
Automated Planning for Configuration Changes

Herry Herry
University of Edinburgh

Edinburgh, UK
h.herry@sms.ed.ac.uk

Paul Anderson
University of Edinburgh

Edinburgh, UK
dcspaul@ed.ac.uk

Gerhard Wickler
University of Edinburgh

Edinburgh, UK
g.wickler@ed.ac.uk

Abstract

This paper describes a prototype implementation of a
configuration system which uses automated planning
techniques to compute workflows between declarative
states. The resulting workflows are executed using the
popular combination of ControlTier and Puppet. This al-
lows the tool to be used in unattended “autonomic” situ-
ations where manual workflow specification is not feasi-
ble. It also ensures that critical operational constraints
are maintained throughout the execution of the work-
flow. We describe the background to the configuration
and planning techniques, the architecture of the proto-
type, and show how the system deals with several exam-
ples of typical reconfiguration problems.

Keywords: configuration management, infrastruc-
ture, cloud computing, planning, IaaS

1 Introduction

The growing size and complexity of computing infras-
tructures has increased awareness of the need for good
system configuration tools, and most sites now use some
form of tool to manage their configurations. Further-
more, declarative specifications are now widely accepted
as the most appropriate approach - the specification de-
scribes the “desired” state of the system, and the tool
computes the necessary actions to move the system from
its current state into this desired state. This has the ad-
vantage that the final state of the system is explicitly
specified, and we can have some confidence that the state
of the running system matches our requirements. Previ-
ous approaches were more error-prone because they in-
volved specifying the actions (for example, using imper-
ative scripts), and the final outcome would not always
be obvious. With varying degrees of strictness, most of
the currently popular tools take a broadly declarative ap-
proach - for example, Puppet [16] , Cfengine [3], BCFG
[4] and LCFG [1].

However, none of the above tools make any guaran-
tees about the order of the changes involved in imple-
menting a configuration change. When creating a new
service, this is not normally an issue - we specify the re-
quirements and the tool makes all the necessary changes
(in some random order). When the tool has finished, we
have a running system to our specification. However, if
we are making configuration changes to an existing sys-
tem, we may well care about the state of the configura-
tion during the change; for example, if we want to make
a transition from using one server, to using a different
one, then we probably want to start the new server, and
transfer the clients before shutting down the old one.

Such transitions are often performed manually - the
administrator will work out a number of intermediate
stages (server B started, clients all using server B, server
A stopped), and check that each state has been achieved
before presenting the tool with the next state. However,
this is both time consuming, error prone, and not suitable
for unattended use - for example where we want to make
a configuration change “autonomically” in response to
some failure or change in load.

One approach to this problem has been the use of man-
ual workflow tools. These allow workflows such as the
previous example to be captured and stored for automatic
use - a particular workflow can then be invoked and the
tool will take care of scheduling the separate stages in the
given order. ControlTier [5] and IBM Tivoli Provision-
ing Manager [12] are examples which provide this kind
of capability. However, this still requires that the work-
flows are computed manually. Even in a small system, a
very large number of workflows can be required to cater
for every eventuality - for example, moving from every
possible failed state into a working state. And choosing
an appropriate workflow to suit a particular goal state is
not always obvious - indeed such manual workflows are
conceptually similar to the imperative scripts which are
no longer popular because of their unreliability.

An alternative approach is to make use of automated



planning technology to generate workflows “on the fly”.
This allows us to specify the current and goal states, to-
gether with a set of constraints on the intermediate stages
- for example, all clients must always point at a working
server. The intermediate states are then computed auto-
matically, and these can then be presented in order to the
configuration tool to effect a smooth transition.

This paper describes an experimental system which
applies established AI planning tools to automatically
generate workflows between declarative system states.
The resulting intermediate states are implementable in
Puppet and can be scheduled by ControlTier to produce
a fully-automated system. We start (section 2) with a full
“walk through” of a simple example, based on the server-
transition problem described above. Section 3 then cov-
ers the background in more detail, including system con-
figuration and automated planning technology. Section 4
describes the prototype system, section 5 presents some
more complex examples, and section 6 concludes with a
discussion of some of the problems and possible future
directions.

2 An Example

Assume we have a system consisting of two servers A
and B, and one client C. Figure 1a shows the current
state:

1. A.run = true (A is running),

2. B.run = false (B is stopped),

3. C.server = A (C is using a service of A).

The administrator aims to change the configuration to
the goal state shown in figure 1b i.e.:

1. A.run = false (A is stopped),

2. B.run = true (B is running),

3. C.server = B (C is using a service of B).

Since C depends on the server’s service, the changes
must be implemented under a particular constraint i.e.
C must always reference a running server.

(a) Current state (b) Goal state

Figure 1: States of the system.

If we use any declarative tool to implement these
changes, then there are six possible sequences of states
that could occur i.e.:

1. A.run = false, C.server = B, B.run = true;

2. C.server = B, A.run = false, B.run = true;

3. B.run = true, A.run = false, C.server = B;

4. A.run = false, B.run = true, C.server = B;

5. C.server = B, B.run = true, A.run = false;

6. B.run = true, C.server = B, A.run = false.

Any of these sequences could appear in practice because
the declarative tools implement the changes by executing
the actions in an essentially indeterminate order. Unfor-
tunately, only one of these sequences (#6), satisfies the
required constraint while others do not. Hence, a declar-
ative tool is highly likely to produce change sequence
which leaves the system inoperative for a period of time
during the change.

