
Paul Anderson
Alastair Scobie
Stephen Quinney
Kenny MacDonald

Configuring & managing
the Informatics computing systems

Innovative Learning Week
Wed 17th February 2016

Programme

10.00-10.15 - Intro (Paul)

10.15-11.45 - Configuring systems with LCFG  
 (Alastair & Stephen)

11.45-12.00 - Break

12.00-13.00 - Writing LCFG components (Paul)

web server
(apache)

database
(mariadb)

application
(owncloud)

web server
(apache)

database
(mariadb)

application
(owncloud)

ssh

logrotate firewall
(ufw)

package
manager

backups

web server
(apache)

database
(mariadb)

application
(owncloud)

ssh

logrotate firewall
(ufw)

package
manager

backups

all in different formats!!!

“client”
“profiles”

“server”

“component”

a common format

a single, definitive source of
configuration information

https://lcfg2.inf.ed.ac.uk/cgi/index.cgi

Declarative Configuration

Configuration is data, not code
‣ the LCFG profiles are in XML
‣ we can generate the profiles in different ways

- the existing LCFG language is very old (1994!)
- L3 is a new, experimental language

‣ we can consume the profiles in different ways
- to configure a machine
- to do a complete security analysis of the whole site

Deployment is separate from specification
‣ components translate from the profile to system-specific formats
‣ we can use automated planning to control the deployment order

Many other systems are not “declarative”
‣ they specify “how” (scripts), but not “what”
‣ having no explicit description of the desired configuration is a big

disadvantage

web server
(apache)

database
(mariadb)

application
(owncloud)

ssh

logrotate firewall
(ufw)

package
manager

backups

accounts
tables  
etc …

directories
permissions  

etc …

web server
(apache)

database
(mariadb)

application
(owncloud)

ssh

logrotate firewall
(ufw)

package
manager

backups

ssh client browser dns service

accounts
tables  
etc …

directories
permissions  

etc …

ports packages

logfiles
files

ssh certificates ssl certificates

web server
(apache)

database
(mariadb)

application
(owncloud)

ssh

logrotate firewall
(ufw)

package
manager

backups

ssh client browser dns service

accounts
tables  
etc …

directories
permissions  

etc …

ports packages

logfiles
files

ssh certificates ssl certificates

dependencies must be
maintained manually

there is no “higher-level”
model of the system

DB service
port=42

DB server
“include DB service”

“compiler”

DB client
“include DB service”

“profiles” in xml

“source files” in
LCFG language

DB service
port=42

DB server
“include DB service”

“compiler”

DB client
“include DB service”

a single, definitive source
for the service port

the server and client
will always agree

“compiler”
OS Linux

lots of 
resources 

…  
…  
…

Machine B
“include OS Linux”

Machine A
“include OS Linux”

common configuration for various
“aspects” can be factored out into

“header files”

“client”
“profiles”

“server”

“component”

“sources”

“compiler”
Overall Architecture

What next?

Sessions today
‣ using the LCFG language to configure some existing components
‣ writing (or at least modifying) components

Resources
‣ the LCFG booklet is available online 

please do not distribute outside of Informatics
‣ the VM is available online
‣ the code is open source: www.lcfg.org

Research
‣ I’m interested in …

- language semantics (e.g. aspect composition & conflict resolution),
usability, deployment & planning, …

‣ Project opportunities …
- Phd, MSc, INF4, INF3 research, summer projects …

