
T
H
E

U N
I V E R S I T

Y

O
F

E
D I N B U

R
G
H!"# #

60%$x
x

Getting started
with PMark

Paul Anderson
<dcspaul@ed.ac.uk>

Software & Documentation
http://homepages.inf.ed.ac.uk/dcspaul/pmark

mailto:dcspaul@ed.ac.uk?subject=

!"# #
60%$x

x Intro

PMark
• Uncompromisingly criteria-based mark calculator !
• Not the tool to use if you want to "add up marks", "accumulate credit", ...
• Research: how far can we get with just criteria-based rules ?

(this has lots of benefits)

This session
• I am really interested in discussing the applications & pedagogy
• But this is a hands-on session about the practical usage of the tool
• I'm particularly interested in seeing what people find difficult/awkward
• Please tell me when something doesn't make sense!

The interface
• PMark has a web interface, but the flexibility that the tool offers comes

from the ability to express the requirements in a text "language"
• So we will mostly be talking about the PMark "language"

!"# #
60%$x

x Resources

PMark software
• Is freely available and open source
• Command line version in use for several years, but requires Unix or Mac
• Web server version is new - interface less well tested

PMark service
• A version of the server for University staff running in Informatics
• "Best effort" support! Talk to me if you want to use it for "production"

Documentation
• Introduction document, reference document
• Beginnings of something discussing the practical applications & pedagogy
• Talk videos / slides & basic demonstration videos

http://homepages.inf.ed.ac.uk/dcspaul/pmark

https://ease.sweb.inf.ed.ac.uk/dcspaul/pmark/master/pmark.cgi/server

!"# #
60%$x

x PMark Overview

!
Mark scheme

"
Attributes
(CSV file)

#
Compute

$
Graphs

%
Results

(CSV File)

id final
Alexander pass
David fail
Lucy pass
Silas fail

id content spelling
Alexander good good
David good bad
Lucy bad good
Silas bad bad

!"# #
60%$x

x A PMark data file

id content spelling
Alexander good good
David good bad
Lucy bad good
Silas bad bad

You must have a (lower case) "id" column
with (unique) student "identifiers"

And a column for each attribute (the names are "identifiers")

The values can be "identifiers"
or (whole) numbers

The "identifiers" must be short names
- with only letters, numbers or hyphens
- starting with a letter
- the case is significant

The file is a CSV file
- created with Excel/Notepad
- or with PMark forms

!"# #
60%$x

x A PMark mark scheme
The mark scheme is a plain text file
- created in the web interface
- or with an editor - eg. Notepad
- it usually has a ".pmark" file type

[types]
...
[attributes]
...
[results]
...
[rules]
...

It has a number of sections, each
headed by the section type in (square)
brackets ...

This lists the different types of attribute that we
might have: eg. pass/fail, likert, percentage, ...

This lists the criteria (attributes) and their
corresponding types

This lists the results and their corresponding
types
This gives the rules relating the results to the
attributes

!"# #
60%$x

x

id content spelling
Alexander good good
David good bad
Lucy bad good
Silas bad bad

PMark types

[types]
mark: [bad, good]

You can call the type whatever you
like (as long as it is an "identifier")
I have called it "mark"
You could call it 🧁

We only have one type here
It has two possible values:
"bad" and "good"

The punctuation is important!
The colon and the brackets
The order is important!
"good" is "better" than "bad"

!"# #
60%$x

x

id content spelling
Alexander good good
David good bad
Lucy bad good
Silas bad bad

PMark attributes

[attributes]
content: mark
spelling: mark

[types]
mark: [bad, good]

We have two attributes
and they both have the
same type

A real mark scheme may
have dozens of attributes
with several different types

!"# #
60%$x

x Creating some data

Enter the mark scheme
• Click on the Scheme icon
• Click the New button
• Give the scheme a (short) name
• Type in the scheme
• Click Save
• If there are any typos,

correct them and click Save again

Generate some data
• Click Random
• Give the data a (short) name

We now have enough of a mark scheme to describe the data
PMark can automatically generate some matching (random) data ..

[types]
mark: [bad, good]

[attributes]
content: mark
spelling: mark

When you have"real" marking data, you
can upload it from your CSV file
or enter it using PMark forms

!"# #
60%$x

x

id final
Alexander pass
David fail
Lucy pass
Silas fail

PMark results

[results]
final: grade

[types]
grade: [fail, pass]

We only have one result
which we have called "final"
It it specified in the same
way as the attributes ...

It has a "type" which we
have called "grade"
You could call this anything
you like

The grade has two values
"fail" or "pass"
(be careful of the order!)