To address the problem, the automated planning tech-
nique used in our prototype creates the workflow auto-
matically, based on the given goal states and the available
actions. The prototype will generate a workflow which
consists of a sequence of actions that satisfies an order-
ing constraint. Each action has preconditions which are
constraints that have to be satisfied before executing the
action, and effects which are states that will be attained
after executing the action.

The prototype has the following actions pre-defined in
the actions database:

1. start-server

parameters: <server>

preconditions: <server>.run = false

effects: <server>.run = true

2. stop-server

parameters: <server>

preconditions:

<server>.run = true

(forall <client>

<client>.server != <server>)

effects: <server>.run = false

3. change-reference

parameters: <server1> <server2> <client>

preconditions:

<client>.server = <server1>

<server2>.run = true

<client>.server != <server2>

effects: <client>.server = <server2>

To generate the workflow, the administrator (or some
autonomic system) simply needs to declare the goal
states:

1. C.server = B

2



2. A.run = false

Based on the above goal states and the available ac-
tions, our prototype generates the following ControlTier
workflow:

<command name="config_changes"

command-type="WorkflowCommand" description=""

is-static="true" error-handler-type="FAIL">

<workflow threadcount="1">

<command name="start-server_B"/>

<command name="reset-reference_A_B_C"/>

<command name="stop-server_A"/>

</workflow>

</command>

<command name="start-server_B" description=""

command-type="Command" is-static="true">

<execution-string>exec.rb</execution-string>

<argument-string>start-server.pp B

</argument-string>

</command>

<command name="change-reference_A_B_C"

description="" command-type="Command"

is-static="true">

<execution-string>exec.rb</execution-string>

<argument-string>change-reference.pp A B C

</argument-string>

</command>

<command name="stop-server_A" description=""

command-type="Command" is-static="true">

<execution-string>exec.rb</execution-string>

<argument-string>stop-server.pp A

</argument-string>

</command>

Submitting this workflow to ControlTier implements the
configuration change using the valid sequence of actions
(#6).

This example shows that the prototype is able to elim-
inate the sequencing problem that exists in declarative
tools. Moreover, the prototype also simplifies the config-
uration tasks since it only requires the administrator to
declare the goal states, and not the explicit workflow.

3 Background

This section summarises the approaches to system con-
figuration discussed in the introduction, and surveys
some background work on automated planning tech-
niques. It concludes with a discussion of some related
work in applying planning techniques to the configura-
tion problem.

3.1 System Configuration
As noted in the introduction, approaches to system con-
figuration have mostly evolved via the the following
stages:

• Manual configuration - the administrator manu-
ally computes the actions necessary to change from
one configuration to another, and then manually ex-
ecutes the commands necessary to implement this.
Clearly, this is error prone, time-consuming, and it
is difficult to prove reliably that a given sequence
of changes will result in the required configuration
under all circumstances.

• Scripted changes - similar to the previous ap-
proach, except that the sequence of changes is cap-
tured in an imperative script, allowing it to be ex-
ecuted multiple times, on different systems. This
clearly makes it easier to deal with large numbers
of systems, and until comparatively recently, this
was probably the most common approach to con-
figuration for many people. However, scripting still
suffers from most of the problems of the manual ap-
proach. In particular, there is a tendency to blindly
apply scripts to situations which do not meet the
necessary preconditions, and the outcome can be
very unpredictable.

• Declarative tools - currently, the most common ap-
proach in practice is probably to use a tool which al-
lows a declarative specification of the desired state.
The tool will then compute and implement the nec-
essary changes (in an essentially indeterminate or-
der). This guarantees that the resulting configura-
tion matches the required specification, regardless
of the starting point. As noted in the introduc-
tion, typical tools include Puppet [16], Cfengine [3],
BCFG [4] and LCFG [1].

• Fixed workflow orchestration - in many cases,
it is now essential to be able to perform se-
quences on configuration changes automatically,
and/or unattanded, and use of fixed workflow tools
is becoming more common. As noted in the intro-
duction, ControlTier [5] and IBM Tivoli Provision-
ing Manager [12] are typical examples.

3.2 Automated Planning
Automated planning techniques generate a plan (work-
flow) automatically by computing a sequence of actions
which will transition a system from some initial state to
some required goal state. Each action has preconditions
which are constraints that have to be satisfied before ex-
ecuting the action, and effects which are conditions that
will be true after executing the action1.

