
Multi-Agent Negotiation of Virtual Machine
Migration Using the Lightweight Coordination

Calculus

Paul Anderson, Shahriar Bijani, and Alexandros Vichos

School of Informatics, University of Edinburgh, UK
dcspaul@ed.ac.uk, s.bijani@ed.ac.uk, alexandros.vichos@gmail.com

Abstract. LCC is a Lightweight Coordination Calculus which can be
used to provide an executable, declarative specification of an agent in-
teraction model. In this paper, we describe an LCC-based system for
specifying the migration behaviour of virtual machines in a datacentre.
We present some example models, showing how they can be used to
implement different policies for the machine allocation and migration.
We then describe a practical implementation of the system which can
directly execute the LCC specifications.

Keywords: autonomic computing, multi-agent systems, virtual machines,
OpenKnowledge, Lightweight Coordination Calculus

1 Introduction

Virtualisation technology has recently transformed the availability and manage-
ment of compute resources. Each physical machine (PM) in a datacentre is capa-
ble of hosting several virtual machines (VMs). From the user’s point of view, a
virtual machine is functionally equivalent to a dedicated physical machine; how-
ever, new VMs can be provisioned and decommissioned rapidly without changes
to the hardware. VMs can also be migrated between physical machines without
noticeable interruption to the running applications. This allows dynamic load
balancing of the datacentre, and high availability through the migration of VMs
off failed machines. The resulting virtual infrastructure provides the basis for
cloud computing.

Managing the placement and migration of VMs in a datacentre is a significant
challenge; existing commercial tools are typically based on a central management
service which collates performance information from all of the VMs. If the current
allocation is unsatisfactory (according to some policies), then the management
service will compute a new VM allocation and direct agents on the physical
machines to perform the necessary migrations.

As the size and complexity of datacentres increases, this centralised manage-
ment model appears less attractive; even with a high-availability management
service, there is possibility of failure and loading problems. If we would like to ex-
tend the domain of the virtual infrastructure to encompass multiple datacentres,

managed by different providers, then the central model is no longer appropriate;
in this federated “cloud” scenario, there may no longer be a single organisation
with ultimate authority over all of the infrastructure.

This motivates us to propose a less centralised solution where agents located
on the physical machines negotiate to transfer VMs between themselves, without
reference to any centralised authority. This seems particularly appropriate for
many situations where a globally optimal solution is not necessary or feasible;
for example, if a machine is overloaded, it is often sufficient to find some other
machine which will take some of the load. Likewise, an underloaded machine
simply needs to take on additional VMs to improve its utilisation; there is no
need for any global knowledge or central control.

In this paper, we present an experimental implementation of the above sce-
nario in which agents follow interaction models (IMs) described in the lightweight
coordination calculus (LCC). The agents use the OpenKnowledge framework to
locate appropriate interaction models and to identify suitable peers. These inter-
action models specify the agent behaviour, and allow them to make autonomous
decisions; for example, the choice of VM to accept could be based on local capa-
bilities, the properties of the VM being offered, the financial relationship with
the donor, etc.

One important consequence of this approach is that we can very easily change
the global policy of an entire infrastructure by introducing new interaction mod-
els. For example, a particular model may encourage the physical machines to
distribute the load evenly among themselves; this makes a lightly-loaded in-
frastructure very agile and able to accept new VMs very quickly. Alternately,
a different interaction model may encourage the machines to prefer a full, or
empty, loading as opposed to a partial one. Some of the machines would then
be able to dispose of all their VMs, allowing them to be turned off and hence
saving power.

2 LCC and OpenKnowledge

A computational agent - such as one responsible for one of our physical machines
- must be capable of acting autonomously, but it will also need to communicate
with other agents in order to achieve its goals. In a multi-agent system (MAS),
the agents often observe conventions which allow them to co-operate. These are
analogous to the social norms in human interactions, and may be more or less
formal – an oft-cited example is the rules which govern the bidding process in
an auction. In our application, agents must be able to compare the respective
resource utilisation of their hosts, and reach an agreement about the transfer of
a virtual machine. Typically, the social norms in a MAS will be defined using an
explicit protocol. The lightweight coordination calculus (LCC) is a declarative,
executable specification language for such a protocol.

LCC is based on a process algebra which supports formal verification of the
interaction models. In contrast with traditional specifications for electronic in-

stitutions, there is no requirement to predefine a “global” script which all agents
follow - the protocols can be exchanged and evolved dynamically during the con-
versation. LCC is used to specify “if” and “when” agents communicate; it does
not define how the communication takes place1, and it does not define how the
agents rationalise internally. There are several different implementations of the
LCC specification, including OpenKnowledge (see below), Li2, UnrealLCC3 and
Okeilidh4.

