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Abstract
The LCFG is a system for automatically installing and managing the configuration of
large numbers of machines. The system makes use of its own declarative language,
which is used to specify the required configuration of the machines being managed.
The drawbacks of the current implementation are the informal syntax of the LCFG
language and the use of an external tool (the C preprocessor, CPP) to preprocess the
configuration files.

This report presents the creation of an explicit grammar for LCFG and the design,
implementation, and testing of a parser for the language. The proposed grammar com-
bines the basic LCFG syntax with a subset of CPP directives. Specifically, this report
uses the ANTLR tool to generate a parser from the grammar specification. The parser
is further integrated into a language application that processes the parse tree in order
to gather configuration parameters and generate XML profiles. The proposed solution
allows an LCFG source to be parsed in a single step without the need of the C prepro-
cessor. The report concludes with a summary of the work done and proposes potential
further extensions.
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Chapter 1

Introduction

1.1 Motivation

Managing the configuration of computers in sites consisting of a large number of di-
verse hosts is recognised as being a challenging task for system administrators. The
factors that complicate the system configuration process of large sites are identified
in [10]: relationships between components on different machines, frequent configura-
tion changes, diversity ranging from laptops to database servers, coordination between
administrators, deployment of complex distributed applications, reconfiguration of au-
tonomic systems without manual intervention, usability of configuration tools, security
issues, etc. To address the system configuration problems and to eliminate the mistakes
due to the manual configuration process, a number of automated solutions have been
developed. Examples of such automated configuration tools include Cfengine [13],
Nix [14] and LCFG [8].

LCFG (Local ConFiGuration system) is an automatic configuration and installation
system originally developed by the Department of Computer Science at the University
of Edinburgh around 1993. The system has been very successful in handling the de-
partment’s network of several hundred Unix machines. Later expansions in the local
use of LCFG introduced a major update to the original version known as LCFGng,
which is now being used more widely outside of the University of Edinburgh [12].
LCFG makes use of its own language, which is used to specify the required configu-
ration of the machines being managed. Every machine that should be configured has
its own source file. A group of machines may share common sets of configuration
parameters via header files organised into hierarchies.

The LCFG language has evolved over the years. Because of permanent experimen-
tal additions and the need for backward compatibility with legacy systems part of
the current LCFG language has an informal syntax. The LCFG server uses an ad-
hoc parser and relies on the C preprocessor to include header files and to handle
conditionals, macro definitions, and macro expansions. Since the C preprocessor is
designed to process C source code, which does not have the same syntax as LCFG
source files, some character strings are mistakenly interpreted by the preprocessor
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Chapter 1. Introduction 5

[6]. Problems with LCFG are mainly caused by comment characters and string quot-
ing used in source files. More specifically, single apostrophe could be interpreted
as the beginning of a constant string; and an error will be issued if a closing single
quote cannot be found. For example, the following LCFG declaration (taken from
/core/include/lcfg/defaults/syslog.h file):� �
syslog.appselector_auth ifdef(`AUTHDEBUG', auth.debug ,auth.info)� �
causes a missing terminating character warning when processed by CPP.

The above-mentioned drawbacks and the lack of clear grammar for the language make
it impossible to produce other tools that process/analyse LCFG sources or to write
alternative compiler implementations.

1.2 Project goal

The goal of this project is to create an explicit grammar for LCFG and implement
a prototype parser. This should form a basis on which further tools for processing
configuration descriptions can be built, and the language can be further extended effi-
ciently. To achieve the goal, at the start of the project a set of tasks to be carried out
was determined:

• Study the LCFG architecture and LCFG configuration language.

• Investigate the feasibility of parsing the LCFG source files in a single step with-
out using the C preprocessor; propose an LCFG grammar.

• Choose and study an appropriate tool for generating lexers and parsers.

• Compose the lexer and parser rules for the LCFG grammar; generate a lexer and
parser for the grammar.

• Extend the generated parser to create a language application that processes the
parse tree in order to collate configuration parameters and generate XML pro-
files.

• Evaluate the parser against real system configurations.

1.3 Summary of results

The main results of the project can be summarised as follows:

• A unified grammar for LCFG language is proposed. This grammar combines
the basic LCFG syntax with a subset of C preprocessor (CPP) directives that is
sufficient for inclusion of header files, pre-definition of configuration parameters
and conditional assignment of values to resources. A set of LCFG examples is
prepared for testing and demonstrating of the grammar.
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• An LCFG parser is implemented. The parser is developed with the aid of the
ANTLR tool and further integrated into an LCFG language application, which
collates all of the configuration information from the included header files and
creates a single XML profile file for a given host.

• An approach for processing CPP/C files without the use of the C preprocessor is
adapted and implemented to parse the combination of LCFG basic elements and
CPP directives as a single language.

• A small set of additional operators for modifying resource values (mutation) is
implemented and tested.

• The parser and the LCFG application are validated against the output of the
production LCFG compiler using real configuration files.

1.4 Structure of the report

The remaining part of the report is structured in five chapters.

Chapter 2 provides a brief overview of the LCFG system and the syntax used to specify
configuration parameters.

Chapter 3 explains the approach applied to address the processing of LCFG language
elements and CPP directives as a single language and presents the proposed LCFG
grammar.

Chapter 4 describes the design and implementation of the LCFG parser using the
ANTLR tool and the proposed grammar.

Chapter 5 presents the results from the evaluation and testing of the implemented parser
and LCFG language application.

Chapter 6 concludes the report with a summary of the work done and proposes poten-
tial further extensions.



Chapter 2

Background

2.1 LCFG architecture

As described above, the LCFG is a system for automatically installing and managing
the configuration of large numbers of machines. The LCFG architecture is shown in
Figure 2.1.

Figure 2.1: The LCFG architecture

There are three main parts to the LCFG software [11]:

• The LCFG server. The server collates all of the configuration information from
the source files and creates a single profile file in XML format for each ma-
chine. The profile contains all of the configuration parameters (resources) for
that machine. The profile file is usually published by the Web server to make the
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profile available to the client. When a profile changes, the LCFG server sends a
notification to the LCFG client.

• The LCFG client. Each machine runs its own copy of the client. The client
polls the LCFG server at regular intervals. Upon receiving a change notification
from the server, the client downloads a new profile for the machine and calls the
corresponding scripts to apply the configuration.

• LCFG components. Each machine includes a collection of scripts called com-
ponents. They are responsible for translating the LCFG resources into machine-
specific configuration files. Each component is responsible for a self-contained
subsystem. The component generates the configuration file and takes care of
other low-level details such as restarting any associated daemons.

2.2 LCFG configuration files

The LCFG server maintains a central repository of configuration settings. All the
configuration information is stored in plain-text files. There are four different types
of configuration files: source files, header files, schema files, and package lists [11].

2.2.1 Source files

Each machine in the system has its own source file. This file contains the configuration
description for the machine and may include one or more header files. In practice,
common parameters for a group of machines are described in header files. Thus, the
source files contain only those configuration parameters that are unique to that partic-
ular machine. In addition, a source file may edit or override the values of common
parameters previously defined in header files.

2.2.2 Header files

Header files provide a way for supporting inheritance between configuration objects.
They contain common sets of configuration parameters, which can be included by the
source files or other header files. Header files have the extension .h.

2.2.3 Schema files

Each component has its own schema file. It defines the resources the component uses,
the default values for the resources, and possibly some validation or type information
for them. The default values are used in the profile if no explicit value is provided
by the source files. Each resource in a schema file may have its own meta-resource
(beginning with ‘@’), which specifies types and validation code for resource values, as
well as templates for building nested lists of records. Similarly to source files, schema
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files may include declarations from header files or other schema files. Schema files
have the extension .def.

2.2.4 Package list files

Package lists specify the software packages to be installed on a machine. The LCFG
server passes this list to the client, where it can be processed by a component. The
component updates the installed packages on the machine so that they conform to the
supplied list. The package list files usually have the extension .rpms.

2.3 LCFG Language

The LCFG language is a declarative configuration language. The language specifies
what the configuration of a system should look like rather than describing the steps
that need to be taken to make changes happen.

The source files and header files contain resource values and various directives for
manipulating them [9].

2.3.1 Resources

The configuration parameters are described by key/value pairs called resources. The
syntax for defining a resource is:� �
component.attribute value� �
The resource name consists of a component name and an attribute name separated by
a dot. The value is an arbitrary string which is separated from the resource name by
whitespace, for example:� �
dhclient.mac 00:16:3E:a3:0d:18
sysinfo.owner inf.ed.ac.uk
inv.model Apple MacBook Pro� �
Once a resource value is assigned, it can only be changed using a mutation. If no value
is supplied for a resource, the default value from the components schema file is used.

A special component named profile must be included in each source file. Its at-
tributes are interpreted as directives to the LCFG compiler. For example, the resource
profie.components is used to list the components to be included in the generated
profile file.
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2.3.2 Mutation

A special notation, referred to as mutation, is provided to prevent resource values from
being overridden by accident. The mutation feature is mainly used to edit or override
the defaults for resource values specified in header files. To indicate a mutation, the
resource is prefixed with an exclamation mark (‘!’).

The current implementation uses a number of special predefined functions that com-
pute a new value for the resource from both the previous value and the function ar-
gument. These macros are defined in a header files named mutate.h. The following
code demonstrates the application of some frequently used mutation functions:� �
/* Override the previous value of dns.zone_inf */
!dns.zone_inf mSET(inf.ed.ac.uk)
/* Append an item to a (space-separated) list */
!mailcap.filetypes mEXTRA(audio)
/* Append an item to a list if it is not already present */
!profile.components mADD(client)
/* Remove an item from a (space-separated) list */
!roles.netgroups mREMOVE(critlevel_low)
/* Replace the item 6 in a list with item 6a 6b 6c */
!rsyslog.ruleblock_syslogRules mREPLACE(6,6a 6b 6c)� �
2.3.3 Tag lists

Some resources define a list of items rather than a single value. The value of such a
resource is a space-separated list of tags. The members of the list are identified by the
tags appended to a common prefix in their attributes. For example, the following code
declares a list structure with three tags: lcfglib, lcfgdata and lcfgbin:� �
sysinfo.paths lcfglib lcfgdata lcfgbin
sysinfo.path_lcfglib /usr/lib/lcfg
sysinfo.path_lcfgdata /usr/lib/lcfg/conf
sysinfo.path_lcfgdata /usr/bin� �
Each tag list resource has its meta-resource in the corresponding schema file, for ex-
ample:� �
@paths path_$� �
The value appearing in the meta-resource is a template (or a list of templates) used by
the compiler to identify possible list elements. The template itself defines a common
prefix and has a $ as a placeholder for each tag value. For example, given the template
path $, the compiler will create the following nested structure as a part of sysinfo
component:� �

paths
lcfglib

path = /usr/lib/lcfg
lcfgdata
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path = /usr/lib/lcfg/conf
lcfgbin

path = /usr/bin� �
2.3.4 References

References provide a way to link a value of a resource with some resource from the
same or another component. There are two kinds of references: late references and
early references. An example of a late reference is shown in the following declaration:� �
network.hostname <%profile.node%>� �
where the network.hostname resource will take the final value of profile.node.
Early references assign the current value of a resource and are specified using a double
percent sign, for example <%%profile.node%%>.

2.3.5 Spanning maps

While references enable one resource to refer to the value of some other resource of the
same node, spanning maps provide a mechanism for referencing resource values from
other nodes. Using this mechanism, a node may publish some of its resource values to
a specific spanning map. After publishing, these resources become available to other
nodes which subscribe to the spanning map.

Resources to be published/subscribed are specified using publish and subscribe
directives in their corresponding meta-resources defined in schema files:� �
@serversmap %publish: dhcluster
@dhcpdservers %subscribe: servers� �
To avoid inconsistent configurations, the LCFG compiler defers the publication of pro-
file files for subscriber nodes until all compilations have been completed.

2.4 The C preprocessor

As mentioned previously, the current implementation of the LCFG compiler passes the
source files through the C preprocessor (CPP). The CPP is a macro processor that is
used by the C compiler to transform the source code before compilation. Although
C preprocessors vary in some details, the full set of CPP features is documented in
section 6.10 of the C language ISO standard [17]. A number of options are provided
that can alter the default C preprocessor output.

The CPP is intended to process only C/C++ programs. Although it can be used inde-
pendently, a number of errors are reported to occur when processing files that do not
obey C lexical rules [6].
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The CPP directives are not part of the current LCFG syntax. To demonstrate a typi-
cal error that may occur due to preprocessing performed by CPP, let us consider the
following LCFG code:� �

1 #define DOMAIN inf.ed.ac.uk
2 mail.address `student' <student@DOMAIN >� �

Processing line #2, the CPP ignores the opening (back) quote of student and treats
the closing apostrophe as the beginning of a string. Assuming the DOMAIN is inside
a string, the CPP does not perform its substitution with inf.ed.ac.uk. Hence, the
resulting assignment would be:� �
mail.address = `student' <student@DOMAIN >� �
instead of:� �
mail.address = `student' <student@inf.ed.ac.uk>� �
The following chapter discusses the possibilities of processing the LCFG source files
without the CPP. It proposes a unified LCFG grammar, which will be further used to
compose a parser that processes the LCFG files without a separate CPP preprocessing
step.