1Formally, a planning problem can be defined as P = (Σ,si,Sg),
where Σ = (S,A,γ) is a state transition system, si ∈ S is the initial
state, and Sg ⊂ S is a set of goal states, A is a set of actions, γ is a
state transition function, find a sequence of action 〈a1,a2, . . . ,ak〉 cor-

3



Practical implementations of automated planners use
search algorithms to find an appropriate sequence of ac-
tions. There are several approaches to improving the ef-
ficiency of a simple brute-force search:

• State-space planning uses a subset of the state
space as the search space where nodes correspond
to the world states, arcs correspond to the state tran-
sitions and a path in the search space corresponds to
the plan. The algorithms try to find a plan that satis-
fies the goal from the current state using particular
heuristics to minimize the computing time. Metric-
FF [10] and SGPlan [11] are examples of planners
that use this approach.

• Plan-space planning uses the plan space as the
search space where nodes are partially specified
plans and arcs are the plan refinement operations
intended to further complete a partial plan. The al-
gorithms try to eliminate all the flaws in the initial
partial plan which is either an unsatisfied sub-goal
or a threat. The final plan will bring the system from
the initial to the goal state. Planners that use this ap-
proach include UCPOP [15] and VHPOP [20].

• Planning-Graph uses a graph structure where
nodes correspond to world state propositions and
actions, and arcs correspond to preconditions and
effects of actions. The algorithms expand the graph
from the initial state until reaching the last layer that
contains all goals which must not be mutually ex-
clusive. The solution (plan) can be found by apply-
ing a backward-search algorithm from the last until
reaching the first proposition layer. Graphplan plan-
ner [2] and LPG [8] are examples of planners that
use this approach.

• Hierarchical Task Network (HTN) planning uses
algorithms that decompose the given tasks using
pre-defined methods until it reaches a set of prim-
itive tasks and no non-primitive tasks remain. The
tasks are organized as a collection called a task net-
work which consists of a set of tasks and a set of
constraints. O-Plan [19] is an example of planner
that use this approach.

3.3 Related Works
There has been some previous works on the use of auto-
mated planning techniques for sequencing configuration
changes in computing infrastructures. For example:

Keller et al. [13] introduced CHAMPS which trans-
lates the requested operations into a set of imperative

responding to a sequence of state transitions 〈si,s1, . . . ,sk〉 such that
s1 = γ (si,a1) ,s2 = γ (s1,a2) , . . . ,sk = γ (sk−1,ak), and sk ∈ Sg.

tasks and organizes them as a workflow to satisfy the
constraints as well as maximize the high degree of par-
allelism. However CHAMPS does not reason about the
current state of target system as well as the preconditions
and effects of each task which could lead to an unsound
plan.

In [6], an object modelling language is used to specify
the goal states and the operational capabilities of the con-
figured components. The model is mapped in Planning
Domain Definition Language (PDDL) [7] and given as
the input to a POP (partial-order planning) planner which
generates the workflow. Hagen [9] models the compo-
nent life-cycle using CIM (Common Information Model)
objects which are stored in a Configuration Management
Database (CMDB). Based on the defined goal states, the
state-space planner called LPS (Logical Planning Stat)
then directly manipulates the objects in the CMDB to
generate the workflow.

Both approaches demonstrate the viability of auto-
mated planning techniques for changes to the configu-
ration of a computing infrastructure. They also provide
very flexible solutions. However the modelling and the
specifications are comparatively complex, and it is not
clear how these might be exposed to end-users in a prac-
tically useful way. Levanti [14] provides a promising ap-
proach to simplifying the interface to the planner – the
user is presented with a set of tags which hide much of
the configuration details (states and operations). This en-
ables the user to define and refine the goal state by it-
eratively selecting one or more tags. The workflow is
generated by mapping the selected tags in SPPL (Stream
Processing Planning LanguageL) [17] as the input for the
SPPL planner [18].

We are not aware of any other work which meets our
specific aims of using a standard planner to create a sys-
tem which interfaces easily with common system config-
uration tools.

4 Prototype

We have developed a prototype implementation which
combines an automated planner, together with Con-
trolTier and Puppet to generate and execute plans for
configuration changes. This prototype is definitely not
(yet) a production-quality tool. However, our main aim
has been to prove that the concepts would be applicable
to a real environment, so the tool uses production-quality
components, and is capable of generating practical work-
flows from specifications of realistic problems.

As illustrated in figure 2, the prototype consists of four
main components i.e. actions database, translator, plan-
ner, and mapper. More details of the architectures’ com-
ponent are described as follows (each number represents
the component’s number in figure 2):

4



Figure 2: System Architecture of The Prototype

• The actions database (2) holds a library of actions,
together with their required preconditions and ef-
fects. The actions can be written by anyone such as
third-party software vendors, in-house software en-
gineers, system administrators, or other specialists.

• A tool called facter (11) is used to acquire the cur-
rent state (3) of the system. The outputs are ag-
gregated by a translator (12) and then mapped into
PDDL.

• The administrator specifies a declarative goal state
(1) which is then mapped into PDDL.

• The planner (4) generates a plan (5) that will im-
plement the new specification on the target system.
This is based on the available predefined actions
(from the actions database), the current state (from
facter) and the goal state (supplied by the adminis-
trator).

• The mapper (6) uses the plan (5) to generate a Con-
trolTier workflow-command (7) which consists of
a set of other workflow-commands or primitive-
commands. For each primitive-command, the map-
per generates a puppet manifest file (8) to imple-
ment the action associated with the plan.

