
Supporting
Criteria-Based Marking

Paul Anderson
<dcspaul@ed.ac.uk>

Software & Documentation
http://homepages.inf.ed.ac.uk/dcspaul/pmark

AIAI Seminar: 6th July 2020

mailto:dcspaul@ed.ac.uk?subject=
mailto:dcspaul@ed.ac.uk?subject=

Overview

• Motivation

• A (little) bit about marking

• Computing grades with PMark (by example)

• A (little) bit about algorithms (suggestions welcome?)

• Generating feedback with PMark

there is a video on the web page of
another talk which includes a description of

how this was used for INF1B

Motivation

The Common Marking Scheme
‣ specifies an explicit rubric for the various mark ranges
‣ for example, marks over 80 require:

"demonstrates that the student is actively extending their knowledge
and capacity well beyond required materials and making new
connections independently"

Authenticity
‣ "adding up" the marks may produce an overall result which doesn't

correspond with the desired intuitive assessment of the work
‣ attempts to adjust this numerically are usually extremely arbitrary

Variability of marks
‣ especially with large classes and multiple markers

Feedback
‣ the relationship between the feedback and mark is not clear

Approaches to marking

"Divergent" tasks
‣ "real" programming is a "divergent" task ...

"intended to provide opportunities for students to demonstrate
sophisticated cognitive abilities, integration of knowledge, complex
problem solving, critical opinion, lateral thinking and innovative
action" (Sadler 2009)

A "holistic" scheme
‣ a single descriptive scale

there may be a list of criteria, but it is up to the marker how these
are combined and weighted to yield an overall mark

An "analytic" scheme
‣ separate criteria for different aspects (attributes)
‣ results combined (in some way) to generate overall mark
‣ there is some debate about how effective this is in capturing the

marker's holistic impression

Combining marks

Additive marking
‣ we could assign a numeric score to the attributes and sum them
‣ this is "compensatory"

good marks on some attributes compensate for bad marks elsewhere
weighting schemes do not solve this problem

‣ "grade cutoff scores are not directly linked to mastery of a specific
subject matter or skill - the pattern of strengths and weaknesses is
lost entirely" (Sadler 2005)

Decision rules
‣ specify explicit requirements for each grade

"all of the criteria have to be adequate for a pass"
‣ relate the outcome directly to the objectives

"you failed because you did not demonstrate this learning outcome .."
‣ but these are not so easy to evaluate automatically
‣ and it is not obvious how to generate a numerical mark

Marker variation

"assessment decisions at this level are so complex, intuitive and tacit
that variability is inevitable" (Bloxham 2016)

30

40

50

60

70

30 40 50 60 70

� 38 samples (51%) <5% difference
� 16 samples (21%) 5-10% difference
� 13 samples (17%) 10-15% difference
� 8 samples (11%) >15% difference

M
ar
k
fo
rD

ES
IG
N
2P

(%
)

Mark for DESIGN2A (%)

"we mislead students that there is something fixed, accessible and
rational that they can use to guide their work" (Bloxham 2011)

Lots of small rules

We have been experimenting with ...
‣ lots of small "atomic" criteria with a simple evaluation:

for example: "no", '"not really", "sort-of", "yes"
- our markers have found these easier and more reliable to mark
- variation seems more likely to average out
- the results provide explicit feedback and reasoning
- avoids multiple implicit sub-criteria
- avoids agonising over whether something is a 13/20 or 14/20

The literature is wary of this ...
‣ because of the difficulty of composing these into a meaningful holistic

result

But ...
‣ we have been using software to support the composition
‣ the rules can be adjusted incrementally to achieve an authentic result

An example

Software Readability:
‣ "no", "not really", "sort-of", or "yes" ?

- is the code properly indented?
- do the large-scope variables have meaningful names?
- are there sufficient comments?
- are there unnecessary comments?
- is there redundant commented-out code?
- are there any methods which are too large?
- etc ... ?