!"# #
60%$x

x PMark rules

The rules tell us how to compute the
result, from the values of the attributes

[types]
mark: [bad, good]
grade: [fail, pass]

[attributes]
content: mark
spelling: mark

[results]
final: grade

[rules]
pass: content=good

#

We have one very simple rule: the
mark is going to be a pass (only) if the
content is "good"

The spelling will be ignored for now

If none of the rules are satisfied, then the
result grade will be the lowest possible
ie. a "fail"

!"# #
60%$x

x Computing a result

Update the mark scheme
• Edit the mark scheme to look like the

version on the right
• Click Save
• If there are any typos,

correct them and click Save again

Compute the result
• Click Compute

This scheme is very simple! But it is enough
for PMark to compute a result

[types]
mark: [bad, good]
grade: [fail, pass]

[attributes]
content: mark
spelling: mark

[results]
final: grade

[rules]
pass: content=good

PMark will compute the result and you
should be able to see that (only) those
students with good content have passed

!"# #
60%$x

x More about rules

[types]
mark: [terrible, bad, good]

[rules]
pass: content = bad

A basic rules says that an attribute
must have at least a certain value

So this rule doesn't say quite what it
first looks like!

A rule can require several criteria
(connect them with "and")

[types]
grade: [fail, pass, distinction]

[rules]
distinction: content = good
 and spelling = good

You can also require just one
criteria or the other

(connect them with "or")

!"# #
60%$x

x Even more about rules

[rules]
distinction: pass
 and spelling = good

One rule can depend on another rule

We almost almost always want the
higher grades to depend on the lower
ones in this way ...

We can also ask for ...
one of { ... } , some of { ... } , most of { ... }
all of { ... } , 7 of { ... } , all but one of { ... }
all but3 of { ... }

[rules]
distinction: most of {

spelling = good
content = good
....

} Finally: we can combine any of
these to make the criteria as complex
as we need!

Note the punctuation (curly brackets)

!"# #
60%$x

x An exercise
Try extending the mark scheme

• Add a "distinction" to the grades
• Add a new rule to award a distinction if the

spelling is good as well as the content
• Run this on your random data and check a few

results

Some other things to try ...
• Add an "exceptional" to the grades
• Add an extra attribute for originality with a

value of 0-5
• Invent a new rule for the exceptional grade

[types]
mark: [bad, good]
grade: [fail, pass]

[attributes]
content: mark
spelling: mark

[results]
final: grade

[rules]
pass: content=good

You will need to add a new type for the
numeric attribute
You will need to generate a new data file
when you have added a new attribute

!"# #
60%$x

x Numeric results

It is easy to create a numeric type [types]
likert: [0,1,2,3,4,5]
percentage: [0..100]

And there is a shorthand (two dots) if the
type has a big range
There is a limit (about 150) on the range

[types]
cms: [0..100
 H=0, G=10, F=20, E=30
 D=40, C=50, B=60
 A3=70, A2=80, A1=90
]

But we can't use numbers for the
names of the rules, so ...
If we want a numeric type for the
result, we need to attach names to
the values corresponding to the rules

[rules]
B: content = good

!"# #
60%$x

x CMS example

If the result type has values with no corresponding
rules, PMark will "interpolate" the values inbetween
depending on how well the rules have been met

[types]
likert: [0..5]
mark: [bad, good]
cms: [0..100
 pass=50
 distinction=70
 exceptional=80
]

[attributes]
content: likert
spelling: mark
originality: likert

[results]
final: cms

[rules]
pass: content=2
distinction: pass and spelling=good
exceptional: distinction and originality=3

Notice that there are 101 possible values for the
result, but only 3 rules ..

!"# #
60%$x

x Interpolation

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

nu
m

be
r o

f s
tu

de
nt

s

Gnuplot file:///Users/paul/Desktop/workshop+cms2 final.svg

1 of 1 01/07/2021, 12:40

id content originality spelling final

Harper 3 4 good 92
Heather 2 3 good 85

The interpolation is not perfect,
but it does generate plausible
values between grade points

But: The interpolation never
violates the rules!

Heather and Harper are both
"excellent", but Harper has done
slightly better ...

!"# #
60%$x

x Hashtags

In practice, typical schemes have
lots of attributes

To make it easy to refer to groups
of them, we can attach (one or
more) "hashtags" to an attribute

[attributes]
wordcount: likert #abstract
findings: likert #abstract
conclusions: likert #abstract
background: likert #abstract
methodology: likert #abstract
question: likert #abstract
...

[rules]
pass: most #abstract = 3

[rules]
pass: most #abstract = 4 and all #abstract = 3

This is common way of expressing a degree of leniency ...

!"# #
60%$x

x What else can we do ?

!
Mark scheme

"
Attributes
(CSV file)

#
Compute

$
Graphs

%
Results

(CSV File)

%% % %
Individual reports

&
Forms

&
&

&

&
&

Forms

!"# #
60%$x

x Where next ?

More examples
• Copies of the examples from the introduction document are available from

the Scheme menu (you can generate test data for these and then run/
copy/edit them)

• Trying to implement some assessment ideas of your own is probably the
best way to understand PMark

• Developing the rules usually forces people to think more deeply about
their assessments and this takes time "up front"

Support
• Please talk to me if you are thinking of using this on a "real" assessment
• I will be an honorary fellow from September & I am interested in

continuing this work, so I would be happy to talk to anyone who is
interested in following up

• I am really interested in your (honest!) feedback