• ControlTier (9) manages the execution of the work-
flow by sending the puppet manifest file to the ap-
propriate target node and requesting Puppet (10) to
implement it.

In the latest prototype, we use LPG [8] as the plan-
ner. The main reason is that LPG can generate a plan
(workflow) where all actions in each stage are mutually
exclusive. This is an advantage because actions of each
stage can be invoked in parallel by declarative tools to
reduce the execution time. However, since we use the
PDDL version 2.1 as the standard input for the planner,

the prototype can utilize any available automated planner
that supports it.

Currently, besides the translator, all parts have been
implemented in Ruby and C. The implementation of the
translator is straightforward i.e. translating the facts that
are aggregated by the facter to a set of propositions in
PDDL. For the actions database, all available actions are
currently stored as individual files. If the number of ac-
tions were to become large, we could use a more struc-
tured database to improve storing and querying perfor-
mance. For configuring other equipment (e.g. a router) ,
we could employ a proxy server as a bridge to communi-
cate with the target equipment in order to implement the
new specification and acquire its current state.

In the process of generating the workflow, the planner
may use generic and domain-specific actions. A generic
action, which is called as a “configuration pattern”, is a
reusable action which is applicable on any configuration
problem. Whilst a domain-specific action is an action
which is applicable to particular configuration problem.
We will show the examples of these types of action in the
experiments section.

An error could occur during the implementation of any
part of the plan. For example, the “change-reference”
action cannot be executed if the target server is broken.
To address this problem, the prototype could be set to
identify the error from the execution log and perform the
re-planning process to compute an alternative plan in or-
der to attain the same goal state. If the alternative plan
exists, it will then be implemented on the target system.
Otherwise, the prototype could ask the administrator to
modify the goal state.

The prototype could also have a self-healing capabil-
ity simply by evaluating the current and the goal state
periodically. It will then generate and execute a plan for
correcting any drift in the configuration of the system.

5



5 Experiments

5.1 Web Services
In the first experiment, we reconfigure a system consist-
ing of two web services WS-A and WS-B, a client PC,
and a firewall FW. Currently, PC is using a web service
provided by WS-A through port 8080 of FW and WS-B
is stopped. As shown in figure 3a, the system’s current
state is:

1. WS-A.run = true

2. WS-A.enable firewall = true

3. WS-A.FW.port = 8080

4. WS-B.run = false

5. WS-B.enable firewall = true

6. PC.service = WS-A

7. FW.ports(8080).open = true

8. FW.ports(9090).open = false

The administrator aims to shutdown WS-A for main-
tenance and redirect PC’s reference to WS-B. This will
change the configuration to the goal state shown in figure
3b which can be specified declaratively as follows:

1. WS-A.run = false

2. PC.service = WS-B

3. WS-B.FW.port = 9090

4. FW.ports(8080).open = false

In addition, the administrator must satisfy the follow-
ing constraints in the implementation of the changes:

1. The PC depends on the web service, thus it must
always reference to a running web service.

2. Any unused port of F must be closed to minimize
the vulnerability of the system.

To enable the planner to generate the right workflow,
the first constraint is put in the preconditions of action
stop-service. And the second one is declaratively speci-
fied in the goal state (#4). The following applicable ac-
tions are available in the actions database:

1. start-service

parameters: <service> <vm>

preconditions:

<service>.run = false

<vm>.has = <service>

<vm>.run = true

effects: <service>.run = true

(a) Current state (b) Goal state

Figure 3: The states of the web services system.

2. stop-service

parameters: <service>

preconditions:

<service>.run = true

(forall (<client>)

<client>.service != <service>)

effects: <service>.run = false

3. open-fport

parameters: <firewall> <port>

preconditions:

<firewall>.<port>.open = false

effects:

<firewall>.<port>.open = true

4. close-fport

parameters: <firewall> <port>

preconditions:

<firewall>.<port>.open = true

(forall (<service>)

<service>.<firewall>.port = <port>)

effects:

<firewall>.<port>.open = false

5. assign-fport

parameters: <service1> <firewall> <port>

preconditions:

<firewall>.<port>.open = true

<service1>.enable_firewall = true

<service1>.<firewall>.port != <port>

(forall (<service2>)

<service2>.<firewall>.port != <port>)

effects:

<service1>.<firewall>.port = <port>

6. unassign-port

parameters: <service> <firewall> <port>

preconditions:

<service>.<firewall>.port = <port>

(forall (<client>)

<client>.service != <service>)

effects:

<server>.<firewall>.port != <port>

7. change-ref-fport

parameters: <service1> <service2>

<client> <firewall> <port>

preconditions:

6



<client>.service = <service1>

<client>.service != <service2>

<service2>.run = true

<service2>.<firewall>.port = <port>

effects:

<client>.service != <service1>

<client>.service = <service2>

By using information of the current and goal state with
the application actions in the actions database, the proto-
type generated the following ControlTier workflow:

<command name="config_changes"

command-type="WorkflowCommand" description=""

is-static="true" error-handler-type="FAIL">

<workflow threadcount="1">

<command name="sub-workflow-1"/>

<command name="assign-fport_WS-B_FW_P9090"/>

<command name=

"change-ref-fport_WS-A_WS-B_PC_FW_P9090"/>

<command name="sub-workflow-2"/>

<command name="close-fport_FW_P8080"/>

</workflow>

</command>

<command name="sub-workflow-1"

command-type="WorkflowCommand" description=""

is-static="true" error-handler-type="FAIL">

<workflow threadcount="2">

<command name="start-service_WS-B_VM-B"/>

<command name="open-fport_FW_P9090"/>

</workflow>

</command>

<command name="sub-workflow-2"

command-type="WorkflowCommand" description=""

is-static="true" error-handler-type="FAIL">

<workflow threadcount="2">

<command name="stop-service_WS-A"/>

<command name="unassign-fport_WS-A_FW_P8080"/>

</workflow>

</command>

The prototype also generated the primitive ControlTier
commands as shown in appendix B.

The generated workflow is a partial-order work-
flow which consists of one main workflow-command
(config changes and two sub-workflow-commands (sub-
workflow-1 and sub-workflow-2). config changes is set
to be executed by one thread to enforce the ordering con-
straint, i.e. a command must be invoked after the pre-
vious one has finished successfully. On the other hand,
each sub-workflow-commands is set to be executed by
two threads2to enable the parallel execution. This is pos-
sible since all commands of the sub-workflow-command
are mutually exclusive.

To implement the changes, the workflow was submit-
ted by the mapper to ControlTier which coordinated the
execution of each commands. Puppet then used the ap-
propriate manifest file to acheive the desired state.

2The number of threads is the same as the number of primitive com-
mands.

5.2 Cloud Burst

(a) Current state

(b) Goal state

Figure 4: The states of the company’s system before and
after the cloud-burst scenario.

In the second experiment, we simulated the cloud-
burst scenario on the computing infrastructure. In this
scenario, an organization must dynamically deploy its
software application from its limited internal computing
resources to the public cloud in order to address a spike
in demand.

We assumed a company has a private cloud infrastruc-
ture which runs various services to serve its 24-hours
operations. One of them, WS-A which is running on
virtual machine VM-A, is the most important web ser-
vice since it processes all financial transaction from com-
pany’s branch offices. Thus, the administrator has pre-
pared a backup web service, WS-B which is installed on
virtual machine VM-B, in case there is a failure on WS-
A.

Unfortunately, due to the limited resource of the phys-
ical machines, the company’s private cloud infrastructure
is not capable of serving the spikes in demand which usu-
ally happens on the last three days of each month. There-
fore, before the spike’s period, the administrator plans to
migrate WS-A temporarily to the public cloud to mini-
mize its response time.

The migration of WS-A from the private to the public
cloud is not an easy task since the administrator must
satisfy the following constraints:

1. During the migration process, the service must al-
ways available for 24-hours a day without any
down-time.

7



2. The company’s firewall must be reconfigured to al-
low the LAN PCs to have connection with the server
on public cloud.

3. The web service application cannot be installed on
any other machines due to the limitation of the li-
cense.

Based on the above scenario, the current state of the
system is illustrated in figure 4a which can be specified
declaratively as:

1. VM-A.cloud = PRIV-CLOUD

2. VM-A.run = true

3. WS-A.on = VM-A

4. WS-A.run = true

5. PC.service = WS-A

6. VM-B.cloud = PRIV-CLOUD

7. VM-B.run = false

8. WS-B.on = VM-B

9. WS-B.run = false

Where PRIV-CLOUD and PUB-CLOUD are the private
and public cloud infrastructure respectively.

To enable the cloud-burst, the system needs to achieve
the goal state as illustrated in figure 4b. Therefore, the
administrator can reconfigure the system using our pro-
totype by declaring the goal state as:

1. VM-A.cloud = PUB-CLOUD

2. WS-A.FW.port = 8080

3. PC.service = WS-A

4. VM-B.cloud = PRIV-CLOUD

5. VM-B.run = false

Where FW is the name of the company’s firewall.
Fortunately, to generate the workflow, we only need to

add five actions to the actions database since the planner
can reuse the actions from the previous examples. The
five new actions are:

1. start-vm

parameters: <vm> <cloud>

preconditions:

<cloud>.has = <vm>

<vm>.run = false

effects:

<vm>.run = true

2. stop-vm

parameters: <vm>

preconditions:

<vm>.run = true

(forall <service>

if <vm>.has = <service>

then <service>.run = false)

effects:

<vm>.run = false

3. change-ref

parameters: <service-1> <service-2> <client>

preconditions:

<client>.service = <service-1>

<client>.service != <service-2>

<service-2>.run = true

<service-2>.enable_firewall = false

effects:

<client>.service != <service-1>

<client>.service = <service-2>

4. migrate

parameters: <vm> <cloud-1> <cloud-2>

preconditions:

<vm>.run = false

<cloud-1>.has = <vm>

<cloud-2>.is_public = true

effects:

!(<cloud-1>.has = <vm>)

<cloud-2>.has = <vm>

5. set-need-firewall

parameters: <service>

preconditions:

(forall (<firewall> <port>)

<service>.<firewall>.port != <port>)

(forall (<vm> <cloud>)

if (<vm>.has = <service>

and <cloud>.has = <vm>)

then <cloud>.is_public = true)

effects:

<service>.enable_firewall = true

Some of these reusable actions, such as stop-service
and start-service, typically occur in many different situ-
ations and form a set of generic patterns.

