Three Applications of
Intelligent Configuration

Paul Anderson
<dcspaul@ed.ac.uk>

http://homepages.inf.ed.ac.uk/dcspaul/
publications/3apps-2011.pdf

EDINBURGH

¢~ informatics

and their ‘\l)lmlimtinn\

Centre for Intelligent Systems

Current State Deployment

Final State

000 Three Applications

B Constraint-based specifications

- how do we turn our “common sense” requirements” into a
concrete specification that can be implemented
automatically?

® Planning for configuration change

- how do we create a sequence of operations which will
transform “what we have” into “what we want” without
breaking anything in the process?

®m Agent-based configuration

- how can we decentralise some configuration decisions, but
retain an overall control of the policy?

006

Constraint-Based
Specifications

Work with John Hewson
<john.hewson@ed.ac.uk>

http://lhomepages.inf.ed.ac.uk/s0968244/

Sponsored by Microsoft Research

Constraint-Based
Specifications

B At some point all the details of the final
configuration need to be worked out

B But specifying these all explicitly is not a good idea

- overspecification allows no room for autonomic
adjustment (except by non-declaratiave rules)

- fully-instantiated configurations are hard to compose with
other people’s requirements

- it is hard and mistakes are likely

" We want to specify the minimum necessary to meet
our requirements
- and leave the system the freedom to fill in the details

ConfSolve

B Confsolve is a declarative configuration language

- we can specify the structure of the final configuration
- not the procedures necessary to achieve it

B ConfSolve allows us specify “loose” configurations

- we can specify some constraints on the final values
without giving explicit values

B ConfSolve uses a standard constraint solver to
generate a concrete configuration

® The output can be transformed into "Puppet” or
some other standard configuration language for
deployment

Some ConfSolve Classes

class Service {
var host as ref Machine

}

class Datacenter {
var machines as Machine[8]

}

class Machine { }
class Web Srv extends Service { }
class Worker Srv extends Service { }

class DHCP_Srv extends Service { }

var
var

var
var
var

Two Datacentres
Three Services

cloud as Datacenter
enterprise as Datacenter

dhcp as DHCP Service[2]
worker as Worker Service[3]
web as Web Service[3]

No Two Services on the Same
Machine

var services as ref Service[7]

where foreach (sl 1n services) {
foreach (s2 in services) {
1f (sl != s2) {
sl.host != s2.host
}

Constraint Solution

Enterprise

--

B B B

DHCP Web : | DHCP Work

EE BE

Web Work | i Web Work

--

Not a good solution!
The constraints are too loose

Favour Placement of Machines
in the Enterprise

var utilisation as int

where utilisation == count (
S 1ln services
where s.host 1n enterprise.machines)

maximize utilisation

Constraint Solution

Enterprise

--

. DHCP DHCP Work Web

HEEE

. Web Work Web Work

--

A much better solution

Add Six More Workers

Enterprise

--

DHCP Work Work Web Work Work Work Work

EEEE BE

Web Work Web DHCP i i Work Work

--

The new solution results in a different allocation for
the enterprise which causes an unwanted migration

“Minimal Change” Constraints

Enterprise

--

DHCP DHCP Work Web Work Work Work Work

EEEE BE

Web Work Web Work : i Work Work

--

If we add constraints to minimise the “distance”
from the old solution, we introduce some “stability”

Some Issues

" We would like the optimisation function to take
account of user preferences as well:
- “put these two servers on the same network |[F POSSIBLE”

B This is easy to do, but:

- how do we weight the priorities for all the different
preferences to always get a sensible outcome?

- is it more important to keep these servers on the same
network, or to maintain the stability?

B We can express all of these things, but we want to do
so in a way which makes sense to the user and is not
so complicated as to be unpredictable

11213/

Planning for Configuration
Change

Work with Herry
<H.Herry@sms.ed.ac.uk>

http://lhomepages.inf.ed.ac.uk/s0978621

Sponsored by HP Research

An Example Reconfiguration

A B A B
(up) (down) (down) (up)
N C ' c/
/——\ /[—\
“current” state “goal” state

constraint: C is always attached to a server which is “up”

O U1 B~ W N

Possible Plans

. Adown, B up, C.server=B X
. Adown, C.server=B, B up X
. Bup, Adown, C.server=B X
. B up, C.server=B, A down ¢/
. C.server=B, A down, Bup X
. C.server=B, B up, Adown X

“Cloudburst”

=)

firewall closed firewall open

-
F
||
h‘

it

=
-
h

--

e Perhaps we need to change the DNS for the server ...
e Maybe the server needs to access internal services ...

Automated Planning

® Fixed plans (“workflows”) cannot cover every
eventuality

® We need to prove that any manual plans

- always reach the desired goal state
- preserve the necessary constraints during the workflow

B The environment is a constant state of flux

- how can we be sure that the stored plans remain correct
when the environment has changed?

" Automated planning solves these problems

A Prototype

System Administrator
1 Y
Goal State

7
Vendors ControlTier
5 6 v Workflow 9
Actions e Planner A Plar‘\ . p Mapper - > ControlTier
Database (Workflow)
A Puppet
Manifest
10 g
Engineers Cument \F’uppet w
-
State e g
A 12 " \‘) .~ -~
- Facter S Puppet -
Translator - Facter ‘\‘
- - Facter
Experts .