Chapter 3

Unified LCFG grammar

Parsing code which contains a combination of two different languages is usually not
trivial. The task of parsing such code involves solving various context-sensitive prob-
lems. For example, identifiers in the first language can also be keywords in the second
language; the same character sequence can be one token in the first language or multi-
ple tokens in the second, etc.

To briefly demonstrate the challenges in parsing code containing both LCFG and CPP
syntax, let us consider the example LCFG source code shown in Listing 3.1.� �

1 syslog.addselector local.debug
2
3 #if defined _USE_NETINF_DNS_H
4 DNS_SLAVE_FWD_Z(creent,creent.org)
5 !dns.file_creent mSET(zone.creent)
6 #else
7 #error _USE_NETINF_DNS_H not defined
8 #endif
9

10 #define FILE_SYMLINK(T,L,D) \
11 !file.files mADD(T) ¢\
12 file.file_/**/T L ¢\
13 file.type_/**/T link ¢\
14 file.tmpl_/**/T D� �

Listing 3.1: Code containing a combination of LCFG and CPP syntax

In line #1, character sequences syslog.addselector and local.debug are lexically
identical, but the first must be recognised as a resource name, and the second as a
resource value. The creent.org (line #4) should be treated as a parameter instead
of a resource name. The keyword defined (line #7) must be processed as a part of a
macro body instead of generating a single token. Lines #11..#14 should be treated as a
macro body containing formal arguments (T, L, and D) instead of immediate resource
assignments. The special char ¢ should be processed as a new line character and
therefore excluded from resource values in lines #11..#13. Comments in lines #12..14
serve to separate formal parameters from the other text and must be removed only after
macro resolving instead of being skipped by the lexer.

13
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In the initial stage of the design, considerable attention was paid on deciding how to
integrate the CPP and LCFG syntax in the grammar in such a way as to address the
aforementioned language recognition problems. An important part of this decision was
selecting the subset of the CPP features to be included in the grammar. It is obvious
that in order to parse real source files successfully, the chosen subset should match
the CPP subset which is actually being used in practice. On the other hand, CPP
macro parameters and text should be firstly analysed before the actual replacements
take place.

This chapter first discusses the approach applied to process the combination of LCFG
syntax elements and CPP directives as a single language. Then, it introduces the pro-
posed unified LCFG grammar. Throughout the text, we will use the term unified to
denote the joining of LCFG/CPP elements.

3.1 Analysis of LCFG configuration files

At the beginning of this project, a set of real configuration LCFG files was provided.
The set contained 4050 source files, 2104 header files and 215 schema files organised
in sub-directories.

The first obvious task was to examine the source and header files in order to clearly
identify the subset of the CPP features used in configurations, and to exclude the un-
necessary functions. The results of this analysis are outlined below.

3.1.1 Inclusion of header files

Header files are included into LCFG source files using the preprocessing directive of
the form:� �
#include <file >� �
which searches for a file in a list of implementation-defined directories. The other two
forms of the directive: #include "file" and #include text, are not used.

3.1.2 Object-like macros

Object-like macros in LCFG files are used in their default form:� �
#define identifier replacement -list� �
where replacement-list can be empty.
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3.1.3 Function-like macros

Function-like macros are used in their most used form:� �
#define identifier(identifier -list) replacement -list� �
where identifier-list is a comma-separated list of parameters, which can option-
ally be empty.

Macros that accept variable number of parameters of the following forms are not used:� �
#define identifier( ... ) replacement -list
#define identifier(identifier -list , ... ) replacement -list� �
For example, mutation functions are defined as function-like macros in mutate.h
header file. In both object-like and function-like macros a newline terminates the
macro definition. A macro may contain two or more continued lines which end with a
backslash symbol (‘\’).

3.1.4 Conditionals

All the CPP conditionals are found to be used in the LCFG files:� �
#if constant -expression
#ifdef identifier
#ifndef identifier
#elif constant -expression
#else
#endif
defined identifier , defined (identifier)� �
3.1.5 Errors and warning

LCFG files use both #error text and #warning text directives.

3.1.6 Comments

LCFG files use only non-nested block comments:� �
/* comment */� �
It was already shown in Listing 3.1 that comments in some LCFG descriptions serve
to separate tokens that, if adjacent, would be recognised in another manner.
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3.1.7 Unnecessary CPP features

The following CPP features are not revealed in the provided set of LCFG files:

• Line control (directive #line)

• Pragmas (directive #pragma)

• Predefined macros ( FILE , DATE , TIME , etc.)

• Concatenation (operator ##)

• Stringification (operator #)

3.2 Unified LCFG language concepts

In literature, there are various techniques proposed to parse both the C language and its
preprocessor directives as a single language. These techniques are used, for example,
by source browsers and automated refactoring tools.

The proposed solution was influenced by the ideas discussed in the two papers pre-
sented next.

A solution called SuperC is presented in [16]. SuperC processes the source code
in two steps. First, it uses a configuration-preserving preprocessor, which includes
header files and resolves macros. Unlike CPP, the configuration-preserving preproces-
sor leaves static conditionals intact, thus preserving a programs variability. Secondly,
a configuration-preserving parser generates an abstract syntax tree with static choice
nodes for conditionals. It forks new subparsers when encountering static condition-
als and merges them again after the conditionals. The paper analyses the interactions
between C preprocessor and language features and identifies techniques for correctly
handling them, but does not provide implementation details.

Another approach proposed by J. Favre in his paper “CPP Denotational Semantics”
[15] shows that CPP can be seen as a programming language. This is carried out by
mapping the CPP entities to the entities of an abstract language called APP (Abstract
PreProcessor). In this mapping, CPP directives are statements, object-like macros
are variables, function-like macros are functions, and files are procedures.

It was decided to adopt the approach discussed in [15] to propose the concepts of the
unified LCFG language. Table 3.1 shows the correspondence between these concepts
and their equivalent underlying CPP/LCFG elements.

The rationale behind the choice of CPP syntax was to provide elements that would be
sufficient for the inclusion of header files, pre-definition of configuration parameters
and conditional assignment of values to resources, and to exclude the unnecessary
elements previously listed in Section 3.1.7.

It can be seen that the unified LCFG could be considered as an imperative language
that does not provide loops.
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Table 3.1: Unified LCFG language concepts

Concepts CPP/LCFG elements
Resource Component/attribute pair
Resource value Configuration parameter value
Resource assignment Configuration parameter assignment/mutation
Variable Object-like macro name
Variable value Object-like macro body
Variable assignment Directive #define (object-like macro), #undef
Function Function-like macro name
Function declaration Directive #define (function-like macro)
Function formal parameter Function-like macro formal parameter
Function call Function-like macro invocation
Function actual parameter Function-like macro invocation parameter
Procedure A file to be included
Procedure call #include <file>
Conditional statement #if, #ifdef, #ifndef, #elif, #else, #endif
Expression defined id

3.3 Unified LCFG grammar rules

This section introduces the proposed unified LCFG grammar. The grammar will be
specified using a variant of Extended Backus-Naur Form (EBNF), which is widely
used to define programming languages. This specialised variant makes use of operators
that are more commonly used in regular expressions, and is utilised by the ANTLR
tool, which will be further used in Chapter 4 to build the LCFG parser. The grammar
presented below uses the following conventions:

• The alternatives of a rule are separated by the pipe sign (‘|’);

• Multiple elements are grouped together by using round brackets;

• The ‘?’ sign marks an element as optional (in the standard EBNF optional
elements are placed inside square brackets);

• The ‘*’ sign marks an element that can appear zero or more times (in the stan-
dard EBNF these elements are placed inside curly brackets);

• The ‘+’ sign marks an element that can appear one or more times;

• In a rule, elements in a sequence are separated by spaces (the standard EBNF
uses commas);

• A terminal could be either a quoted literal or a name of a token.

The first step involved in designing the grammar was to decide which language con-
structs should be matched by the lexer and which by the parser. In order to get a clear
and concise parser specification, several rules recommended in [20] were followed:
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• Recognise and discard anything in the lexer that the parser does not need to
handle, e.g., whitespace and comments;

• Unite together into a single token in the lexer anything that the parser can treat
as a single entity. For example, the #define directive is presented by the lexer
as a single token DEFINE instead of two separate tokens (‘#’ and ‘define’);

• Unite together into a single token type those lexical structures that the parser
does not need to distinguish. For example, function-like macro parameters could
be numbers, identifiers or strings, but they are presented as single token type
PARAM.

The grammar has tokens generated by the lexer as its terminal symbols. These tokens
are produced using the lexer rules described further in Section 4.2. Table 3.2 presents
the list of main tokens used in the grammar specification. The full list of tokens also
includes several special symbols such as ‘!’, ‘(’, ‘)’, ‘<’, ‘>’, ‘&’, ‘|’, ‘=’, ‘,’, etc.
Whitespaces (spaces, tabs, line ends) and comments are ignored.

Table 3.2: LCFG grammar tokens

Token Description
ID Identifier
RESOURCE Resource name (component/attribute pair)
RESOURCE VALUE Resource value (arbitrary string)
DEFINE Directive #define
MACRO BODY TEXT Macro body (replacement list)
PARAM Parameter of a function
INCLUDE Directive #include
FILENAME Name of a file to be included
IFDEF Directive #ifdef
IFNDEF Directive #ifndef
IF Directive #if
ELIF Directive #elif
ELSE Directive #else
ENDIF Directive #endif
ERROR Directive #error
WARNING Directive #warning
EOF End of source file

The specification for the proposed unified LCFG grammar is given in the next subsec-
tions as a set of EBNF grammar rules. Non-terminals begin with a lowercase letter.
The terminal symbols are presented in UPPERCASE and bold font. The definition
of a non-terminal is introduced by its name followed by a colon, and one or more
right-hand alternatives on succeeding lines.
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3.3.1 Statements

The start symbol of the grammar is sourceFile (Listing 3.2). It represents the source
file, which consists of a list of statements. Each statement is terminated by a newline.
The rule statementList groups statements together.� �
sourceFile

: statementList EOF
;

statementList
: statement*
;

/* Statements */
statement

: resourceAssignment
| resourceMutation
| variableAssignment
| conditionalStatement
| functionDeclaration
| functionCall
| procedureCall
| error
| warning
;� �

Listing 3.2: Statements related rules

3.3.2 Resources

Resource related rules deal with assignment of configuration values to resources and
their mutation (Listing 3.3).� �
/* Resource assignment */
resourceAssignment

: RESOURCE resourceValue?
;

resourceValue
: RESOURCE_VALUE+
;

/* Resource mutation */
resourceMutation

: ’!’ RESOURCE resourceValue
;� �

Listing 3.3: Resource related rules

In its most commonly used form, the resource name has two parts: component name
and attribute, separated by a dot. While the component name is an identifier, the at-
tribute may contain the ‘ ’ symbol as a separator for tags and optional context speci-
fied in square brackets. In addition, in schema files, the component part is not present,
and the attribute may define a meta-resource which begins with ‘@’ and may contain a
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placeholder (‘$’). In order to simplify the parser specification, it was decided to match
the above elements by the lexer and unite them in a single token called RESOURCE. The
value of the token is further analysed and split into its constituents by the LCFG parser
application.

The resource value is separated from the resource name by whitespace and is termi-
nated by the end of line. The value may contain arbitrary fields: strings, object-like
macro invocations, early and late references, tag lists, mutation function calls, etc.,
and can optionally be empty. Since the resource value does not obey any predefined
format, it is matched by the lexer as a single token called RESOURCE VALUE.

Unlike resource assignment, the resource value in mutation cannot be empty.