We might also ask the marker ...
‣ do you think this is exceptionally good for some reason (explain) ?
‣ do you think there is something else about the software which makes

it particularly readable (or not) which is not captured by these criteria
(explain) ?

Tool requirements

We would like ...
‣ to have a correct and repeatable evaluation of decision rules with an

explicit and transparent mark scheme

‣ to support potentially large numbers of small rules to mitigate
marking variation, and to clearly relate the marking to the objectives

‣ to be able to develop the mark scheme iteratively (and
retrospectively) so that the result really reflects what we want to
assess

‣ to be lenient in the interpretation of the rules, and allow for some
degree of marker variation, while still being strict in those cases
where it is appropriate

‣ to be able to discriminate between students who just meet the
requirements for a grade, and those who meet the requirements well

‣ to have clear and explicit feedback about the results and an
explanation of how they relate to the rules and attributes

PMark

Freely available program
‣ currently runs on Mac or Linux (in perl)

Takes ...
‣ a CSV file

with textual or numeric values for each "attribute" for each student

‣ a plain-text "marking scheme"
describing how to compute the results from the attributes

Produces ...
‣ a CSV file

with textual or numeric results for each student

‣ a text (or HTML) file
with descriptive feedback for each student

‣ various graphs and statistics

An example

5 practical tasks
‣ hand-washing
‣ cat-shaving
‣ dog-bandaging
‣ hamster-injecting
‣ pill-counting

Assessed on a 4-point lickert scale
‣ "no"
‣ "almost"
‣ "adequate"
‣ "good"

Results as
‣ pass/fail
‣ percentage (common marking scheme)

CSV Input file (attributes)

id, washing, shaving, bandaging, injecting, counting

Sarah, no, no, no, no, no
Dylan, adequate, good, good, almost, good
Max, adequate, adequate, adequate, good, adequate
John, good, almost, adequate, good, adequate
Victoria, adequate, no, almost, adequate, adequate
Lucy, good, good, good, good, adequate
Leo, almost, good, adequate, almost, good

Marking forms

IPPO Assigment2 Demo
IPPO 2019-2020
Antonios Kolovos <s1983338@ed.ac.uk>
Demonstration
The demonstration is not "marked". This is an opportunity for the student to get feedback
and to see the work of other students. For the second assignment, we will refer to these
comments if we are unable to run the submitted application.

1. Unable to demonstrate anything meaningful
2. Demonstrate the ability display some kind of running application
3. Demonstrate the ability to move between locations and look in different directions
4. Demonstrate the ability to pick up objects and put them down
5. Load the model from a JSON file

Use 0 if the student is not present.

Use -(-) if the application has small bugs or strange interface behaviour.

Use +(+) if it works particularly well or has a particularly nice interface.

0: 1: 2: 3: 4: 5:

Feedback
Please supply some helpful feedback for the student:

Comment
Please provide any comments on the demonstration for staff information only. Eg. Any
obvious bugs, any evidence of a lack of ability to explain the solution, or any evidence of an
unusual similarity with someone else's work:

Tick this to mark for discussion
 Discuss:

Exceptional criteria

couplingjava

cohesionObject

classip
pounit test

hashmap

constructor

method

exception

encapsulation

accessor mutator

intelliJmodel

no demonstration

! " # $ % & Code <@>

'

! " # $ % & Code <@>

'

IPPO
this is not part of PMark,
but I created online
marking forms for IPPO
which generate the CSV
fields for input to PMark

INF1B
used a similar approach
(with a different form
implementation)

[attributes]
washing
shaving
bandaging
injecting
counting

Mark scheme: attributes

the attribute names must match
the column headings in the CSV file

Mark scheme: attribute type

[types]
mark: [no,almost,adequate,good]

[attributes]
washing: mark
shaving: mark
bandaging: mark
injecting: mark
counting: mark

Mark scheme: attribute type

[types]
mark: [no,almost,adequate,good]