" Current state and goal state input to planner
together with a database of possible actions

® Planner (LPG) creates workflow

® Plan implemented with “Controltier” & "Puppet”

Behavioural Signatures

Database Logic Presentation

B Blue transitions are only enabled when the
connected component is in the appropriate state
- simple plans execute autonomously

" The plan executes in a distributed way

® The components are currently connected manually
- and the behaviour needs to be proven correct in all cases

Planning with BSigs

(Herry’s current Phd work)

" [fwe have ...

- a set of components whose behaviour is described by
behavioural signatures
- a“current” and a “goal” state

" We can use an automated planner to generate a
hetwork of components to execute a plan which will
transition between the required states

B Some interesting possibilities
- this can be structured hierarchically
- the plans may not be fixed
ie. they could handle some conditionals and errors

Some Issues

B Usability (most important!)

- administrators are relinquishing control
- automatic systems can often find “creative” but
inappropriate solutions if some constraint is missing

B Plan repair

- reconfigurations often occur in response to failures or
overload, so the environment is unreliable

B Goals are often “soft”

- there may be more than one acceptable goal state - usually
with different levels of desirability
- eg. "low execution time” or “least change”

® Centralised control has problems ...

006
Agent-Based Configuration

Work with Shahriar Bijani
<S.Bijani@sms.ed.ac.uk>

http://lhomepages.inf.ed.ac.uk/s0880557

Centralised Configuration?

B Centralised configuration
- allows a global view with complete knowledge

m But...

- it is not scalable

- it is nhot robust against communication failures

- federated environments have no obvious centre

- different security policies may apply to different
subsystems

® The challenge ...

- devolve control to an appropriately low level
- but allow high-level policies to determine the behaviour

GPrint (2003)
PRINT CONTROLLER

=\
[#Z]| eLosus / \
--------------- » ‘ SmaerFr‘og I

SERVER
Daemon Print

= LeF6 | pring
orint OGSA Manager Monitor
......... > prin \
LCFG Portal I /

SLP print queue

announcements SLP printer
anhhouncements
pRINT é J
5 SERVER
(- \ ‘ Heartbeat
snnnfEemnnn > Smar-TFr!og —> e
LCFG Daemon E
Print LCFG Ipd %'
k Server component
Printer

B Distributed configuration with centralised policy

B Subsystem-specific mechanisms

“OpenKnowledge” & LCC

® Agents execute “interaction models”
m Written in a “lightweight coordination calculus” (LCC)

" This provides a very general mechanism for doing
distributed configuration

B Policy is determined by the interaction models
themselves which can be managed and distributed
from a central point of control

® The choice of interaction model and the decision to
participate in a particular “role” remains with the
individual peer
- and hence, the management authority

A Simple LCC Example

a(buyer, B)
ask(X) => a(shopkeeper, S) then
price(X,P) <= a(shopkeeper, S) then
buy(X,P) => a(shopkeeper, S)

— afford(X, P) then
sold(X,P) <= a(shopkeeper, S)

a(shopkeeper, S)
ask(X) <= a(buyer, B) then
price(X, P) => a(buyer, B)
— 1in stock(X, P)then
buy(X,P) <= a(buyer, B) then
sold(X, P) => a(buyer, B)

An Example VM Allocation

R R R
| D M !t =D M D M !t
...... AR g
’ role:
underloaded& f overloaded

Discovery service

" Policy 1 - power saving
- pack YMs onto the minimum number of physical machines
B Policy 2 - agility

- maintain an even loading across the physical machines

An Idle Host

a(idle, ID1)

null
+— overloaded(Status)
then
a(overload(Status), ID1)
) or (
null
+— underloaded(Status)
then
a(underload(Status), ID1)
) or (

a(idle, IDI1)
)

An Overloaded Host

a(overloaded (Need), ID2) ::

readyToMigrate (Need)

=> a(underloaded, ID3)
then

migration (OK)

<= a(underloaded, ID3)
then

null

+— migration(ID2, ID3)
then

a(idle, ID2)

An Underloaded Host

a(underloaded(Capacity), ID3) ::
readyToMigrate (Need)
<= a(overloaded, ID2)
then
migration (OK)
=> a(overloaded, ID2)
+— canMigrate(Capacity, Need)
then
null < waitForMigration()
then
a(idle, ID3)

Migration Example

N é I |[OA 2

K|||(|v ||||||

B o

Some Issues

B LCC can be used to implement more sophisticated
protocols - such as “auctions” which are ideal for
many configuration scenarios

B But some things are hard to do without global
knowledge

- balance the system so that all the machines have exactly
the same load?

® Handling errors and timeouts in an unreliable
distributed system is hard

08 Overall Challenges

B How can the users have confidence in the automatic
decisions. Can we use a “mixed initiative” approach?

® How do we make this easy for the users to specify
things in their own terms?

® We can't always separate the specification and the
planning. Maybe we want to go for a different goal
specification if the plan is hard to implement?

" How do we do planning once some of the decisions are
devolved to distributed agents?

Three Applications of
Intelligent Configuration

Paul Anderson
<dcspaul@ed.ac.uk>

http://homepages.inf.ed.ac.uk/dcspaul/
publications/3apps-2011.pdf

EDINBURGH

¢~ informatics

and their ‘\l)lmlimtinn\

Centre for Intelligent Systems