3.3.3 Variables

Variables represent object-like macros. Defining an object-like macro is an analogy
of declaring a variable and optionally assigning a value to it. The variable name is
identical to the macro name and the value is the macro body string (Listing 3.4). No
expansion of the macro body takes place during the assignment. The #undef directive
“deletes” the variable.� �
/* Variable assignment */
variableAssignment

: DEFINE ID variableValue?
| UNDEF ID
;

variableValue
: MACRO_BODY_TEXT+
;� �

Listing 3.4: Variable assignment rule

3.3.4 Functions

Functions correspond to function-like macros. The function name is identical to the
macro name, and the function body is the macro body string. The parameters must
be identifiers, separated by commas and optionally whitespace. When invoked, the
function takes a list of actual parameters in parentheses, separated by commas, and re-
places each use of a parameter in its body by the corresponding argument (Listing 3.5).
A function parameter can be empty, but the commas cannot be omitted. Function body
can contain resource assignments, but no variable/function declarations.� �
/* Function declaration */
functionDeclaration

: DEFINE ID ’(’ formalParameterList? ’)’ functionBody?
;

formalParameterList
: ID ( ’,’ ID )*
;
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functionBody
: MACRO_BODY_TEXT+
;

/* Function call */
functionCall

: ID ’(’ parameterList ’)’
;

parameterList
: parameter? ( ’,’ parameter? )*
;

parameter
: ( ID | PARAM )+
;� �

Listing 3.5: Function related rules

Functions can be “deleted” similarly to variables using the #undef directive.

3.3.5 Procedures

The inclusion of a file is equivalent to a procedure call. The name of the procedure
is given by the name of the file to be included (Listing 3.6). Procedures do not have
parameters. Executing a procedure means executing the statements contained in the
included file.� �
/* Procedure call */
procedureCall

: INCLUDE FILENAME ;� �
Listing 3.6: Procedure call rule

3.3.6 Conditionals

Conditionals evaluate a condition in order to execute or not execute a list of statements
(Listing 3.7). While the #ifdef and #ifndef test if a macro (variable or function) is
defined, the #if test the value of an expression. Conditionals could be nested.� �
/* Conditionals */
conditionalStatement

: ifStatement ( elifStatament )* ( elseStatament )? endifLine
;

ifStatement
: IFDEF ID statementList
| IFNDEF ID statementList
| IF expr statementList
;

elifStatament
: ELIF expr statementList
;

elseStatament
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: ELSE statementList
;

endifLine
: ENDIF ;� �

Listing 3.7: Conditionals rule

3.3.7 Expressions

As shown in Listing 3.8, expressions may contain:

• Variable name (ID). The value of the variable (macro body) is expanded before
evaluation of the expression. If the variable is not defined, its value is zero
(false);

• Integer and character constants (PARAM);

• Function call (ID ’(’parameterList’)’). The value of the function (macro
body) is expanded before evaluation of the expression. If the function is not
defined, its value is zero (false);

• Comparison operators (<=, >=, <, >, ==, !=);

• Logical operators (&& and ||);

• The defined operator, which check whether macros (variables or functions) are
defined.� �

/* Expression */
expr

: ID
| PARAM
| ID ’(’ parameterList ’)’
| ’(’ expr ’)’
| ’!’ expr
| expr ( ’<=’ | ’>=’ | ’<’ | ’>’ ) expr
| expr ( ’==’ | ’!=’ ) expr
| expr ( ’&&’ | ’||’ ) expr
| ’defined’ ID
| ’defined’ ’(’ ID ’)’
;� �

Listing 3.8: Expression rule

Arithmetic operators for addition, subtraction, multiplication, division, bitwise oper-
ations and shifts, which are part of the C standard, were not revealed in the LCFG
header files. Therefore, they were not included in the expression rule of the grammar.

The grammar specified in this section is the basis for the parser implementation pre-
sented in the next chapter.
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LCFG parser

This chapter describes the design and implementation of an LCFG lexer and parser and
their further integration into an LCFG language application.

4.1 Tools

Java has been chosen as the implementation language for the project. The rationale
behind the choice of Java was not only its popularity but also because it is platform in-
dependent. Moreover, although the LCFG tool primary focuses on UNIX-like systems,
the LCFG language itself is designed to be processed on different platforms.

Parsers are usually generated from a grammar specification using parser generators
rather than coded by hand. A parser generator converts the grammar into a program
that recognises the grammar. Over the years, many parser generators for various lan-
guage classes have been developed (a large list of notable generators can be found in
[1]). A comprehensive list of Java-based parser generators along with their features is
provided in [22]. A brief overview of the most popular tools that can generate parsers
usable from Java is presented below.

CUP (Constructor of Useful Parsers) [2] is a Java version of the classic YACC parser
generator. CUP only generates a parser but may integrate with external lexical gen-
erators, e.g., JFlex [18]. The action code is embedded in the grammar specification;
therefore, the latter may result in one huge file that is difficult to debug. Since CUP
does not generate an abstract syntax tree, the programmer has to write the appropriate
code to build nodes for every production alternative of the grammar.

JavaCC [3] is another widely used parser generator for Java. The grammar file, simi-
larly to CUP, contains actions and all the custom code needed by the parser. JavaCC
itself does not build a syntax tree, but it is combined with a tool called JJTree that does
it.

ANTLR (ANother Tool for Language Recognition) [19] is a popular tool in academic
and industrial fields that can output parsers in many languages. The latest version

23
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(ANTLR v4) automatically generates a parse tree and parse-tree walkers in the form
of listener and visitor pattern implementations.

Although all of the aforementioned parser generators seemed suitable for generation of
a parser for LCFG, ANTLR was chosen as the tool to be used, mainly for the following
features:

• Integration of the lexer and the parser; lexer and parser rules can be defined in a
single specification file;

• The application code is decoupled from grammar specification;

• Support for parse tree listener and visitor callback functions;

• Support for lexical modes and semantic predicates in lexer and parser rules;

• ANTLR provides a flexible testing tool called TestRig in its runtime library;

• The ANTLR documentation gives many examples of grammar specifications.

The subsequent sections present the steps carried out to build the LCFG parser:

1. Creating an ANTLR specification file containing the lexer rules for the unified
LCFG language.

2. Creating an ANTLR specification file containing the parser rules.

3. Generating the lexer and parser using the ANTLR tool.

4. Integrating the lexer and parser into a language application that processes the
syntax tree generated by the parser and composes the output XML profile.

4.2 Lexer rules specification

Lexical analysis is known to be the first phase of the language-processing pipeline for
any language [7]. The lexer converts the stream of input characters into a sequence of
tokens. This section provides details about the lexical rules composed to match and
generate the set of tokens for the LCFG grammar. This set was defined previously in
Table 3.2.

The basic syntax of a lexical rule in ANTR specification is:� �
<token_name > : <definition > ;� �
where the definition of the rule is specified using regular expressions.

ANTLR allows some frequently used regular expressions to be defined as fragments;
these fragment rules do not result in tokens visible to the parser. The fragment rules
defined in the LCFG lexer specification are shown in Listing 4.1.� �
fragment ATTRIBUTE: (LETTER | ’@’) ˜[\r\n\t ]* ;
fragment IDENT: LETTER (LETTER | DIGIT)* ;
fragment LETTER: [a-zA-Z_] ;
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fragment DIGIT: [0-9] ;
fragment DOT: ’.’ ;� �

Listing 4.1: Fragment rules

While the ATTRIBUTE fragment is used in recognising the attribute part of resource
names, the IDENT fragment matches resource names, macros (variables and function
names) and formal parameters of functions.

Matching precisely the tokens of the unified LCFG grammar turned out to be somewhat
complicated, mainly for two reasons. First, the LCFG source files contain a mix of
LCFG and CPP formats. Secondly, the macro replacement text (macro body) and
resource values can contain random text, which is a possible source of ambiguity.

Listing 4.2 illustrates some of the context-sensitive issues that were previously men-
tioned in Chapter 3. Although the syslog.addselector and local.debug are lex-
ically identical, the first must be recognised as a RESOURCE token and the second as
a RESOURCE VALUE. The creent.org matches the RESOURCE token, but must be pre-
sented to the parser as a function parameter (PARAM). The keyword defined must be
handled as a part of a macro body instead of being a single token.� �
syslog.addselector local.debug
DNS_SLAVE_FWD_Z(creent,creent.org)
!dns.file_creent mSET(zone.creent)
#error _NETMASK not defined� �

Listing 4.2: Examples of context-sensitive problems in a LCFG source file

The ANTLR documentation [20] suggests solving similar context-sensitive problems
using lexical modes and/or semantic predicates. Lexical modes allow grouping of lex-
ical rules by context. The lexer can return only those tokens that are matched by a
rule specified in the current mode. The lexer switches back and forth between modes
when it sees specific character sequences. Semantic predicates are Boolean expres-
sions placed in a rule. When the lexer encounters a false predicate, it deactivates that
rule.

The LCFG lexer rules were defined in a specification file named LCFGLexer.g4. Fig-
ure 4.1 shows the specified lexical modes and transitions between them.

Figure 4.1: Lexical modes and transitions
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The default mode is M0. In this mode the lexer recognises resource tokens (compo-
nent/attribute pairs), mutation symbols, identifiers of variables/functions, parentheses,
actual parameters of functions, comparison/logical operators, defined operator, and
directive start symbol (‘#’). In this state, the lexer matches but throws out the whites-
paces, comments and backslash newlines.

M1 mode is entered on encountering the directive start symbol. In this mode, the lexer
matches the CPP directives and outputs their tokens. Special cases are #include and
#define. The #include enters mode M6, in which the character sequence until a
newline forms the name of a header file. The #define triggers a transition to M2, in
which the lexer only expects an identifier of a variable or a function. A transition from
M3 to M0 means that no macro body for an object-like macro is provided. Mode M4
matches a parameter list of a function. Being in M5, the lexer matches the entire input
until a newline and sends a MACRO BODY TEXT token (variable value or function body).
In M7, the lexer captures everything until it sees a newline and sends a RESOURCE VALUE
token to the parser. In M5 and M7, the lexer skips backslash newlines but keeps spaces,
tabs, and comments unchanged.

Listing 4.3 shows a fragment of the LCFG lexer specification, which demonstrates the
use of semantic predicates. We define the nesting variable that is used to balance
the brackets. The lexer will choose the rule RESOURCE only if the semantic predicate
(nesting == 0) is true.� �
@lexer::members {

int nesting = 0;
}
// Resource
RESOURCE: IDENT DOT ATTRIBUTE {nesting == 0}?

-> mode(RESOURCE_VALUE_MODE);
// Parentheses
LP: ’(’ { nesting++; } ;
RP: ’)’ { nesting --; } ;� �

Listing 4.3: Usage of semantic predicates

Since the resource pattern is only matched outside brackets, the above technique re-
solves ambiguities similar to that in:� �
DNS_SLAVE_FWD_Z(creent ,creent.org)� �
The full specification for the LCFG lexer can be found in Appendix A.1.

4.3 Parser rules specification

The LCFG parser specification was composed in a file named LCFGParser.g4. The
main parser rules specified in LCFGParser.g4 were previously described in Section
3.3. In addition, a small experimental extension of the LCFG language is provided.
The latter extends the possibilities to modify resource values adding several mutation
operators, proposed by Stephen Quinney at the beginning of the project:
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• ‘?’ - mutate a resource value if already set;

• ‘˜’ - mutate a resource value if not already set;

• ‘=’ - mutate a resource value and also make it immutable.

The final specification for the LCFG parser is given in Appendix A.2.

4.4 LCFG language application

The following ANTLR commands were used to generate the LCFG lexer and parser
from their specifications:� �
antlr4 LCFGLexer.g4
antlr4 -visitor -no-listener LCFGParser.g4� �
The lexer and parser classes generated by ANTLR using the above commands are
named LCFGLexer and LCFGParser, respectively.

As discussed previously, ANTLR technology allows grammars to be encapsulated
from application code. The –visitor option tells ANTLR to generate a parse-tree
visitor interface and a base class with default implementations for the visitor methods
[20].

The generated lexer and parser were further integrated into an LCFG language appli-
cation, whose architecture is shown in Figure 4.2.

Figure 4.2: LCFG application architecture

This application takes the source file name as a command line argument and invokes
the parser by the code shown in Listing 4.4. Once the parse tree is generated by the
parser, it is processed using the ANTLR visitor mechanism. The latter performs a
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depth-first walk of the parse tree and invokes user-defined visitor functions to access
and process the nodes of the syntax tree [21].� �
// Create an input stream that reads from file
ANTLRInputStream input = new ANTLRInputStream(new FileInputStream(

srcFile));
// Create a lexer that feeds off of input stream
LCFGLexer lexer = new LCFGLexer(input);
// Create a buffer of tokens pulled from the lexer
CommonTokenStream tokens = new CommonTokenStream(lexer);
// Create a parser that feeds off the tokens buffer
LCFGParser parser = new LCFGParser(tokens);
// Begin parsing at init rule (sourceFile)
ParseTree tree = parser.sourceFile();
// Create a visitor and visit the generated syntax tree
LCFGVisitor visitor = new LCFGVisitor(resourcesMap , includePaths);
visitor.visit(tree);� �

Listing 4.4: Invoking the LCFG parser

The application deals with four main classes of objects: Variables, Functions,
Procedures, and Resources. A global hash map contains the declared variables and
functions. This map is updated by visitor functions that process the parse tree in an
interpreter-like fashion. Variable and function declarations add new items to the map.
The #undef directive removes an item from the map. When a function is called, its
parameters become a part of the global map but are removed after the execution. The
execution of a function is performed by expanding its body and replacing the formal
parameters with the values of the actual parameters. On encountering a procedure call
(header file inclusion), the corresponding visitor function creates a new copy of the lex-
er/parser classes and feeds the lexer with the included file. When a variable/function
is referenced, its value (macro body) is processed by a sub-parser (MacroProcessor).
The MacroProcessor expands the macro body by recursively replacing the identifiers
with their values from the global map. A second global map contains the resources
being declared. Each resource assignment adds a new resource to the map. Finally, the
XML generator outputs the configuration profile in XML or text format.

