
Paul Anderson 
Alastair Scobie 
Stephen Quinney 
Kenny MacDonald

Writing LCFG components

Innovative Learning Week 
Wed 17th February 2016



component  
schema

machine 
profile

“compiler”

A

A

B

B

C

C

D

D

application to be configured

schema

component

machine profile



A application to be configured - “chatterd”

#!/bin/sh 

# The message to log comes from the command line argument 
message=$1 

# Save the PID of the daemon so we can stop it when we want 
echo $$ >/tmp/chatterd.pid 

# Log the start  
echo `date` : chatterd starting >>/var/log/chatterd 

# Chatter away 
while true ; do 
 echo `date` : $message >>/var/log/chatterd 
 sleep 2 
done 

write a message to the log every 2 seconds

nothing LCFG-specific here! 
just a simple demo application which is easier to 
configure than a “real” application such as a web 
server …

/etc/chatterd



/* 
 * LCFG chatter component : default resources 
 */ 

#include "ngeneric-1.def" 
#include "om-1.def" 

schema 1 

message hello world 

B schema

the resource name

the default value

adds some standard resources

the schema version

this tells the compiler what resources are supported

/usr/lib/lcfg/defaults/server/chatter-1.def



#!/bin/sh 

# Include the LCFG library functions 
. /usr/lib/lcfg/components/ngeneric 

# Called when configuration changed 
Configure() { … } 

# Called to start component 
Start() { … } 

# Called to stop component 
Stop { … } 

# Main function dispatches the methods 
Dispatch "$@" 

C component - “chatter” /usr/lib/lcfg/components/chatter



# Called to start component 
Start() { 

  # only start it if it isn't already running 
  # i.e. if the PID file does not exist 
  if ! test -f /tmp/chatterd.pid ; then 

    # start the application as a background process 
    /etc/chatterd "$LCFG_chatter_message" & 

  fi 
} 

C component - “chatter” - Start()

the framework makes the resources 
available as variables with names:

$LCFG_component_resource 

pass the value of the message resource 
as an argument to the process

the “&” starts the chatterd 
application as an asynchronous 

background process

be careful not to 
start multiple 

processes!



# Called to stop component 
Stop() { 

  # if the PID file exists, it is running ... 
  if test -f /tmp/chatterd.pid ; then 

    # read the process ID from the file 
    PID=`cat /tmp/chatterd.pid` 
     
    # kill the process 
    kill $PID 

    # remove the PID file 
    rm /tmp/chatterd.pid 

  fi 
} 

C component - “chatter” - Stop()



# Called when configuration changed 
Configure() { 

  # if the PID file exists, it is running ... 
  if test -f /tmp/chatterd.pid ; then 
    Stop 
    Start 
  fi 
} 

C component - “chatter” - Configure()

the Start() method will take 
care of restarting chatterd 

with the new value of the 
message resource

if the process isn’t 
running, there is nothing 

to do …



#include <local/site.h> 
#include <lcfg/os/minimal_sl6.h> 
#include <lcfg/hw/virtualbox.h> 
#include <lcfg/options/lcfg-server.h> 

!profile.components       mADD(chatter) 
profile.version_chatter   1 

chatter.message       I’m Working! 

D profile

the default from the schema 
will be used if you omit this

add the component to 
the profile

/var/lcfg/conf/server/source/localhost

explicit version numbers 
support upgrading with 

schema changes



Resources

You will need to install the following …  
‣ /etc/chatterd 
‣ /usr/lib/lcfg/components/chatter 
‣ /usr/lib/lcfg/defaults/server/chatter-1.def 

Copies are available from here: 
‣ http://www.lcfg.org/ilw2016/ 

The first two will need to be executable: 
‣ chmod oug+x /etc/chatterd 
‣ chmod oug+x /usr/lib/lcfg/components/chatter 

You will also need to edit … 
‣ /var/lcfg/conf/server/source/localhost

http://www.lcfg.org/ilw2016/


Try …

Check the resource values 
‣ qxprof chatter 

Start & stop the component 
‣ om chatter start 
‣ om chatter stop 

Check the output 
‣ cat /var/log/chatterd 

Reconfigure 
‣ om chatter start 
‣ check the output 
‣ change the message 
‣ the application should reconfigure and start logging the new 

message



Further suggestions …

Implement some more resources 
‣ the logging frequency 
‣ the name of the message file 

Browse some real components 
‣ /var/lib/lcfg/components/ntp 
‣ /var/lib/lcfg/components/mail 

Subsystems with an imperative interface 
‣ Some subsystems have to be configured using imperative 

commands, rather than a “declarative” config file 
‣ Eg. rpms, or the Ubuntu firewall (ufw) 
‣ Think about how the component can be used to present a 

declarative interface to the configuration system



Further Topics

Topics not covered (see the book) … 
‣ “tag lists” and list order 
‣ “spanning maps” 
‣ managing lists of installed packages 
‣ “prescriptive” vs “lightweight” configuration 
‣ installing machines from scratch 
‣ managing an entire site 

http://www.lcfg.org/ilw2016/