After processing the information, the planner will give
its output to the mapper which generated the following
ControlTier workflows:

<command name="config_changes"

command-type="WorkflowCommand" description=""

is-static="true" error-handler-type="FAIL">

<workflow threadcount="1">

<command name="sub-workflow-1"/>

<command name="start-service_WS-B_VM-B"/>

<command name="change-ref_WS-A_WS-B_PC"/>

<command name="stop-service_WS-A"/>

<command name="stop-vm_VM-A"/>

<command name=

"migrate_VM-A_PRIV-CLOUD_PUB-CLOUD"/>

<command name="sub-workflow-2"/>

<command name="sub-workflow-3"/>

<command name=

"change-ref-fport_WS-B_WS-A_PC_FW_P8080"/>

<command name="stop-service_WS-B"/>

8



<command name="stop-vm_VM-B"/>

</workflow>

</command>

<command name="sub-workflow-1"

command-type="WorkflowCommand" description=""

is-static="true" error-handler-type="FAIL">

<workflow threadcount="2">

<command name="open-fport_FW_P8080"/>

<command name="start-vm_VM-B_PRIV-CLOUD"/>

</workflow>

</command>

<command name="sub-workflow-2"

command-type="WorkflowCommand" description=""

is-static="true" error-handler-type="FAIL">

<workflow threadcount="2">

<command name="set-need-firewall_WS-A"/>

<command name="start-vm_VM-A_PUB-CLOUD"/>

</workflow>

</command>

<command name="sub-workflow-3"

command-type="WorkflowCommand" description=""

is-static="true" error-handler-type="FAIL">

<workflow threadcount="2">

<command name="assign-fport_WS-A_FW_P8080"/>

<command name="start-service_WS-A_VM-A"/>

</workflow>

</command>

The prototype also generated the primitive ControlTier
commands as shown in appendix C.

The planner generated the partial-order plan (work-
flow) which has three sub-workflows. Each sub-
workflow has a set of commands that can be run in paral-
lel due to their a mutual exclusive property. Submission
the workflows to ControlTier implemented the new con-
figuration specification that enable WS-A servicing more
clients than before.

If the administrator would like to stop using the public
cloud, WS-A can be migrated back to the private cloud
by easily changing the goal state of the system. The pro-
totype will generate and execute automatically the work-
flow to implement the new specification. In this case, we
can also have a full autonomic configuration tool by re-
placing the administrator with an autonomic agent which
will automatically trigger the migration of the system
from private to the public cloud or vice versa based on
the demands.

6 Conclusions

This work has clearly demonstrated the advantages of
automated planning for system reconfiguration – work-
flows can be automatically generated (providing that a
solution exists) between any two declarative states, en-
abling unattended, autonomic reconfiguration for failure
recovery or other reasons. The generated workflows are
guaranteed (by design) to achieve the desired target state,

at the same time as preserving any necessary proper-
ties of the system during the reconfiguration. We have
also shown that it is possible to build a practical tool
which generates workflows automatically, and uses exist-
ing production-quality tools for the deployment (as well
as the planning).

However, we suspect that the usability of such sys-
tems will be a major challenge – firstly, languages and
interfaces are required to enable working administrators
to easily translate their requirements and specifications
into a form that is usable by the planners. Secondly, ad-
ministrators need to have confidence that the system will
behave in a predictable way – planners are very good at
exploiting a lack of precision in the specification to find
very “creative” and unexpected solutions! The human
interaction aspects of this problem are something which
would benefit from future work.

Error recovery is also a very important area. Reconfig-
urations often occur in precisely those situations where
the system itself is unreliable – for example, during net-
work and components failures, or system overload. Plans
are likely to fail at some intermediate stage, or a cen-
tralised planner may become disconnected and lose track
of the current state of an executing plan.

7 Future Work

We are currently interested in investigating more dis-
tributed, and localised approaches to automated planning
for configuration changes. This will allow more auton-
omy for individual components (thus improving the re-
silience) and break the planning problem into a hierarchy
of problems which are easier to understand and predict.

We believe that our implementation is much closer
than previous work to providing a practical solution for
system administrators who are familiar with current con-
figuration tools such as Puppet. However, most ad-
ministrators would still be unhappy to allow significant
changes to their infrastructure by a completely auto-
mated system - the chances of unexpected and inappro-
priate solutions are still too high. We believe that there
is considerable scope here for further work on appropri-
ate languages and interfaces - perhaps involving mixed
initiative solutions which combine automated planning
with human guidance, and automated explanations of
proposed solutions.

8 Acknowledgments

The authors like to thank Andrew Farrell from HP Labs
Bristol for his valuable contributions. This research is
fully supported by a grant from 2010 HP Labs Innovation
Research Program Award.

9



References
[1] ANDERSON, P., AND SCOBIE, A. LCFG: The next generation.