4.4.1 Object classes

This subsection describes the main object classes used by the LCFG language applica-
tion: Variables, Functions, Procedures and Resources.

As discussed previously, variables correspond to object-like macros. When declared,
a variable takes its name from the macro name and its body from the macro body
(the macro body can be empty). A class called Variable was created to encapsulate
the concept of a variable. The variable value is of String type. A method called
getExpandedValue() is provided to expand this value (macro body) by using the
MacroProcessor.

A class called Function was composed to represents function-like macros. In addition
to the function name and its body, an object of this class stores the list of formal pa-
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rameters for the function. A function can be called by invoking its execute() method.
The execution is performed in two steps. First, the function body is expanded using
the MacroProcessor; when the body is expanded, each use of a formal parameter in it
is replaced by the corresponding actual parameter. In the second step, a new instance
of the LCFG parser is created to process the expanded body.

There is a global HashMap structure created to store all the defined Variable and
Function objects. This map is accessed by the MacroProcessor in macro resolving
operation. Function parameters could be treated as variables: the formal parameter
is the variable, and the string representing the actual parameter is its value. When a
function is called, its formal and actual parameter pairs are added to the global map.
After execution, these pairs should be removed from the map. Since the function calls
could be nested, it is convenient to define a stack of maps: the first element of the stack
is the map of globally defined Variable and Function objects, and the next elements
contain the maps of parameters for the functions that have been called but not finished
yet. Figure 4.3 shows the class diagram for the Variable, Function and the global
stack of maps called DefinedObjectsStack. This class diagram is generated from
the Java code of the project using the ObjectAid UML Explorer tool [5].

Figure 4.3: Class diagram for the Variable, Function and global stack of maps

As stated before, the inclusion of a header file is equivalent to a procedure call. The
constructor of the Procedure class takes the name of the header file and a list of header
search paths as parameters. The procedure execute() method first searches for the file
in the provided include paths, and then creates a new copy of the LCFG lexer and parser
classes to process the included file. This approach allows for automatically handling
nested header files. The class diagram for the Procedure class is shown in Figure 4.4.
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The additional parameter resourcesMap passed to the constructor specifies the map
of resources to be updated by the invoked LCFG parser.

Figure 4.4: Class diagram for the Procedure class

Every configuration resource collected from the parse tree is stored in an object of
the Resource class (Figure 4.5). A global HashMap called resourcesMap, being an
attribute of the LCFGVisitor class, holds the defined resources. The component/at-
tribute parts of the resource name can be accessed individually. Both the resource
name and value can contain macros that should be expanded. The expandName() and
expandValue() methods are provided for this purpose. The replaceEarlyReferen-
ces() and replaceLateReferences() methods deal with early references and late
references, respectively. The MutationFunc enumeration type specifies the set of
functions implemented to mutate the value of the resource.

Figure 4.5: Class diagram for the Resource class
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4.4.2 Visitor functions

Using the –visitor option, ANTLR generates a parse–tree visitor interface called
LCFGParserVisitor and a base class (LCFGParserBaseVisitor). The interface con-
tains visit() method for each rule of the grammar. The base class contains a default
implementation of each visit() method. The default implementation of methods
calls visit() on all children [20].

To visit the parse tree, a class called LCFGVisitor was created. It is a subclass of
the auto-generated LCFGParserBaseVisitor class. The LCFGVisitor class takes a
map of resources to be defined and a list of header search paths as parameters. As
shown in the UML class diagram from Figure 4.6, the LCFGVisitor class implements
methods that get called upon visiting of the non-terminal nodes in the parse tree. These
methods override the default implementation of the visiting methods in the base class
and perform actions to gather the LCFG resources and configuration parameters from
the nodes of the parse tree.

Figure 4.6: Class diagram for visitor classes

The purpose of the methods of the LCFGVisitor class is as follows:

• visitResourceAssignment(): Create a new Resource object, expand both its
name and value using the MacroProcessor, and put the object into the global
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resources map. At this point, all the early references found are resolved.

• visitResourceMutation(): Mutate the value of a resource that is already
present in the global resources map. In general, the mutation could be performed
using the predefined macros specified in mutate.h (the method first checks for
these macros), but the mutation value can be also any arbitrary string.

• visitVariableAssignment(): Create a new Variable object and put it into
the map of globally defined objects. The variable value is not macro-expanded
at this stage, because it may depend on other macros that could be re-defined by
the next usage of the variable.

• visitFunctionDeclaration(): Create a new Function object and put it into
the map of globally defined objects. The function body and its formal parameters
are not macro-expanded at this stage.

• visitFunctionCall(): Execute a function found in the map of globally de-
fined objects. First, the function body is expanded using the MacroProcessor,
then the function execute() method is invoked.

• visitProcedureCall(): Create a new Procedure object and include a header
file by calling the procedure execute() method. Included files could in turn be
nested, which is analogy of nested procedure calls.

• visitIfdefStmnt(), visitIfStmnt(), visitElifStatament(): Test the ex-
pression in its context, and if it evaluates to true, visit the statements listed in the
context.

• visitElseStatament(): Visit the statements listed in its context.

• visitExpr() functions: Evaluate the expression in its context to true or false.
The visitExprDefined() function evaluates to true if the identifier in its con-
text is currently defined in the map of globally defined objects.

• visitError(), visitWarning(): Output the text in its context.

An example of an overridden visitor function is shown in Listing 4.5. It presents the
implementation of the visitProcedureCall() method associated with the procedure
call rule.� �
@Override
public String visitProcedureCall(LCFGParser.ProcedureCallContext ctx

) {
String includeFile = ctx.FILENAME().getText();
Procedure procedure = new Procedure(includeFile , includePaths ,

resourcesMap);
if (procedure.execute() == true) {

System.out.println("File " + includeFile + " included");
return Boolean.toString(true);

}
return Boolean.toString(false);

}� �
Listing 4.5: Implementation of visitProcedureCall() method
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4.4.3 Macro processor

The MacroProcessor is an important module of the LCFG application created for re-
solving macros. It is intended to process strings, rather than files. The MacroProces-
sor takes a string as an input, recognises and expands the macro expressions placed in
it, and returns the expanded string.

Four kinds of strings in LCFG source files may refer to pre-defined macros: variable
values, function bodies, resource names, and resource values. The resource names can
only contain object-like macro names (variable names), while the other kinds of strings
may invoke function-like macros (function calls) as well.

Two ideas on how macros should be resolved were considered. The first one was to
simply split the input string by Java code using regular expressions that match iden-
tifiers and functions, and then to replace the identified macros with their definitions
retrieved from the global map of defined objects. The attempt to implement this ap-
proach was not successful: it resulted in cumbersome code and difficulties in resolving
function-like and nested macros.

The second idea was to run a new copy of a lexer-parser pair on encountering a macro
in the input string and thus recursively expand macros until all of them are resolved. A
similar approach was already applied for handling nested header files. However, using
directly the LCFGLexer/LCFGParser classes for handling macro expansions turned out
to be impractical for several reasons:

• The LCFGLexer removes whitespaces, while they should remain intact in the
macro body being expanded.

• The LCFGParser has a number of grammar rules that are unnecessary in this
context. More specifically, a macro body may contain variable names and func-
tion calls, but no variable assignments, function declarations, procedure calls,
conditionals, and expressions. Furthermore, the LCFGParser has no grammar
rule to handle isolated variable names.

• The function call visitor function in the LCFGParser executes a function, while
in this context it should only replace the parameters and return the expanded
body of the function.

Because of the considerations mentioned above, a decision was made to create a sepa-
rate grammar and a parser which is only responsible for resolving macros. As shown
in Listing 4.6, the defined macro-processing grammar uses a small subset of the pre-
viously described LCFG grammar. The grammar handles identifiers and function call
patterns, which would probably be macro invocations. A rule called otherText at the
end matches everything else in the input string that should remain unchanged.� �
macro

: body* EOF ;
body

: otherText
| functionCall
| variableId
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;
variableId

: ID ;
functionCall

: ID ’(’ parameterList ’)’ ;
parameterList

: parameter? ( COMMA parameter? )*
;

parameter
: (ID | PARAM)+ ;

otherText
: OTHER_TEXT+ ;� �

Listing 4.6: Grammar for the MacroProcessor

The final specification for the LCFG MacroProcessor can be found in Appendix A.3.

Having the above grammar defined in a file named MacroProcessor.g4, the parser
was generated by calling the following ANTLR command:� �
antlr4 -visitor -no-listener MacroProcessor.g4� �
The above command auto-generates a lexer (MacroProcessorLexer), a parser (Macro-
ProcessorParser), a visitor interface (MacroProcessorVisitor), and a base visitor
class (MacroProcessorBaseVisitor).

The class implementing the MacroProcessorVisitor interface within the macro pro-
cessor was named MacroVisitor. The actual macro processing is carried out by the
following overridden visitor methods:

• visitMacro(): This method is called on visiting the starting node of the gener-
ated parse tree.

• visitVariableId(): This method is called on encountering an identifier in the
input string. The method checks if the identifier matches a name of an existing
variable in the map of globally defined objects. If so, the method returns the
expanded value of the variable, otherwise, the result is the unchanged identifier
string itself.

• visitFunctionCall(): This method is invoked on encountering a function
call in the input string. The method checks if the identifier matches a name of an
existing function in the map of globally defined objects. If so, the method visits
the children of its parameterList context and collects the actual parameters.
Their number must match the number of parameters in the function definition.
If the above conditions are met, the result is the expanded body of the function,
where each use of a parameter in its body is substituted by its corresponding
actual value. Otherwise, the method returns the original string.

• visitParameter(): This method is called on visiting nodes containing actual
parameters of a function. It handles the parameter string similarly to visit-
VariableId(). This allows all actual parameters to a function to be completely
macro-expanded before they are replaced into the function body.
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• visitOtherText(): The method simply returns the original string extracted
from the context of its corresponding node.

The final result of a macro expansion is produced by the visitMacro() method, which
merges the expanded strings returned by visitor functions called on its children nodes
(Listing 4.7).� �
@Override
public String visitMacro(MacroProcessorParser.MacroContext ctx) {
StringBuilder result = new StringBuilder();

for (MacroProcessorParser.BodyContext body : ctx.body()) {
result.append(visit(body));

}
return result.toString();

}� �
Listing 4.7: Implementation of visitMacro() method

All macro definitions are checked for more macros to replace. As was shown in Fig-
ure 4.3, both Variable and Function classes provide methods to expand their as-
signed macro bodies: getExpandedValue() and getExpandedBody(), respectively.
To be able to recursively resolve nested macros, each of these methods invokes its own
copy of the MacroProcessor parser on the string to be expanded.

To illustrate the work of the macro processing mechanism described above, let us ex-
amine in more detail the steps used to process the example LCFG source code shown
in Listing 4.8.� �
#define HOST test
#define NAME HOST.inf.ed.ac.uk

dhclient.hostname NAME� �
Listing 4.8: Nested macros in a LCFG code fragment

1. The code fragment is processed by the LCFG parser. Figure 4.7 presents a graph-
ical representation of the resulting parse tree.

Figure 4.7: Parse tree for the code from Listing 4.8



Chapter 4. LCFG parser 36

2. The nodes of the parse tree are visited by the corresponding methods of the
LCFGVisitor class. Specifically, the visitVariableAssignment() function
invoked on the first two statements adds two variables to the map of globally
defined objects:� �
Variable1: Name=HOST , Value=test
Variable2: Name=NAME , Value=HOST.inf.ed.ac.uk� �

3. The visitResourceAssignment() function invoked on the third statement de-
clares a resource:� �
Resource: Name=dhclient.hostname , Value=NAME� �
At this point, the resource value is to be expanded. The Resource class provides
a method expandValue() for this purpose. This method creates and starts a
MacroProcessor parser to process the resource value string, which produces
the parse tree depicted in Figure 4.8.

Figure 4.8: Parse tree for the resource value (string NAME)

4. Since the visitVariableId() method of the started MacroProcessor finds the
identifier NAME in the map of globally defined objects, it calls the getExpanded-
Value()method of Variable2. The latter starts a new (second) MacroProcessor
parser to process the variable value: string HOST.inf.ed.ac.uk.

