if the process ish't

running, there is nothing

Called when configuration changed
J J todo...

Configure() {

1if the PID file exists, it is running ...
if test -f /tmp/chatterd.pid ; then

Stop

Start
fi

the Start() method will take
care of restarting chatterd

with the new value of the
message resource

a orofile Ivar/lcfg/conf/server/source/localhost

#include <local/site.h> add the component to
#include <lcfg/os/minimal_s16.h> the profile
#include <lcfg/hw/virtualbox.h>
#include <lcfg/options/lcfg-server.h>

Iprofile.components mADD (chatter)
profile.version_chatter 1

chatter.message I'm Working! explicit version numbers
support upgrading with
schema changes

the default from the schema

will be used if you omit this

Resources

You will need to install the following ...

» /etc/chatterd
» /usr/lib/lcfg/components/chatter
» /usr/lib/lcfg/defaults/server/chatter-1.def

Copies are available from here:
» http://www.lIcfg.org/ilw2016/

The first two will need to be executable:

» chmod oug+x /etc/chatterd
» chmod oug+x /usr/lib/Icfg/components/chatter

You will also need to edit ...
» /var/lcfg/conf/server/source/localhost

http://www.lcfg.org/ilw2016/

Try ...

Check the resource values
» gxprof chatter

Start & stop the component

» om chatter start
» om chatter stop

Check the output
» cat /var/log/chatterd

Reconfigure
» om chatter start
» check the output
» change the message

» the application should reconfigure and start logging the new
message

Further suggestions ...

Implement some more resources

» the logging frequency
» the name of the message file

Browse some real components
» /var/lib/lcfg/components/ntp
» /var/lib/lcfg/components/mail

Subsystems with an imperative interface

» Some subsystems have to be configured using imperative
commands, rather than a “declarative” config file

» Eg. rpms, or the Ubuntu firewall (ufw)

» Think about how the component can be used to present a
declarative interface to the configuration system

Further Topics

Topics not covered (see the book) ...

» “tag lists” and list order

» “spanning maps”

» managing lists of installed packages

» “prescriptive” vs “lightweight” configuration
» installing machines from scratch

» managing an entire site

http://www.Icfg.org/ilw2016/