[attributes]
washing: mark
shaving: mark
bandaging: mark
injecting: mark
counting: mark

there is nothing special about the
 values no, almost, adequate & good

they can be arbitrary names or integers
and there can be any number of them

but the order is important!

there is nothing special
 about the name mark - this just connects

the attribute to the collection of possible values

[types]
mark: [no,almost,adequate,good]

[attributes]
washing: mark
shaving: mark
bandaging: mark
injecting: mark
counting: mark

Mark scheme: result

	
	
	
	
	

[results]
result

	
	
	
	
	

[results]
result: grade

Mark scheme: result type

[types]
mark: [no,almost,adequate,good]
grade: [fail,pass]

[attributes]
washing: mark
shaving: mark
bandaging: mark
injecting: mark
counting: mark

[types]
mark: [no,almost,adequate,good]
grade: [fail,pass]

[attributes]
washing: mark
shaving: mark
bandaging: mark
injecting: mark
counting: mark

Mark scheme: rules

[rules]
pass: all of {
	 washing = adequate
	 shaving = adequate
	 bandaging = adequate
	 injecting = adequate
	 counting = adequate }

[results]
result: grade

Final mark scheme

[types]
mark: [no,almost,adequate,good]
grade: [fail,pass]

[attributes]
washing: mark
shaving: mark
bandaging: mark
injecting: mark
counting: mark

[rules]
pass: all of {
	 washing = adequate
	 shaving = adequate
	 bandaging = adequate
	 injecting = adequate
	 counting = adequate }

[results]
result: grade

Running PMark
id, washing, shaving, bandaging, injecting, counting

Sarah, no, no, no, no, no
Dylan, adequate, good, good, almost, good
Max, adequate, adequate, adequate, good, adequate
John, good, almost, adequate, good, adequate
Victoria, adequate, no, almost, adequate, adequate
Lucy, good, good, good, good, adequate
Leo, almost, good, adequate, almost, good

id,result

Sarah,fail
Dylan,fail
Max,pass
John,fail
Victoria,fail
Lucy,pass
Leo,fail

pmark eval -m vets1.pmark vets.csv

Hashtags

[types]
mark: [no,almost,adequate,good]
grade: [fail,pass]

[attributes]
washing: mark #task
shaving: mark #task
bandaging: mark #task
injecting: mark #task
counting: mark #task

[rules]
pass: all of {
	 washing = adequate
	 shaving = adequate
	 bandaging = adequate
	 injecting = adequate
	 counting = adequate }

pass: all #task = adequate

[results]
result: grade

X

[rules]
pass:
 all but one of
 #task = adequate
 and all of
 #task = almost

[results]
result: grade

[types]
mark: [no,almost,adequate,good]
grade: [fail,pass]

[attributes]
washing: mark #task
shaving: mark #task
bandaging: mark #task
injecting: mark #task
counting: mark #task

Being lenient

id,result

Sarah,fail
Dylan,pass
Max,pass
John,pass
Victoria,fail
Lucy,pass
Leo,fail

Lenient results

pmark eval -m vets3.pmark vets.csv

id, washing, shaving, bandaging, injecting, counting

Sarah, no, no, no, no, no
Dylan, adequate, good, good, almost, good
Max, adequate, adequate, adequate, good, adequate
John, good, almost, adequate, good, adequate
Victoria, adequate, no, almost, adequate, adequate
Lucy, good, good, good, good, adequate
Leo, almost, good, adequate, almost, good

[types]
mark: [no,almost,adequate,good]
grade: [fail,pass,distinction]

[attributes]
washing: mark #task
shaving: mark #task
bandaging: mark #task
injecting: mark #task
counting: mark #task

[rules]
pass:
 all but one #task = adequate
 and all #task = almost
distinction:
 all but one #task = good
 and all #task = adequate