5. The resulting parse tree of the second MacroProcessor (Figure 4.9) is visited.
Only the first out of the five identifiers is found in the map of globally defined
objects, and the getExpandedValue() method of Variable1 is called.

Figure 4.9: Parse tree for the string HOST.inf.ed.ac.uk

6. The getExpandedValue() method of Variable1 starts a new (third) instance of
the MacroProcessor to process its value: string test. The resulting parse tree
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(not shown) is similar to that from Figure 4.8. The variable identifier test is not
found in the map of globally defined objects, and therefore returned as a result
by the visitMacro() method of the third instance of the MacroProcessor.

7. The visitMacro() method of the second MacroProcessor receives the result-
ing string (test) and continues visiting the remaining nodes from the parse tree
in Figure 4.9. None of the other variable identifiers (inf, ed, ac, uk) is found
to be a declared variable, so the final result merged and returned by the second
MacroProcessor is the string test.inf.ed.ac.uk.

8. The visitMacro() method of the first MacroProcessor produces as a result the
string test.inf.ed.ac.uk, which is returned to the expandValue() method
invoked in step 3. Finally, the value of the resource dhclient.hostname is
evaluated to test.inf.ed.ac.uk.

Since the macro body may contain arbitrary strings, it is important to check if the
expanded string is syntactically correct. For example, consider the following code:� �
#define zones inf dcs
dns.zones informatics� �
If this code were first processed by CPP, due to purely lexical substitutions, the result-
ing resource assignment would be:� �
dns.inf = dcs informatics� �
which is not what was expected.

For the above case, the LCFG application reports an error:� �
ERROR: Invalid attribute name (inf dcs) for resource: dns.inf dcs� �
Similarly, the following code:� �
#define components hardware file
components.schema 2

#define server !client
server.ack true� �
would produce errors, too:� �
ERROR: Invalid component name (hardware file) for resource: hardware

file.schema
ERROR: Invalid component name (!client) for resource: !client.ack� �
During evaluation, an example of self-referential macro (one whose name is present in
its definition) was found in Profiles/ert source file:� �
#define ERT_COUNTER ERT_COUNTER/**/x� �
Since this macro produced infinite recursion in its expansion, the MacroProcessor
was fixed to return such identifiers in macro bodies unchanged.
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4.4.4 Profile generator

The purpose of this module is to generate the resulting profile. In its first phase
it obtains default values for resources from schema files of components listed by
profile.components resource. The analysis of schema files shows that they have
the same format as the source files, with the following two differences:

• Resources are specified by only their attribute parts (the component part is pre-
sented in the name of the schema file).

• Each resource may have its respective meta-resource (prefixed with ‘@’).

Rather than composing separate grammar specification, it was decided to extend the
current one to parse schema files as well. This was worked out by a modification to
the lexer specification. By adding an option named parseDefaults the lexer can now
be switched between recognising resources from source or schema files, thus keeping
the parser specification unchanged.

After the default resources have been added, all the late references are found and
processed.

One purpose of meta-resources is to specify directives to the LCFG compiler. These
are illustrated by example in Listing 4.9.� �
/* Publish to a spanning map */
@cluster %publish: rootmail
/* Subscribe to a spanning map */
@map %subscribe: clients
/* Validation */
poll = %string(interval): /ˆ(\d+(h|m|s)(\+\d+(h|m|s))?)?$/
/* Ordering of components */
@components ; $.ng_cforder� �

Listing 4.9: Examples of meta-resources

Spanning maps are used to refer to the value of a resource defined in an external profile
file. Validation code, where provided, is executed in the context of the current com-
piler. The handling of the above directives by the LCFG application is a part of future
work on this project. For example, validation code that obeys PERL syntax needs to
be modified to match the regular expressions format used by Java. For now, all the
resources are assumed to be of type string and no validation is performed when they
are processed by the LCFG application.

The meta-resource fields considered by the LCFG application are the templates used
to process tag list in a similar way as the original compiler. This is necessary in order
to make the profile files comparable for evaluation and testing purposes.

To demonstrate the way of creating nested lists of records, let us consider the following
example fragment taken from dns-11.def:� �
@zones file_$ zone_$
zones
file_$
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zone_$� �
Here, the meta-resource @zones defines two templates: file $ and zone $. These
templates have a ‘$’ as a placeholder for each tag value.

Next, suppose the following resources are defined in a source file:� �
dns.zones inf dcs
dns.file_dcs zone.dcs
dns.file_inf zone.inf
dns.zone_dcs dcs.ed.ac.uk
dns.zone_inf inf.ed.ac.uk� �
Since the dns.zones has its corresponding meta-resource, it is handled as a tag list
rather than an ordinary resource. The tags inf and dcs, replacing the placeholders
in each of templates, are then used to identify the list elements. The resulting nested
structure from the above example is:� �
dns

zones
inf

file = zone.inf
zone = inf.ed.ac.uk

dcs
file = zone.dcs
zone = dcs.ed.ac.uk� �

The format of a profile file generated by the original compiler contains the resources
to be configured on the host, along with an attached list of software packages to be in-
stalled. For now, the package lists composing mechanism used by the current compiler
is not investigated in detail. Therefore, including package lists in the LCFG application
output is left as a part of future work.

Three alternative formats of the resulting profile are provided, as specified in the next
subsection.

4.4.5 Usage

From the console, the LCFG application can be invoked by executing the main function
in the class LCFG. The arguments consist of:

• <source file>: LCFG profile (source) file to be parsed

• [-P<profiles path>]: Specifies a path for profile (source) files

• [-Iinclude paths>]: Specifies a list of include paths (separated by ‘;’)

• [-D<defaults path>]: Specifies a path for defaults (.def) files

• [-V]: Enable debug output messages

• [-X]: Enable XML output file generation
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• [-T]: Select text output file generation

The arguments given in square brackets are optional. The source file to be parsed can
be located in the path specified by –P option or in the current directory. The LCFG
application looks for header files in the list of paths specified by –I command line
option and in the current working directory. Schema (default) files can be located in
the path specified by the –D option or in the current directory. The output file is placed
in the folder out.

The default LCFG application output is a text file, whose format is identical to the
so-called Simple format generated by the production LCFG compiler (mkxprof). The
presence of a mandatory profile component is checked, and the generated profile
contains only the components specified by the profile.components resource. The
default resources for components are included from their corresponding schema files.

With the –X option specified, the LCFG application is intended to output an XML
profile which is similar to the XML format of mkxprof.

The format specified by the option –T is provided mainly for testing purposes, where
the source file may only encapsulate specific LCFG fragments. The output is a plain
text file, which contains a list of resources sorted by their component names. It includes
all the resources found regardless of their list specified in the profile.components
resource. In addition, the presence of the profile component itself is not checked.
This output format does not include resources from schema (.def) files.
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Evaluation

The evaluation of the proposed LCFG grammar and parser application was carried out
in two stages. In the first stage, the testing was performed using representative frag-
ments from LCFG source files that exemplify the main concepts of the grammar. The
second stage was focused on testing the LCFG application against real configuration
files.

The initial step was to perform basic tests to check if the proposed LCFG grammar
is able to accept correct source code fragments. For this purpose, a set of example
configuration files was composed. These test files cover the range of the rules of the
unified LCFG grammar. First, each of these files was tested using the ANTLR test
tool TestRig to make sure that the created parser generates correct parse trees. The
graphical representations of the generated parse trees presented below were produced
using the following command used to invoke the test tool:� �
grun LCFG sourceFile -gui <test_file >� �
Next, the profiles generated by the LCFG application executed on the testing examples
were compared with the expected results. The following section presents some of the
test cases provided to evaluate the main features of the proposed LCFG grammar and
implemented parser. Since these examples do not include any real header and schema
files, they were generated using the option –T. With this option set, the resulting output
only contains resource values without expanding tag lists where present.

5.1 Basic tests

5.1.1 Resource assignment test

The first testing example, which is shown in Listing 5.1, is used to test the resource
assignment rule of the grammar. It produces the parse tree shown in Figure 5.1.� �
/* Resource assignment testing example */
dns.type server

41
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fstab.entries proc pts shm sys
hardware.modconf /etc/modprobe.conf
hardware.keytable� �

Listing 5.1: Resource assignment examples

Figure 5.1: Parse tree for the testing example from Listing 5.1

The resulting output generated by the LCFG application is as expected:� �
dns.type = server
fstab.entries = proc pts shm sys
hardware.keytable =
hardware.modconf = /etc/modprobe.conf� �
5.1.2 Resource mutation test

The code shown in Listing 5.2 was composed to test the resource mutation rule. A
fragment of its parse tree is depicted in Figure 5.2.� �
/* Resource mutation testing example */
fstab.partitions_sda sda
!fstab.partitions_sda mSET(sda1)
!fstab.partitions_sda mADD(sda2)
!fstab.partitions_sda mADD(sda3)
!fstab.partitions_sda mREMOVE(sda2)� �

Listing 5.2: Resource mutation example

Figure 5.2: A fragment of the parse tree for the testing example from Listing 5.2

The sequence of mutations applied to the fstab.partitions sda resource results in
its expected final value (sda1 sda3), which is the correct LCFG application output:
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� �
fstab.partitions_sda = sda1 sda3� �
5.1.3 Variable assignment test

The test example from Listing 5.3 is used to test the variable assignment rule and nested
macros in resource assignments. Figure 5.3 shows a part of its parse tree illustrating
the #define and #undef directives.� �
/* Variable assignment and nested macros testing example */
#define SVN_HOST svntest
#define DICE_OPTIONS_SVN_NAME SVN_HOST.inf.ed.ac.uk
apacheconf.vhostname_svn1 DICE_OPTIONS_SVN_NAME
#undef SVN_HOST
apacheconf.vhostname_svn2 DICE_OPTIONS_SVN_NAME� �

Listing 5.3: Variable assignment/nested macros testing example

Figure 5.3: A fragment of the parse tree for variable assignments

Processing of the code from Listing 5.3 involves its handling by the MacroProcessor.
The resulting resource values are:� �
apacheconf.vhostname_svn1 = svntest.inf.ed.ac.uk
apacheconf.vhostname_svn2 = SVN_HOST.inf.ed.ac.uk� �
Since the macro SVN HOST is undefined before the resource assignment in the last line,
it is not expanded in the value of apacheconf.vhostname svn2 resource.

5.1.4 Conditionals test

The #ifdef directive test was performed using the example from Listing 5.4.� �
/* #ifdef testing example */
#define LINUX_SL6
#ifdef LINUX_SL6
hardware.keytable_file /etc/sysconfig/keyboard
#else
hardware.keytable_file /* INTENTIONALLY EMPTY */
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#endif� �
Listing 5.4: #ifdef testing example

Figure 5.4 shows the generated parse tree.

Figure 5.4: Parse tree for the testing example from Listing 5.4

Since the LINUX SL6 variable is initially defined, the resulting resource assignment is:� �
hardware.keytable_file = /etc/sysconfig/keyboard� �
Listing 5.5 presents the testing example for #if, #elif, #else conditionals.� �
/* #if, #elif, #else testing example */
#define LINUX_EL7
#define OS_RELEASE_MINOR 2
#if defined(LINUX_EL7) && OS_RELEASE_MINOR >= 2
network.netmanconf /etc/NetworkManager/conf.d/99-lcfg.conf_1
#elif defined(LINUX_EL6)
network.netmanconf /etc/NetworkManager/conf.d/99-lcfg.conf_2
#else
network.netmanconf /etc/NetworkManager/conf.d/99-lcfg.conf_3
#endif� �

Listing 5.5: #if, #elif, #else testing example

As expected, the resulting resource assignment is:� �
network.netmanconf = /etc/NetworkManager/conf.d/99-lcfg.conf_1� �
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5.1.5 Functions test

Listing 5.6 shows the code used to test function declarations and function calls. Func-
tion declarations make use of multi-line macro bodies, in which the resource assign-
ment lines are separated by the special symbol ¢. This symbol is replaced by a new
line (\n) by the visiting function for the function declaration rule.� �
/* Function (parameterised macro) testing example */
/* Function declarations */
#define NTP_SERVER(which) \
!ntp.serversPeers mADD(which) ¢\
!ntp.name_/**/which mSET(which.inf.ed.ac.uk)

#define ADD_SNMP_M2_VIEW(B,C) \
!snmp.views mADD(B) ¢\
!snmp.viewComment_/**/B mSET(C) ¢\
!snmp.viewText_/**/B mSET(view all included .1.3.6.1.2.1.B ff)

/* Function calls */
NTP_SERVER(ntp0)
ADD_SNMP_M2_VIEW(1,system)� �

Listing 5.6: Function testing example

Figure 5.5 shows a fragment of the parse tree illustrating the NTP SERVER function
declaration and its call.