In UKUUG Winter Conference (2002).

[2] BLUM, A., AND FURST, M. Fast Planning through Planning
Graph Analysis. Artificial Intelligence 90 (1997), 281–300.

[3] CFENGINE AS. Cfengine - Automatic Server Lifecycle Manage-
ment, 2011.

[4] DESAI, N., LUSK, A., BRADSHAW, R., AND EVARD, R.
BCFG: A Configuration Management Tool for Heterogeneous
Environments. In Proceedings of IEEE International Conference
on Cluster Computing (2003), IEEE Computer Society.

[5] DTO SOLUTIONS. ControlTier, 2011.

[6] EL MAGHRAOUI, K., MEGHRANJANI, A., EILAM, T., KALAN-
TAR, M., AND KONSTANTINOU, A. Model driven provisioning:
Bridging the gap between declarative object models and procedu-
ral provisioning tools. In Proceedings of the ACM/IFIP/USENIX
2006 International Conference on Middleware (2006), pp. 404–
423.

[7] FOX, M., AND LONG, D. PDDL2.1: An extension to PDDL
for expressing temporal planning domains. Journal of Artificial
Intelligence Research 20, 1 (2003), 61–124.

[8] GEREVINI, A., AND SERINA, I. LPG: A planner based on local
search for planning graphs with action costs. In Proceedings of
the Sixth Internatinal Conference on AI Planning and Scheduling
(2002), pp. 12–22.

[9] HAGEN, S., AND KEMPER, A. Model-Based Planning for State-
Related Changes to Infrastructure and Software as a Service In-
stances in Large Data Centers. In 2010 IEEE 3rd International
Conference on Cloud Computing (2010), pp. 11–18.

[10] HOFFMANN, J. The Metric-FF planning system: Translating ”ig-
noring delete lists” to numeric state variables. Journal of Artifi-
cial Intelligence Research 20, 20 (2003), 291–341.

[11] HSU, C., WAH, B., HUANG, R., AND CHEN, Y. Constraint
partitioning for solving planning problems with trajectory con-
straints and goal preferences. In Proceedings of the 20th Inter-
national Joint Conference on Artificial Intelligence (IJCAI-07),
Hyderabad, India (2007).

[12] IBM CORP. Integrated Service Management software, IBM
Tivoli, 2011.

[13] KELLER, A., HELLERSTEIN, J., WOLF, J., WU, K., AND KR-
ISHNAN, V. The CHAMPS system: Change management with
planning and scheduling. In Network Operations and Manage-
ment Symposium, 2004. NOMS 2004. IEEE/IFIP (2004), vol. 1,
pp. 395–408.

[14] LEVANTI, K., AND RANGANATHAN, A. Planning-based con-
figuration and management of distributed systems. In Integrated
Network Management, 2009. IM’09. IFIP/IEEE International
Symposium on (2009), pp. 65–72.

[15] PENBERTHY, J., AND WELD, D. UCPOP: A sound, complete,
partial order planner for ADL. In Proceedings of the 3rd Interna-
tional Conference on Knowledge Representation and Reasoning
(1992), pp. 103–114.

[16] PUPPET LABS. Puppet, 2011.

[17] RIABOV, A., AND LIU, Z. Planning for stream processing sys-
tems. In Proceedings of the 20th National Conference on Artifi-
cial Intelligence - Volume 3 (2005), vol. 20, pp. 1205–1210.

[18] RIABOV, A., AND LIU, Z. Scalable planning for distributed
stream processing systems. In Proceedings of ICAPS (2006).

[19] TATE, A., DALTON, J., AND LEVINE, J. O-Plan: A web-based
AI planning agent. In Proceedings of the National Conference on
Artificial Intelligence (2000), pp. 1131–1132.

[20] YOUNES, H., AND SIMMONS, R. VHPOP: Versatile heuristic
partial order planner. Journal of Artificial Intelligence Research
20, 1 (2003), 405–430.

A The Flow-Chart of The Workflows

Figure 5a and 5b illustrate the flow-charts of the gen-
erated workflows of web services and cloud burst ex-
amples. Each actions are associated with a ControlTier
command as follows:

• a1: start-service_WS-B_VM-B

• a2: open-fport_FW_P9090

• a3: assign-fport_WS-B_FW_P9090

• a4: change-ref-fport_WS-A_WS-B_PC_FW_P9090

• a5: stop-service_WS-A

• a6: unassign-fport_WS-A_FW_P8080

• a7: close-fport_FW_P8080

• b1: open-fport_FW_P8080

• b2: start-vm_VM-B_PRIV-CLOUD

• b3: start-service_WS-B_VM-B

• b4: change-ref_WS-A_WS-B_PC

• b5: stop-service_WS-A

• b6: stop-vm_VM-A

• b7: migrate_VM-A_PRIV-CLOUD_PUB-CLOUD

• b8: set-need-firewall_WS-A

• b9: start-vm_VM-A_PUB-CLOUD

• b10: assign-fport_WS-A_FW_P8080

• b11: start-service_WS-A_VM-A

• b12: change-ref-fport_WS-B_WS-A_PC_FW_P8080

• b13: stop-service_WS-B

• b14: stop-vm_VM-B

10



(a) The Workflow of Web Services

(b) The Workflow of Cloud Burst

Figure 5: The flow-chart of the workflows.