[results]
result: grade

Adding more grades

id, washing, shaving, bandaging, injecting, counting

Sarah, no, no, no, no, no
Dylan, adequate, good, good, almost, good
Max, adequate, adequate, adequate, good, adequate
John, good, almost, adequate, good, adequate
Victoria, adequate, no, almost, adequate, adequate
Lucy, good, good, good, good, adequate
Leo, almost, good, adequate, almost, good

id,result

Sarah,fail
Dylan,pass
Max,pass
John,pass
Victoria,fail
Lucy,distinction
Leo,fail

Results with distinctions

pmark eval -m vets4.pmark vets.csv

[rules]
pass:
 all #imp = adequate
 and all #task = almost
distinction:
 all but one #task = good
 and all #task = adequate

[results]
result: grade

Important tasks

[types]
mark: [no,almost,adequate,good]
grade: [fail,pass,distinction]

[attributes]
washing: mark #task
shaving: mark #task
bandaging: mark #task #imp
injecting: mark #task #imp
counting: mark #task #imp

id,result

Sarah,fail
Dylan,fail
Max,pass
John,pass
Victoria,fail
Lucy,distinction
Leo,fail

id, washing, shaving, bandaging, injecting, counting

Sarah, no, no, no, no, no
Dylan, adequate, good, good, almost, good
Max, adequate, adequate, adequate, good, adequate
John, good, almost, adequate, good, adequate
Victoria, adequate, no, almost, adequate, adequate
Lucy, good, good, good, good, adequate
Leo, almost, good, adequate, almost, good

Failing important tasks

pmark eval -m vets5.pmark vets.csv

A graph

0

0.5

1

1.5

2

2.5

3

3.5

4

fai
l

pa
ss

dis
tin
cti
on

nu
m
be
ro
fs
tu
de
nt
s

pmark plot -m vets5.pmark vets.csv

[types]
mark: [no,almost,adequate,good]
percentage: [
 0..100

pass = 50,
distinction = 70]

[attributes]
washing: mark #task
shaving: mark #task
bandaging: mark #task #imp
injecting: mark #task #imp
counting: mark #task #imp

[rules]
pass:
 all #imp = adequate
 and all #task = almost
distinction:
 all but one #task = good
 and all #task = adequate

[results]
result: percentage

Interpolation

id, washing, shaving, bandaging, injecting, counting

Sarah, no, no, no, no, no
Dylan, adequate, good, good, almost, good
Max, adequate, adequate, adequate, good, adequate
John, good, almost, adequate, good, adequate
Victoria, adequate, no, almost, adequate, adequate
Lucy, good, good, good, good, adequate
Leo, almost, good, adequate, almost, good

id,result

Sarah,0
Dylan,42
Max,61
John,60
Victoria,26
Lucy,94
Leo,38

Percentage results

pmark eval -m vets6.pmark vets.csv

Victoria and Leo both still fail
But Victoria is a "worse" fail than Leo

// student must have submitted a draft design in order to pass
// really, we require a basic working application to pass
// but if the design is particularly good, we will accept some bugs
// we do require *some* sort of running implementation though
G1: P2 and all { DRAFT2A=1,
 some { good-design, working-app },
 some { RUN2B=1, DEMO2D=2 }}
// a reasonable collection of classes
// all of the MVC components must be reasonably explicit
// most of them must be very clear
good-design: all { CLASSES2A=4, all #mvc=3, most #mvc=4 }
// either the submitted code, or the demo must run
// no major bugs
working-app: some { RUN2B=2, DEMO2D=3 } and BUGS2B=2

A practical rule

A customised plot

0

5

10

15

20

25

30

0 fai
l

dip
lom
a

pa
ss

ve
ry
go
od

dis
tin
cti
on

ex
ce
pti
on
al 10

0

nu
m
be
ro
fs
tu
de
nt
s

mark

There are only two type of rule expression:
‣ ATTRIBUTE = VALUE

true if the named ATTRIBUTE has (at least) the given VALUE
‣ N of { CRITERIA1, CRITERIA2, ... CRITERIAM }

true if (at least) N of the M criteria are true
eg. "all but one of" => (M-1) of { CRITERIA1 ... CRITERIAM }