There is insufficient space here to describe the LCC language in detail; the
OpenKnowledge website contains a good introduction5, and there are also some
video tutorials6. The following brief summary should be sufficient to follow the
annotated examples presented in the next section:

Each IM includes one or more clauses, each of which defines a role. Each
role definition specifies all of the information needed to perform that role. The
definition of a role starts with: a(roleName, PeerID). The principal operators
are outgoing message (=>), incoming message (<=), conditional (<-), sequence
(then) and committed choice (or). Constants start with lower case characters
and variables (which are local to a clause) start with upper case characters.
LCC terms are similar to Prolog terms, including support for list expressions.
Matching of input/output messages is achieved by structure matching, as in
Prolog.

The right-hand side of a conditional statement is a constraint. Constraints
provide the interface between the IM and the internal state of the agent. These
would typically be implemented as a Java component which may be private to
the peer, or a shared component registered with a discovery service.

OpenKnowledge (OK7)[7,12] provides an implementation of LCC, together
with some additional functionality, including a distributed discovery service.
Peers register their desired roles with the service, and this identifies a suitable
set of peers to engage in a particular interaction. The peers are then notified
and the interaction proceeds without further involvement of the discovery ser-
vice8. OK is capable of quite sophisticated ontology-based role matching, and
negotiation among the peers when attempting to fill the roles for a particular
interaction. However, we only make use of the basic matching functions - for
example, matching an “overloaded” peer with an “underloaded” one.

The OK discovery service also provides facilities for discovering and dis-
tributing both interaction models and components (OKCs). This means that a
1 The inter-agent communication mechanism is defined by the implementation.
2 http://sourceforge.net/projects/lij
3 http://sourceforge.net/projects/unreallcc
4 http://groups.inf.ed.ac.uk/OK/drupal/okeilidh
5 http://groups.inf.ed.ac.uk/OK/index.php?page=tutorial.txt
6 http://stadium.open.ac.uk/stadia/preview.php?whichevent=984&s=29
7 http://groups.inf.ed.ac.uk/OK/
8 In practice, one of the peers is elected as a coordinator for the interaction, and the

coordinator executes the IM, only making calls to other peers when it is necessary
to evaluate a constraint

http://sourceforge.net/projects/lij
http://sourceforge.net/projects/unreallcc
http://groups.inf.ed.ac.uk/OK/drupal/okeilidh
http://groups.inf.ed.ac.uk/OK/index.php?page=tutorial.txt
http://stadium.open.ac.uk/stadia/preview.php?whichevent=984&s=29
http://groups.inf.ed.ac.uk/OK/

physical machine (in our application) need only register its willingness to par-
ticipate, and the behaviour will then be defined by the IMs and OKCs which
are retrieved from the discovery service. Of course, individual machines remain
free to fulfil their role in whatever way is appropriate - possibly by using their
own IMs and/or OKCs rather than those available on the central discovery ser-
vice. This allows particular machines, or federated groups to engage in the same
interactions, using different policies.

3 Interaction Models for VM Migration

In this section, we describe two LCC interaction models, which implement two
different VM migration policies:

– in the first policy, VMs migrate from busy peers to underloaded peers to
balance the load of each peer (Figure 1).

– in the second policy, VMs migrate from underloaded peers to busy peers to
fully use the resources of some peers and release the others.

Figure 1 illustrates the state diagram of the first policy. There are three
states: idle, overloaded and underloaded. The idle state is the initial and the
goal state, in which the peer is balanced. Each peer is assumed to be balanced
at the beginning of the interaction. It may then change state, based on its status.
Each overloaded peer interacts with an underloaded peer (if any exist), in order
to balance the load.

// Definition of the “idle” role. Here, “idle” means the “balanced” state
a(idle, PeerID) ::

// the constraint to check the state of the peer
null <- getPeerState(Status) then

// select the next state based on the peer’s status
(null <- isOverLoaded() then // if the peer is overloaded,
// change the peer’s role to “overloaded” and pass the status
a(overloaded(Status), PeerID)

) or

(null <- isUnderLoaded() then // if the peer is underloaded,
a(underloaded(Status), PeerID) // change the role to “underloaded”
) or

a(idle, PeerID) // otherwise, remain in the idle role (recursion)

// Definition of the “overloaded” role. “Need” is the amount of resources required
a(overloaded(Need), ID1) ::

// send the “readyToMigrate(Need)” message to an underloaded peer
readyToMigrate(Need) => a(underloaded, ID2) then

// wait to receive “migration(OK)” from the underloaded peer
migration(OK)<= a(underloaded, ID2) then

// do the migration: send VMs from this peer to the underloaded peer
null <- migration(ID1, ID2) then

a(idle, ID1) // change the peer’s role to “idle”

// Definition of the “underloaded” role: “Capacity” is the amount of free resources

a(underloaded(Capacity), ID2) ::

// receive the “readyToMigrate(Need)” message from an overloaded peer

readyToMigrate(Need)<= a(overloaded, ID1) then

// send back the “migration(OK)” message, if the migration is possible

migration(OK) => a(overloaded, ID1)

<- isMigrationPossible(Capacity, Need) then

null <- waitForMigration() then

a(idle, ID2) // change the peer’s role to “idle”

isOverLoaded()

Idle UnderloadedOverloaded

isUnderLoaded()

VM Migration

Fig. 1. The state diagram of the first migration policy: unbalanced peers interact to
balance their loads.