Figure 5.5: Parse tree for a function declaration and call

The resulting resources after expanding the function bodies by the MacroProcessor
are:� �
ntp.name_ntp0 = ntp0.inf.ed.ac.uk
ntp.serversPeers = ntp0
snmp.viewText_1 = view all included .1.3.6.1.2.1.1 ff
snmp.viewComment_1 = system
snmp.views = 1� �
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5.1.6 Procedure call test

This test was provided using the header file shown in Listing 5.7. As can be seen, it
combines conditionals, resource/variable assignments, and function declaration.� �
/* File: example7.h */
/* Header file for procedure call testing example */
#ifndef _DNS_H
#define _DNS_H
#ifndef DNS_MASTER
#define DNS_MASTER 129.215.64.232
#endif

dns.type_default slave

#define DNS_SLAVE_FWD(Z) \
!dns.zones mADD(Z) ¢\
!dns.update_inf mADD(Z) ¢\
!dns.update_all mADD(Z) ¢\
!dns.zone_/**/Z mSET(Z.ed.ac.uk) ¢\
!dns.file_/**/Z mSET(zone.Z) ¢\
!dns.type_/**/Z mSET(slave) ¢\
!dns.masters_/**/Z mSET(DNS_MASTER)
#endif /* _DNS_H */� �

Listing 5.7: Header file for procedure call testing example

This header file is then included using the procedure call concept in the source file as
shown in Listing 5.8.� �
/* Procedure (file inclusion) testing example */
#include "example7.h"

dns.masters_default DNS_MASTER
dns.local_netmask 255.255.255.0
DNS_SLAVE_FWD(cstr)� �

Listing 5.8: Source file for procedure call test

Figure 5.6 shows a fragment of the parse tree, illustrating the procedure call statement.

Figure 5.6: Parse tree for procedure call statement

As expected, the final output from the LCFG application combines the resources from
both the source file and the included header file:� �
dns.type_default = slave
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dns.file_cstr = zone.cstr
dns.masters_default = 129.215.64.232
dns.masters_cstr = 129.215.64.232
dns.local_netmask = 255.255.255.0
dns.update_inf = cstr
dns.update_all = cstr
dns.zones = cstr
dns.type_cstr = slave
dns.zone_cstr = cstr.ed.ac.uk� �
5.1.7 References test

Listing 5.9 shows the late references testing example.� �
/* Late references testing example */
hardware.modprobe_cmd /sbin/modprobe
hardware.default_modloader <%hardware.modprobe_cmd%>

inv.allocated john
auth.users <%inv.allocated%>
!inv.allocated mADD(jane)� �

Listing 5.9: Late references testing example

As was specified, resources that use late references map their values to the final
values of the referenced resources. For example, the value of auth.users should be
john jane, which is shown in the output generated by the LCFG application:� �
inv.allocated = john jane
auth.users = john jane
hardware.modprobe_cmd = /sbin/modprobe
hardware.default_modloader = /sbin/modprobe� �
An example for testing early references is shown in Listing 5.10.� �
/* Early references testing example */
hardware.modprobe_cmd /sbin/modprobe1
hardware.default_modloader <%%hardware.modprobe_cmd%%>
!hardware.modprobe_cmd mSET(/sbin/modprobe2)

inv.allocated john
auth.users <%%inv.allocated%%>
!inv.allocated mADD(jane)� �

Listing 5.10: Early references testing example

Since early references by specification assign the current value of a resource, the
value of auth.users should be john, which is confirmed by the LCFG application
output:� �
inv.allocated = john jane
auth.users = john
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hardware.modprobe_cmd = /sbin/modprobe2
hardware.default_modloader = /sbin/modprobe1� �
5.1.8 Extended mutation operators test

As was previously discussed in Section 4.3, an additional experimental set of mutation
operators was implemented. Listing 5.11 shows the testing example composed to test
and demonstrate this extension.� �
/* Extended mutation operators testing example */
/* Mutate a resource value if already set */
fstab.partitions_sda sda
fstab.partitions_sdb
?fstab.partitions_sda mSET(sda1)
?fstab.partitions_sdb mSET(sdb1)

/* Mutate a resource value if not already set */
fstab.partitions_sdc sdc
fstab.partitions_sdd
˜fstab.partitions_sdc mSET(sdc1)
˜fstab.partitions_sdd mSET(sdd1)

/* Mutate a resource value and also make it immutable */
fstab.partitions_sde sde
=fstab.partitions_sde mSET(sde1)
=fstab.partitions_sde mSET(sde2)� �

Listing 5.11: Extended mutation operators testing example

The analysis of the LCFG application output generated from the testing example shows
that the new operators work as intended. For example, the value of fstab.parti-
tions sda is mutated in contrast to fstab.partitions sdc, and the value of fstab.
partitions sde has been mutated only once, since it has been made immutable from
that point:� �
fstab.partitions_sda = sda1
fstab.partitions_sdb =
fstab.partitions_sdc = sdc
fstab.partitions_sdd = sdd1
fstab.partitions_sde = sde1� �
Another set of tests was performed on LCFG fragments that usually cause problems
when handled by the C preprocessor. For example, the “problematic” declaration pre-
viously shown in Section 2.4:� �
#define DOMAIN inf.ed.ac.uk
mail.address `student' <student@DOMAIN >� �
is parsed correctly by both the LCFG parser and the MacroProcessor, which is illus-
trated by their corresponding parse trees shown in the a) and b) parts of Figure 5.7.
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Figure 5.7: Parse trees for a “problematic” LCFG declaration

The resulting assignment is correct, too:� �
mail.address = `student' <student@inf.ed.ac.uk>� �
5.2 System tests

The next stage of the evaluation process was to generate a set of profiles from real
configuration files and to validate them against the output of the production LCFG
compiler (mkxprof). Although the LCFG system is currently used on DICE machines,
its compiler is only running on dedicated servers as a daemon service. Therefore, it
was unclear how to manually generate individual profiles on a particular host. It was
decided to download the LCFG compiler package from the LCFG website [4] and
to set it up to work on a particular DICE machine. After managing to run the LCFG
compiler in standalone mode, a batch script was composed to automate the compilation
of source files. For testing purposes, a set of 100 source files was manually selected.

After initial compilation, it became apparent that the production LCFG compiler does
not publish individual profiles for so-called “self-managed” hosts, i.e. machines that do
not automatically configure themselves (their files include dice/os/selfmanaged.h
which in turn sets the output format to stub: profile.format=stub). In order to
keep these profiles in the testing set, a small modification to force the mkxprof to
generate these files was made in its PERL script.
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The next question that came up was how to compare output files. The attempt to fix the
LCFG application output to match exactly the mkxprof‘s XML format was not suc-
cessful. The reason was mainly the lack of detailed information on how mkxprof
chooses unique names for individual elements that appear several times. In addi-
tion, mkxprof XML output may contain contexts and derivations that the implemented
LCFG application does not handle. Luckily, it was found that mkxprof comes with a
library called Simple.pm that can be used to generate trivial profile representations in
plain text format.

In order to make the output files directly comparable, the profile generation module
of the LCFG application was redesigned to match strictly the mkxprof‘s trivial profile
format. This involved building multilevel structures from tag lists using the corre-
sponding templates from schema files, as well as sorting the output by components
and resources. However, as it was previously mentioned in Section 4.4.4, this output
does not contain an attached list of software packages to be installed on the target host.
For this reason, package lists are not taken into account when comparing output profile
files.

As a profile file usually contains thousands of lines, the comparison task could not be
done manually. Therefore, an additional application, called LCFGCompare, was writ-
ten to automate this process. Unlike conventional diff tools that compare files line
by line, LCFGCompare compares resources previously grouped by components. For
this purpose, LCFGCompare constructs a number of hash maps (one per component).
The main idea behind this was to make the evaluation process more efficient by iden-
tifying and testing in isolation the components that possibly cause a large number of
differences.

After the first bulk comparison of outputs, a big number of differences were observed.
The investigation determined several sources of errors:

• Parsing errors, caused by wrong tokens recognised by the lexer.

• Bugs in parse tree visitor functions of the LCFG application.

• Problems with some of the LCFG source files themselves.

While the first two issues were cleaned up by fixes in the lexer grammar and Java code
of the application, it is worth pointing out some fragments from source files that cause
errors. The latter are discussed at the end of this section.

Based on the operating system header files included, the source files used for testing
fall into three major groups:

• Files for hosts running Scientific Linux 6 (include dice/os/sl6 64.h).

• Files for hosts running Scientific Linux 7 (include dice/os/sl7.h).

• Files for other hosts (include dice/os/selfmanaged.h, dice/os/printer.h,
dice/os/managed-desktop.h, etc.).

The results of testing the LCFG application output against the output of the produc-
tion compiler (version 3.6.2) for each of the above-mentioned groups can be found
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in Appendix B. Table 5.1 summarises the results for the three testing groups. Each
row shows the average number of header files included per host, the average number
of components and resources per file recognised by the LCFG application, and the
average number of differences in resource values from the output of the production
compiler.

Table 5.1: Average results for the three testing groups

Host
OS

Source
files

Headers
per file

Components
per file

Resources
per file

Missing/
extra
resources

Differences

SL6 36 405 51 2688 45/1 4
SL7 19 465 57 3038 0/1 3
Other 45 14 4 107 0/0 0

It can be seen that for the first two groups the comparing tool reports one extra resource
in the LCFG application output. The reason for this is a missing by mistake comment
terminating char in line #150 from routing-4.def schema file:� �

150 qzWqInterval /* use the default *
151 qzWqMinRestart /* use the default */� �

In this case, the CPP accepts the next line as a comment, too. As a result, after remov-
ing comments, the resource defined in line #151 (qzWqMinRestart) is not produced
by mkxprof.

The investigation of missing resources shows that these are mainly resources imported
from spanning maps, which are not supported by the LCFG application.

Another discrepancy between outputs is due to a specific function-like macro declara-
tion found in dice/options/theon-basecamp.h:� �

125 #define BASECAMP_IFRIEND(U,D,G) \
126 !pgluser.caps mADD(G) ¢\
127 !pgluser.users_/**/G mADD(U@D) ¢\
128 #ifdef DICE_OPTIONS_SUBVERSION_WEBDAV_SERVER ¢\
129 !subversion.authzmembers_theon_/**/G
130 mADD(U%D@FRIEND.INF.ED.AC.UK) ¢\
131 #endif� �

The issue with this code is that the proposed MacroProcessor grammar does not
recognise conditionals within a macro body like this in line #128.

The next “problematic” fragment is from dice/options/exam-desktop.h:� �
181 file.tmpl_exampost #!/bin/bash\n\
182 action=$1 # typically lock|unlock|hold\n\
183 change=$2 # typically 1|0 (course/paper changes\n� �
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This fragment produces a parsing error due to a missing right parenthesis in line #183
(while the CPP does not report an error, the LCFG parser checks for balanced parenthe-
ses). To parse successfully source files that include exam-desktop.h, this parenthesis
was added manually.

Another fragment to mention is from lines #307..#312 of the same exam-desktop.h
file:� �

307 !webpic.css_uri mSETQ(’data:text/css ,.bottom{bottom:initial;font -
weight:bolder;}

308 .polblock{color:#A00033;}
309 .pollog{color:darkgreen;}
310 .polreadonly{color:orangered;}
311 .polundefined{background -color:yellow;color:black;font -weight:bolder

;}
312 ’)� �

While the CPP reports missing terminating quote character, this line is successfully
parsed by the LCFG parser.

An interesting difference is due to line #15 from lcfg/defaults/file.h:� �
REGISTER_COMPONENT_WITH_SYSTEMD(file ,lcfg -client.service , lcfg -auth.

service ,lcfgmultiuser)� �
The only distinction in this macro invocation is an extra space between its second and
third parameters. It seems that mkxprof joins these parameters in resource assignments
in its body, which could be seen from Figure 5.8. This figure presents a comparison
window for host cranston generated by WinDiff comparison tool, where differences
in mkxprof‘s output are coloured in red and these in LCFG application output in yel-
low.

Figure 5.8: An excerpt from WinDiff comparison window

Although the last testing results show minimal differences, there might still be LCFG
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language constructs which would not be successfully recognised. This is a field of
further detailed evaluation using the whole set of LCFG configuration files.



Chapter 6

Conclusion

This report presented the creation of an explicit grammar for LCFG and the design,
implementation, and evaluation of a parser for the language. The main results of the
work done could be summarised as follows:

• A unified grammar, combining the basic LCFG syntax with a subset of CPP
directives, was proposed. The CPP subset supported by the grammar is suffi-
cient to handle real source files actually being used in practice, and excludes the
unnecessary features. The grammar was composed in such a way as to allow
parsing the LCFG files without the need of the C preprocessor.

