
Formalising Configuration Languages
Why is this important in practice?

 A precise definition enables us
to create multiple implementations
of compiler which are truly
compatible and “correct”.

Paul Anderson
(dcspaul@ed.ac.uk) (h.herry@sms.ed.ac.uk)

Herry

A extends {
 allow "x";
 deny "y";
}
B extends A {
 deny "paul";
}
C extends B {
 deny "herry";
 allow "all";
}

Does “herry”
have access
to machine C?

 Formal semantics allows others
people to experiment with compatible
language extensions.

 Formalisation process gives us
a deeper understanding of the
language and highlights problems
with the language design.

 Based on the formal semantics,
we can prove properties of the
configuration making it highly
reliable.

 A precise definition can be used
to implement supporting tools such
as IDEs, graphical tools, analysers,
etc.

put(〈ids, vs〉 :: s′, id, v) := 〈ids, vs〉 :: put(s′, id, v)
put(〈id, vs〉 :: s′, id, v) := 〈id, v〉 :: s′

put(∅S , id, v) := 〈id, v〉 :: ∅S

put : S × I× V → S