B Primitive ControlTier Commands of
Web Services

<command

name="start-service_WS-B_VM-B"

description="" command-type="Command"

is-static="true">

<execution-string>exec.rb</execution-string>

<argument-string>stop-service.pp WS-B VM-B

</argument-string>

</command>

<command name="open-fport_FW_P9090"

description="" command-type="Command"

is-static="true">

<execution-string>exec.rb</execution-string>

<argument-string>stop-open-fport.pp FW 9090

</argument-string>

</command>

<command name="assign-fport_WS-B_FW_P9090"

description="" command-type="Command"

is-static="true">

<execution-string>exec.rb</execution-string>

<argument-string>assign-fport.pp WS-B FW 9090

</argument-string>

</command>

<command

name="change-ref-fport_WS-A_WS-B_PC_FW_P9090"

description="" command-type="Command"

is-static="true">

<execution-string>exec.rb</execution-string>

<argument-string>change-ref-fport.pp WS-A WS-B

PC FW 9090</argument-string>

</command>

<command name="stop-service_WS-A"

description="" command-type="Command"

is-static="true">

<execution-string>exec.rb</execution-string>

<argument-string>stop-service.pp WS-A

</argument-string>

</command>

<command name="assign-fport_WS-A_FW_P8080"

description="" command-type="Command"

is-static="true">

<execution-string>exec.rb</execution-string>

<argument-string>unassign-fport.pp WS-A FW 8080

</argument-string>

</command>

<command name="close-fport_FW_P8080"

description="" command-type="Command"

is-static="true">

<execution-string>exec.rb</execution-string>

<argument-string>close-fport.pp FW 8080

</argument-string>

</command>

C Primitive ControlTier Commands of
Cloud-Burst

<command name="open-fport_FW"

description="" command-type="Command"

is-static="true">

<execution-string>exec.rb</execution-string>

<argument-string>open-fport.pp FW 8080

</argument-string>

</command>

<command name="start-vm_VM-B_PRIV-CLOUD"

description="" command-type="Command"

is-static="true">

<execution-string>exec.rb</execution-string>

<argument-string>start-vm.pp B PRIV-CLOUD

</argument-string>

</command>

<command name="start-service_WS-B_VM-B"

description="" command-type="Command"

is-static="true">

<execution-string>exec.rb</execution-string>

<argument-string>start-service.pp WS-B VM-B

</argument-string>

</command>

<command name="change-ref_WS-A_WS-B_PC"

description="" command-type="Command"

is-static="true">

<execution-string>exec.rb</execution-string>

<argument-string>change-ref.pp WS-A WS-B PC

</argument-string>

</command>

11



<command name="stop-service_WS-A"

description="" command-type="Command"

is-static="true">

<execution-string>exec.rb</execution-string>

<argument-string>stop-service.pp WS-A

</argument-string>

</command>

<command name="stop-vm_VM-A"

description="" command-type="Command"

is-static="true">

<execution-string>exec.rb</execution-string>

<argument-string>stop-vm.pp VM-A

</argument-string>

</command>

<command

name="migrate_VM-A_PRIV-CLOUD_PUB-CLOUD"

description="" command-type="Command"

is-static="true">

<execution-string>exec.rb</execution-string>

<argument-string>migrate.pp VM-A PRIV-CLOUD

PUB-CLOUD</argument-string>

</command>

<command name="set-need-firewall_WS-A"

description="" command-type="Command"

is-static="true">

<execution-string>exec.rb</execution-string>

<argument-string>set-need-firewall.pp

WS-A</argument-string>

</command>

<command name="start-vm_VM-A_PUB-CLOUD"

description="" command-type="Command"

is-static="true">

<execution-string>exec.rb</execution-string>

<argument-string>start-vm.pp VM-A PUB-CLOUD

</argument-string>

</command>

<command name="assign-fport_WS-A_FW_P8080"

description="" command-type="Command"

is-static="true">

<execution-string>exec.rb</execution-string>

<argument-string>assign-fport.pp WS-A FW 8080

</argument-string>

</command>

<command name="start-service_WS-A_VM-A"

description="" command-type="Command"

is-static="true">

<execution-string>exec.rb</execution-string>

<argument-string>start-service.pp WS-A VM-A

</argument-string>

</command>

<command

name="change-ref-fport_WS-B_WS-A_PC_FW_P8080"

description="" command-type="Command"

is-static="true">

<execution-string>exec.rb</execution-string>

<argument-string>change-ref-fport.pp WS-A WS-A

PC FW 8080</argument-string>

</command>

<command name="stop-service_WS-B"

description="" command-type="Command"

is-static="true">

<execution-string>exec.rb</execution-string>

<argument-string>stop-service.pp WS-B

</argument-string>

</command>

<command name="stop-vm_VM-B"

description="" command-type="Command"

is-static="true">

<execution-string>exec.rb</execution-string>

<argument-string>stop-vm.pp VM-B

</argument-string>

</command>

12