• Lexer and parser specifications for the grammar were developed. These speci-
fications conform to the format supported by the ANTLR parser generator tool,
which was next used to generate a lexer and a parser for the grammar.

• An LCFG language application was developed. This application processes the
syntax tree generated by the parser in an interpreter-like fashion, collects the
configuration parameters, and generates an individual output profile for a given
host. For resolving macros, an additional sub-parser was created.

• A small set of additional operators for modifying resource values (mutation) was
implemented and tested.

• The parser and the LCFG language application were evaluated using testing ex-
amples and real system configurations.

The biggest challenge in the project was specifying the lexer and parser rules for the
unified grammar, and drawing the line between the lexer and the parser. The aim to
simplify the parser rules and at the same time to “parse any LCFG syntax at any price”
resulted in a very complex lexer specification, as can be seen from Appendix A.1. It
could be said that the proposed grammar is an appropriate basis for a parser, but does
not provide a good exposition of LCFG language details. For example, looking only at
parser rules, it is not clear that the RESOURCE token represents a resource name com-
posed of a component/attribute pair, and that the attribute might contain an optional
tag. This also means that some constructs (for example tag lists) need to be further
decomposed by the LCFG language application. A more detailed LCFG parser rules
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specification is definitely a field for future experiments and improvements.

While an attempt was made for the LCFG application to cover as many of the features
of the original compiler as possible, many of them are subject to further understanding,
investigation, and integration. In particular, due to time constraints, features considered
to be more specific to real deployment and not a crucial part of the parsing are left for
future work. The supported features and limitations are outlined below.

Source and header files

Source and header files are processed correctly by the parser, generated from gram-
mar specification. Resource assignments, both from source files and hierarchically in-
cluded header files are fully supported. All the mutation functions currently included
in mutate.h file are supported. The subset of CPP features used in the available con-
figuration files is supported as well.

Schema files

Schema files are parsed successfully. Default resources from schema are correctly
added to a generated profile. However, the set of directives included in meta-resources,
which is used by the production compiler, is not handled by the LCFG application.
These include directives for validation, publishing/subscribing to spanning maps, or-
dering, etc.

Tag lists

Tag lists are not included as separate entities in the grammar. Instead, they are handled
by the profile generation module of the LCFG application, which builds multi-level list
structures using the templates extracted from corresponding meta-resources.

Early and late references

Although references are not included as separate entities in the grammar, they are
recognised and handled by the LCFG application while processing the syntax tree.

Contexts

Contexts are not included as separate entities in the grammar. They are recognised
by the LCFG application, but resources containing contexts are not included in the
generated profile.

Spanning maps

Spanning maps are not supported by the LCFG application.

Package lists

The list of packages is recognised as a value of the profile.packages resource, but
is not processed by the LCFG application.

ANTLR can certainly be considered as the right choice for implementing the parser.
Since the proposed grammar specifications are language independent, they could be
used as a basis for writing alternative LCFG compiler implementations and analysis
tools in other languages supported by ANTLR (C#, C++, Python, JavaScript, etc.).
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Appendix A

LCFG grammar specification

A.1 Lexer rules� �
/* LCFG lexer grammar */

lexer grammar LCFGLexer;

channels { COMMENTS_CHANNEL }

@lexer::members {
private int nesting = 0;
private boolean inDirective = false;
public boolean parseDefaults = false;

}

// ------------------------------------------------------------
// Default mode (M0)
// Resource
RESOURCE: IDENT DOT ATTRIBUTE {nesting == 0 && parseDefaults ==

false}? -> mode(RESOURCE_VALUE_MODE) ;
// Attribute in defaults (schema) file
ATTR: ATTRIBUTE {nesting == 0 && parseDefaults == true && !

inDirective}? -> type(RESOURCE), mode(RESOURCE_VALUE_MODE) ;
// Directive ’defined’
DEFINED: ’defined’ [ \t]* ;
// Identifier
ID: IDENT ;
// Mutation symbols
EXCL: ’!’ ;
MUT1: ’?’ {nesting == 0}? -> type(EXCL) ;
MUT2: ’˜’ {nesting == 0}? -> type(EXCL) ;
MUT3: ’=’ {nesting == 0}? -> type(EXCL) ;

// Separators
LP: ’(’ {nesting == 0 || inDirective}? {nesting++;} ;
RP: ’)’ {nesting == 1 || inDirective}? {nesting --;} ;
COMMA: ’,’ ;
// Comparison/logical operators
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EQUAL: ’==’ ;
NOTEQUAL: ’!=’ ;
AND: ’&&’ ;
OR: ’||’ ;
LT: ’<’ ;
GT: ’>’ ;
LE: ’<=’;
GE: ’>=’;
// Directive start
SHARP: ’#’ [ \t]* {nesting == 0}? {inDirective = true;} -> channel(

HIDDEN), mode(DIRECTIVE_MODE) ;
// Comments and whitespaces
COMMENT: ’/*’ .*? ’*/’ -> channel(COMMENTS_CHANNEL) ;
WS: [ \t]+ {nesting == 0 || inDirective}? -> channel(HIDDEN) ;
// Backslash newline
BS_NL: ’\\’ ’\r’? ’\n’ -> skip ;
// New line
NL: ’\r’? ’\n’ {inDirective = false;} -> channel(HIDDEN) ;
// Constant as parameter
PARAM_CONST: (INT | FLOAT) -> type(PARAM) ;
// Reference start <% as parameter
PARAM_REFL: ’<%’ {nesting > 0}? -> type(PARAM) ;
// Reference end %> as parameter
PARAM_REFR: ’%>’ {nesting > 0}? -> type(PARAM) ;
// String as parameter
PARAM_STR1: ’"’ (˜(’\\’ | ’"’) | ’\\’ .)* ’"’ {nesting > 0}? ->

type(PARAM) ;
PARAM_STR2: ’\’’ (˜(’\\’ | ’\’’) | ’\\’ .)* ’\’’ {nesting > 0}?

-> type(PARAM) ;
// Text \n as parameter
PARAM_NL: ’\\’ ˜[\n] {nesting > 0}? -> type(PARAM) ;
// Whitespaces as parameter
PARAM_WS: [ \t]+ {nesting > 0 && !inDirective}? -> type(PARAM) ;
// ’(’ as parameter
PARAM_LP: ’(’ {nesting > 0}? {nesting++;} -> type(PARAM) ;
// ’)’ as parameter
PARAM_RP: ’)’ {nesting > 1}? {nesting --;} -> type(PARAM) ;
// Parameter
PARAM: ˜[,\\]+? {nesting > 0}? ;
// Catchall Rule
ANY: . ;

// ------------------------------------------------------------
// Resource value mode (M7)
mode RESOURCE_VALUE_MODE ;
// Resource value - everything until a new line
VALUE_LP: ’(’ {nesting++;} -> type(RESOURCE_VALUE) ;
VALUE_RP: ’)’ {nesting --;} -> type(RESOURCE_VALUE) ;
VALUE_BS_NL: ’\\’ ’\r’? ’\n’ -> skip;
VALUE_SL_ESC: ’\\’ . -> type(RESOURCE_VALUE);
VALUE_IGNORE_NEWLINE: ’\r’? ’\n’ {nesting > 0}? -> skip ;
RESOURCE_VALUE: ˜[\r\n()\\]+ ;
VALUE_END: ’\r’? ’\n’ {nesting == 0}? -> channel(HIDDEN), type

(NL), mode(DEFAULT_MODE) ;

// ------------------------------------------------------------
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// Directives mode (M1)
mode DIRECTIVE_MODE ;

INCLUDE: ’include’ [ \t]+ -> mode(INCLUDE_MODE) ;
DEFINE: ’define’ [ \t]+ -> mode(DEFINE_MODE) ;
IF: ’if’ -> mode(DEFAULT_MODE) ;
ELIF: ’elif’ -> mode(DEFAULT_MODE) ;
ELSE: ’else’ -> mode(DEFAULT_MODE) ;
UNDEF: ’undef’ -> mode(DEFAULT_MODE) ;
IFDEF: ’ifdef’ -> mode(DEFAULT_MODE) ;
IFNDEF: ’ifndef’ -> mode(DEFAULT_MODE) ;
ERROR: ’error’ [ \t]+ -> mode(MACRO_BODY_MODE) ;
WARNING: ’warning’ [ \t]+ -> mode(MACRO_BODY_MODE) ;
ENDIF: ’endif’ -> mode(DEFAULT_MODE) ;

// ------------------------------------------------------------
// Include mode (M6)
mode INCLUDE_MODE ;
INCLUDE_NL: ’\r’? ’\n’ {inDirective = false;} -> channel(HIDDEN)

, mode(DEFAULT_MODE);
FILENAME: ˜[\r\n]+ ;

// ------------------------------------------------------------
// Macro declaration mode (M2)
mode DEFINE_MODE ;
MACRO_NAME: IDENT -> type(ID), mode(MACRO_NAME_MODE) ;

// ------------------------------------------------------------
// Macro name mode (M3)
mode MACRO_NAME_MODE;
MACRO_NAME_LP: ’(’ -> type(LP), mode(MACRO_PARAM_MODE) ;
MACRO_NAME_WS: [ \t]+ -> channel(HIDDEN), type(WS), mode(

MACRO_BODY_MODE) ;
MACRO_NAME_BS_NL: ’\\’ ’\r’? ’\n’ -> skip ;
MACRO_MANE_NL: ’\r’? ’\n’ {inDirective = false;} -> channel(

HIDDEN), mode(DEFAULT_MODE) ;
MACRO_MANE_COMMENT: ’/*’ .*? ’*/’ -> channel(COMMENTS_CHANNEL) ;
MACRO_NAME_OTHER: . -> type(MACRO_BODY_TEXT),mode(MACRO_BODY_MODE) ;

// ------------------------------------------------------------
// Macro params mode (M4)
mode MACRO_PARAM_MODE;
MACRO_PARAM_ID: IDENT -> type(ID) ;
MACRO_PARAM_COMMA: ’,’ -> type(COMMA) ;
MACRO_PARAM_RP: ’)’ -> type(RP), mode(MACRO_BODY_MODE) ;
MACRO_PARAM_WS: [ \t]+ -> channel(HIDDEN), type(WS) ;
MACRO_PARAM_COMMENT: ’/*’ .*? ’*/’ -> channel(COMMENTS_CHANNEL) ;
MACRO_PARAM_BS_NL: ’\\’ ’\r’? ’\n’ -> channel(HIDDEN) ;

// ------------------------------------------------------------
// Macro body mode (M5)
mode MACRO_BODY_MODE;
MACRO_BODY_BS_NL: ’\\’ ’\r’? ’\n’ -> channel(HIDDEN);
MACRO_BODY_SL_ESC: ’\\’ . -> type(MACRO_BODY_TEXT);
MACRO_BODY_NL: ’\r’? ’\n’ {inDirective = false;} -> channel(

HIDDEN), mode(DEFAULT_MODE);
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MACRO_BODY_TEXT: ˜[\r\n\\]+ ;

// ------------------------------------------------------------
// Fragments
fragment ATTRIBUTE: (LETTER | ’@’) ˜[\r\n\t ]* ;
fragment IDENT: LETTER (LETTER | DIGIT)* ;
fragment LETTER: [a-zA-Z_] ;
fragment DIGIT: [0-9] ;
fragment INT: DIGIT+ ;
fragment FLOAT: INT (’.’ INT)? ;
fragment DOT: ’.’ ;� �
A.2 Parser rules� �
/* LCFG parser grammar */

parser grammar LCFGParser;

options { tokenVocab=LCFGLexer; }

@parser::members {
public static boolean debug = false;

}

sourceFile
: statementList EOF
;

statementList
: statement*
;

statement
: resourceAssignment
| resourceMutation
| variableAssignment
| functionDeclaration
| functionCall
| procedureCall
| conditionalStatement
| error
| warning
;

resourceAssignment
: RESOURCE resourceValue?
;

resourceValue
: RESOURCE_VALUE+
;

resourceMutation
: EXCL RESOURCE resourceValue
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;

variableAssignment
: DEFINE ID variableValue?
| UNDEF ID
;

variableValue
: MACRO_BODY_TEXT+
;

functionDeclaration
: DEFINE ID LP formalParameterList? RP functionBody?
;

formalParameterList
: ID (COMMA ID)*
;

functionBody
: MACRO_BODY_TEXT+
;

functionCall
: ID LP parameterList RP
;

parameterList
: parameter? (COMMA parameter?)*
;

parameter
: (ID | PARAM)+
;

procedureCall
: INCLUDE FILENAME
;

conditionalStatement
: ifStatement ( elifStatament )* ( elseStatament )? endifLine
;

ifStatement
: IFDEF ID statementList # ifdefStmnt
| IFNDEF ID statementList # ifdefStmnt
| IF expr statementList # ifStmnt
;

elifStatament
: ELIF expr statementList
;

elseStatament
: ELSE statementList
;

endifLine
: ENDIF
;

expr
: ID #exprVariable // Variable
| PARAM #exprParam // Parameter
| ID LP parameterList RP #exprFunction // Function call
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| LP expr RP #exprParens // Parenthesis
| EXCL expr #exprNot // Not
| left=expr op=(LT | GT | LE | GE) right=expr #exprBinary
| left=expr op=(EQUAL | NOTEQUAL) right=expr #exprBinary
| left=expr op=(AND | OR) right=expr #exprBinary // And/Or
| DEFINED ID #exprDefined // Directive: #defined
| DEFINED LP ID RP #exprDefined // Directive: #defined
;

error
: ERROR txt
;

warning
: WARNING txt
;

txt
: MACRO_BODY_TEXT+
;� �

A.3 MacroProcessor rules� �
/* LCFG macro processor grammar */

grammar MacroProcessor;