The resulting grade ...
‣ is determined entirely by a simple boolean evaluation

But ...
‣ the "scores" for the expressions are represented internally by values

in the range [-1..+1] which are used to interpolate between the
grades if required

‣ -1 = worst possible fail, 0 = minimal pass, 1 = maximal pass

Grade evaluation

ATTRIBUTE = VALUE
‣ if the criteria fails, the score [-1,0) is interpolated between the lowest

possible value of the attribute, and the VALUE.
‣ if it passes, the interpolation [0,1] is between the the VALUE and the

highest possible value

N of { CRITERIA1, CRITERIA2, ... CRITERIAM }
‣ the score is obtained by interpolating between the minimum and

maximum possible values for the sum of the criteria
(these will be different depending on whether the criteria passes of
not)

‣ in practice, the algorithm is more complex because PMark allows
allows weights to be assigned to the criteria

The final result
‣ is obtained by using the score to interpolate between the passing

grade and the next highest grade

Interpolation

Validity
‣ the interpolated value is only a heuristic
‣ however, this appears to produce a value which correlates well with

an intuitive ranking of the results
‣ it is essentially equivalent to a (weighted) averaging of the scores for

the grade
‣ PMark can provide a detailed audit of the interpolation, although this

is usually too complex to be useful
(the audit of the logical grade calculation is simpler and more useful)

‣ of course it is possible to use the interpolated values as a guide and
assign the final values manually (as in the Informatics projects)

Alternative algorithms ?
‣ welcome !

Distribution
‣ the current algorithm produces a rather bimodal distribution which

tends to clearly separate the "fails" from the "passes"

Interpolation

Interpolation

0

2

4

6

8

10

12

14

min fail (40) <design> pass (19) max

-1 -0.5 0 0.5 1

nu
m
be
ro
fs
tu
de
nt
s

By default ...
‣ PMark generates some automatic text explaining what would be

necessary to achieve the next grade:

Dylan (42) did not meet the requirements for any of the grades.
For a pass (50), we would like to have seen:
- a adequate for the injecting attribute instead of a almost.

Feedback

John (60) achieved a pass (50) for the result.
For a distinction (70), we would like to have seen:
- a good for the shaving attribute instead of a almost.
- a good for the bandaging attribute instead of a adequate.
- a good for the counting attribute instead of a adequate.

Custom feedback

The mark scheme can be annotated
‣ to add custom feedback for individual rules and attributes

JSON2A: lickert4 (
 2 = "code to read the model from a JSON file"
 3 = "code which successfully reads the model from a JSON file"
 4 = "better designed code to read the model from a JSON file"
)

Clara (77) achieved a D2 (75) for the a2.
For a exceptional (80,E1), we would like to have seen:
- better designed code to read the model from a JSON file
- code with a view class which does not depend on JavaFx

Feedback algorithm

Logically ...
‣ it can be difficult to describe precisely what would be necessary to

achieve the next grade
‣ in this example, if there were two tasks which were not "good", then

meeting either of these would be sufficient to achieve the distinction

distinction:
 all but one #task = good
 and all #task = adequate

‣ PMark can display the full logical expression necessary to meet the
requirement, but this is usually too awkward to be useful

‣ by default, it simply lists all of the individual criteria which might
contribute to expression

Where next?

Evaluation
‣ PTAS Project
‣ IPPO (MSc course)
‣ INF1B (maybe)
‣ interest in discussing or

trying out PMark very
welcome

Paul Anderson
<dcspaul@ed.ac.uk>

Software
‣ potential interfaces (student projects)

web or GUI?
Learn integration?

‣ algorithm improvements
‣ suggestions?

Software & Documentation
http://homepages.inf.ed.ac.uk/dcspaul/pmark

mailto:dcspaul@ed.ac.uk?subject=
mailto:volker.seeker@ed.ac.uk

