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Programme

10.00-10.15 - Intro (Paul) 

10.15-11.45 - Configuring systems with LCFG  
                       (Alastair & Stephen) 

11.45-12.00 - Break 

12.00-13.00 - Writing LCFG components (Paul) 
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all in different formats!!!
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a common format

a single, definitive source of 
configuration information

https://lcfg2.inf.ed.ac.uk/cgi/index.cgi


Declarative Configuration

Configuration is data, not code 
‣ the LCFG profiles are in XML 
‣ we can generate the profiles in different ways 

- the existing LCFG language is very old (1994!) 
- L3 is a new, experimental language 

‣ we can consume the profiles in different ways 
- to configure a machine 
- to do a complete security analysis of the whole site 

Deployment is separate from specification 
‣ components translate from the profile to system-specific formats 
‣ we can use automated planning to control the deployment order  

Many other systems are not “declarative” 
‣ they specify “how” (scripts), but not “what” 
‣ having no explicit description of the desired configuration is a big 

disadvantage
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dependencies must be 
maintained manually

there is no “higher-level” 
model of the system



DB service 
port=42

DB server 
“include DB service”

“compiler”

DB client 
“include DB service”

“profiles” in xml

“source files” in 
LCFG language



DB service 
port=42

DB server 
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a single, definitive source 
for the service port

the server and client 
will always agree



“compiler”
OS Linux 

lots of 
resources 

…  
…  
…

Machine B 
“include OS Linux”

Machine A 
“include OS Linux”

common configuration for various 
“aspects” can be factored out into 

“header files” 



“client”
“profiles”

“server”

“component”

“sources”

“compiler”
Overall Architecture



What next?

Sessions today 
‣ using the LCFG language to configure some existing components  
‣ writing (or at least modifying) components 

Resources 
‣ the LCFG booklet is available online 

please do not distribute outside of Informatics 
‣ the VM is available online 
‣ the code is open source: www.lcfg.org 

Research 
‣ I’m interested in … 

- language semantics (e.g. aspect composition & conflict resolution), 
usability, deployment & planning, … 

‣ Project opportunities … 
- Phd, MSc, INF4, INF3 research, summer projects …