@lexer::members {
int nesting = 0;

}

// ---- Parser rules ---------------------------------
macro

: body* EOF
;

body
: otherText
| functionCall
| variableId
;

variableId
: ID
;

functionCall
: ID LP parameterList RP
;

parameterList
: parameter? (COMMA parameter?)*
;
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parameter
: (ID | PARAM)+
;

otherText
: OTHER_TEXT+
| LP parameterList RP
;

// ---- Lexer rules ---------------------------------
// Identifier
ID: IDENT ;
// Separators
LP: ’(’ {nesting == 0}? {nesting++;} ;
RP: ’)’ {nesting == 1}? {nesting --;} ;
COMMA: ’,’ {nesting == 1}? ;
// String as parameter
PARAM_STR: ’"’ (˜(’\\’ | ’"’) | ’\\’ .)* ’"’ {nesting > 0}? -> type(

PARAM) ;
PARAM_STR2: ’\’’ (˜(’\\’ | ’\’’) | ’\\’ .)* ’\’’ {nesting > 0}? ->

type(PARAM) ;
// Comments
COMMENT: ’/*’ .*? ’*/’ -> skip ; //channel(HIDDEN) ;
// Parameter
PARAM: ˜[,()]+ {nesting == 1}? ;
// Comma as parameter
PARAM_COMMA: ’,’ {nesting > 1}? -> type(PARAM) ;
// ’(’ as parameter
PARAM_LP: ’(’ {nesting > 0}? {nesting++;} -> type(PARAM) ;
// ’)’ as parameter
PARAM_RP: ’)’ {nesting > 1}? {nesting --;} -> type(PARAM) ;
// Other text as parameter
PARAM_OTHER_TEXT: . {nesting > 0}? -> type(PARAM) ;
// Other text
OTHER_TEXT: . ;

fragment IDENT: LETTER (LETTER | DIGIT)* ;
fragment LETTER: [a-zA-Z_] ;
fragment DIGIT: [0-9] ;� �
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Evaluation results

B.1 Profiles comparison report (summary)

This report is generated by the WinDiff comparison tool.
/Data/1 directory contains profiles generated by mkxprof.
/Data/2 directory contains profiles generated by the LCFG application.

� �
-- /Data/1 : /Data/2 -- includes identical ,differing files
./4man/simple/profile identical
./aciu/simple/profile different (/Data/2 is more recent)
./altino/simple/profile different (/Data/2 is more recent)
./ard/simple/profile identical
./ardeola/simple/profile identical
./arezzo/simple/profile identical
./arta/simple/profile different (/Data/2 is more recent)
./artist/simple/profile identical
./aruba/simple/profile identical
./astonmartin/simple/profile identical
./babel/simple/profile different (/Data/2 is more recent)
./baked/simple/profile identical
./bart/simple/profile identical
./blackwell/simple/profile different (/Data/2 is more recent)
./blogvm/simple/profile different (/Data/2 is more recent)
./bocian/simple/profile different (/Data/2 is more recent)
./bolt/simple/profile different (/Data/2 is more recent)
./bombay/simple/profile identical
./caley/simple/profile identical
./carnero/simple/profile different (/Data/2 is more recent)
./caxton/simple/profile identical
./charon/simple/profile identical
./chatty/simple/profile different (/Data/2 is more recent)
./claise/simple/profile identical
./collins/simple/profile different (/Data/2 is more recent)
./cowan/simple/profile identical
./cranston/simple/profile different (/Data/2 is more recent)
./djokovic/simple/profile different (/Data/2 is more recent)
./eden/simple/profile identical
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./empoli/simple/profile identical

./ert/simple/profile different (/Data/2 is more recent)

./farg/simple/profile different (/Data/2 is more recent)

./fimo/simple/profile different (/Data/2 is more recent)

./fox/simple/profile identical

./gala/simple/profile different (/Data/2 is more recent)

./garbo/simple/profile identical

./hakone/simple/profile identical

./helotrix/simple/profile identical

./hobgoblin/simple/profile different (/Data/2 is more recent)

./holywood/simple/profile different (/Data/1 is more recent)

./honda/simple/profile different (/Data/2 is more recent)

./hopper/simple/profile identical

./hornet/simple/profile identical

./horton/simple/profile different (/Data/2 is more recent)

./icarus/simple/profile identical

./idoru/simple/profile different (/Data/2 is more recent)

./innerwick/simple/profile different (/Data/2 is more recent)

./ivon/simple/profile different (/Data/2 is more recent)

./jerry/simple/profile different (/Data/2 is more recent)

./kegan/simple/profile different (/Data/2 is more recent)

./kelvin/simple/profile different (/Data/2 is more recent)

./lazar/simple/profile different (/Data/2 is more recent)

./lindor/simple/profile different (/Data/2 is more recent)

./lion/simple/profile identical

./luse/simple/profile identical

./lychee/simple/profile identical

./lyng/simple/profile identical

./maguire/simple/profile different (/Data/2 is more recent)

./march/simple/profile different (/Data/2 is more recent)

./modin/simple/profile different (/Data/2 is more recent)

./mullo/simple/profile different (/Data/2 is more recent)

./napa/simple/profile identical

./neave/simple/profile identical

./neeps/simple/profile different (/Data/2 is more recent)

./nix/simple/profile different (/Data/2 is more recent)

./nora/simple/profile different (/Data/2 is more recent)

./oakwood/simple/profile different (/Data/2 is more recent)

./otaka/simple/profile different (/Data/2 is more recent)

./paeroa/simple/profile different (/Data/2 is more recent)

./pavarotti/simple/profile identical

./pergamon/simple/profile different (/Data/2 is more recent)

./pike/simple/profile identical

./pollock/simple/profile identical

./raven/simple/profile different (/Data/2 is more recent)

./reeves/simple/profile different (/Data/2 is more recent)

./rocklin/simple/profile identical

./salinas/simple/profile identical

./sashko/simple/profile different (/Data/2 is more recent)

./scapa/simple/profile identical

./selma/simple/profile different (/Data/2 is more recent)

./shiel/simple/profile identical

./skelp/simple/profile different (/Data/2 is more recent)

./slatkin/simple/profile different (/Data/2 is more recent)

./sobotka/simple/profile identical

./sofia/simple/profile different (/Data/2 is more recent)
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./stoner/simple/profile different (/Data/2 is more recent)

./tarski/simple/profile identical

./titan/simple/profile different (/Data/2 is more recent)

./turing/simple/profile different (/Data/2 is more recent)

./tycho/simple/profile different (/Data/2 is more recent)

./velma/simple/profile different (/Data/2 is more recent)

./vili/simple/profile identical

./white/simple/profile different (/Data/2 is more recent)

./yak/simple/profile different (/Data/2 is more recent)

./yashin/simple/profile identical

./yukon/simple/profile different (/Data/2 is more recent)

./zamora/simple/profile different (/Data/2 is more recent)

./ziburys/simple/profile identical

./zion/simple/profile identical

./zuse/simple/profile different (/Data/2 is more recent)
-- 100 files listed� �
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B.2 Profiles comparison report (detailed)

Host: Name of the source file

Headers: Number of headers number included by the source file

Components: Number of components included in the resulting profile

Resources: Number of resources included in the resulting profile

Missing resources: Number of resources present in mkxprof‘s output, but missing in
LCFG application output

Extra resources: Number of resources present in LCFG application output, but miss-
ing in mkxprof‘s output

Differences: Differences in resource values for resources present in both outputs

Table B.1: Evaluation results (Scientific Linux 7 based hosts)

Host Headers Components Resources Missing
/extra
resources

Differences

altino 479 58 3083 0/1 3
arta 439 56 2968 0/1 3
babel 507 62 3268 3/1 4
bolt 469 59 3094 0/1 3
carnero 440 56 2968 0/1 5
cranston 389 49 2483 0/1 4
djokovic 479 58 3083 0/1 3
gala 477 61 3212 0/1 3
holywood 478 58 3083 0/1 3
honda 480 58 3083 0/1 5
maguire 479 58 3083 0/1 3
nora 440 56 2968 0/1 3
paeroa 480 58 3083 0/1 3
raven 479 58 3083 2/1 2
sashko 439 56 2968 0/1 3
sofia 477 58 3083 0/1 5
turing 440 56 2968 0/1 3
velma 479 58 3083 0/1 5
white 479 58 3083 0/1 3
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Table B.2: Evaluation results (Scientific Linux 6 based hosts)

Host Headers Components Resources Missing
/extra
resources

Differences

aciu 416 50 2566 0/1 3
blackwell 330 46 2380 0/1 4
blogvm 373 51 2698 2/1 9
bocian 466 57 2955 6/1 3
chatty 365 50 2687 2/1 3
collins 329 48 2621 37/1 6
ert 592 63 3271 22/1 17
farg 490 58 2986 0/1 3
fimo 425 51 2630 0/1 3
hobgoblin 392 53 2960 56/1 2
horton 414 50 2566 0/1 3
idoru 328 46 2471 0/1 4
innerwick 486 54 2752 0/1 3
ivon 269 42 2208 0/1 2
jerry 436 49 2506 0/1 3
kegan 361 50 2662 2/1 3
kelvin 271 43 2158 0/1 2
lazar 435 47 2508 0/1 3
lindor 381 45 2293 0/1 2
march 552 65 3453 352/1 3
mullo 396 54 3023 2/1 2
neeps 393 44 2296 0/1 2
nix 387 52 2927 56/1 2
oakwood 316 45 2485 0/1 3
pergamon 354 50 2789 0/1 2
reeves 335 47 2426 0/1 3
selma 460 55 2844 8/1 1
skelp 530 57 3006 3/1 5
slatkin 442 57 3090 1059/1 0
stoner 315 47 2557 3/1 2
titan 407 47 2369 0/1 2
tycho 416 55 2940 5/1 2
yak 407 53 2785 20/1 5
yukon 416 50 2566 0/1 3
zamora 447 50 2593 0/1 3
zuse 452 54 2728 0/1 3
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Table B.3: Evaluation results (Other hosts)

Host Headers Components Resources Missing
/extra
resources

Differences

4man 33 5 144 0/0 0
ard 11 3 76 0/0 0
ardeola 13 4 107 0/0 0
arezzo 11 3 76 0/0 0
artist 15 4 107 0/0 0
aruba 15 4 107 0/0 0
astonmartin 11 3 76 0/0 0
baked 9 3 76 0/0 0
bart 11 3 76 0/0 0
bombay 11 3 76 0/0 0
caley 11 3 76 0/0 0
caxton 13 4 113 0/0 0
charon 22 5 144 0/0 0
claise 11 3 76 0/0 0
cowan 11 3 76 0/0 0
eden 10 3 76 0/0 0
empoli 11 3 76 0/0 0
fox 11 3 76 0/0 0
garbo 9 3 76 0/0 0
hakone 20 5 144 0/0 0
helotrix 20 5 144 0/0 0
hopper 22 5 144 0/0 0
hornet 11 3 76 0/0 0
icarus 15 4 107 0/0 0
lion 9 3 76 0/0 0
luse 17 5 186 0/0 0
lychee 19 5 144 0/0 0
lyng 15 4 107 0/0 0
modin 22 4 130 0/0 1
napa 17 5 186 0/0 0
neave 11 3 76 0/0 0
otaka 18 3 76 0/0 0
pavarotti 11 3 76 0/0 0
pike 11 3 76 0/0 0
pollock 15 4 107 0/0 0
rocklin 11 3 76 0/0 0
salinas 17 5 186 0/0 0
scapa 11 4 149 0/0 0
shiel 11 3 76 0/0 0
sobotka 11 3 76 0/0 0
tarski 15 4 107 0/0 0
vili 20 5 144 0/0 0
yashin 22 5 144 0/0 0
ziburys 15 4 107 0/0 0
zion 15 5 186 0/0 0