It may be that we would prefer to have the minimum number of active peers,
each using almost all of their resources (e.g. to minimise the cost). This change
of policy could be easily deployed by changing only some parts of the IM in the
above LCC code. The following IM is an example of the second policy - it is
very similar to the first policy, but it has one more state (shutdown) for the free
peers with no load:

// In this policy, “idle” means the fully-loaded state, which is the goal state.
// i.e the peer uses all available resources
a(idle, PeerID) ::

null <- getPeerState(Status) then

// if the peer’s load > threshold (e.g. %50), but it still has free resources
(null <- canAcceptMoreLoad() then

// change the peer’s role to “notFullyLoaded” and send the peer’s status
a(notFullyLoaded(Status), PeerID)

) or

(null <- isUnderLoaded() then // if the peer is underloaded (e.g.≤ %50)
a(underloaded(Status), PeerID) // change the role to “underloaded”

) or

(null <- hasNoLoad() then // if the peer has no load
a(shutdown, PeerID) // change the role to “shutdown”

) or

a(idle, PeerID) // otherwise, the peer is fully-loaded (recursion)

// Definition of the “notFullyLoaded” role. “Capacity” = free resources
a(notFullyLoaded(Capacity), ID1) ::

// send the “readyToMigrate(Capacity)” message to an underloaded peer
readyToMigrate(Capacity) => a(underloaded, ID2) then

// wait to receive “migration(OK)” from the underloaded peer
migration(OK)<= a(underloaded, ID2) then

// VM migration from an underloaded peer to this peer (notFullyLoaded)
null <- migration(ID2, ID1) then

a(idle, ID1) // change the peer’s role to “idle”

// Definition of the “underloaded” role. “Load” is the amount of busy resources
a(underloaded(Load), ID2) ::

// receive the “readyToMigrate(Capacity)” message from a notFullyLoaded peer
readyToMigrate(Capacity)<= a(notFullyLoaded, ID1) then

// send back the “migration(OK)” message, if the migration is possible
migration(OK) => a(overloaded, ID1)

<- isMigrationPossible(Capacity, Load) then

null <- waitForMigration() then

a(shutdown, ID2) // change the peer’s role to “shutdown”

// Definition of the “shutdown” role

a(shutdown,ID3)::

null <- releaseResources() then // the peer’s resources will be released

null <- sleep(5000) then // wait 5 second

a(idle, ID3) // after wake up, change the peer’s role to “idle”

The level granularity of the LCC code in reflecting the details of the policy
implementation is optional. Instead of implementing the details of the policy (e.g.
delays, etc.) in LCC code we could push them down into the Java constraints.

4 A Prototype

To validate the approach in a realistic environment, we constructed a small
prototype, based on a cluster of physical machines (see figure 2). This consisted
of four HP Proliant DL120 G6 servers each with 4GB memory, and each capable
of supporting in the order of 10 virtual machines. The configuration of this
cluster is described fully in [13]. Briefly:

1. We chose to use KVM9 as the default hypervisor. This is a loadable kernel
module that converts the Linux kernel into a bare metal hypervisor. It is
a mainstream component of Linux distributions (Fedora and Redhat), it is
freely available, well-supported locally, and has a programmable interface
via libvirt. We would expect the prototype to be equally implementable
on top of other common hypervisors such as VMware or Xen.

9 http://www.linux-kvm.org/

http://www.linux-kvm.org/

2. We used the libvirt10 library to provide a programmable API to the un-
derlying hypervisor (KVM). This supports full remote management of the
virtual machines, including stop/start and migration. The KVM C API was
exposed to our Java components using JNA.

3. Shared access to the VM images is necessary for migration, and we used an
NFS filesystem to store the images.

4. We wrote code to interface OpenKnowledge components (and/or peers) with
both libvirt and the underlying OS facilities. This provided control of
the virtual machines, and information on the state of the system - such as
memory and CPU usage.

5. We used the standard OpenKnowledge discovery service to provide peer dis-
covery and distribution of the components and interaction models. A single
discovery server was adequate in this case, although OpenKnowledge uses
the Pastry overlay network which is capable of supporting a redundant peer-
to-peer network of connected discovery servers.

Virtual Machines

OK peer

Physical machine

libvirt

OS

Distributed Discovery Service

Interaction
models

Components

Peer
matching

Virtual Machines

OK peer

Physical machine

libvirt

OS

Fig. 2. The architecture of the prototype described in section 4

10 http://libvirt.org/

http://libvirt.org/

5 Evaluation

In addition to the experiments with the live prototype, we used a simple simula-
tor to investigate the behaviour of more complex models with a larger number of
machines and more controlled loading. Figure 3 shows the results of 50 simulated
virtual machines running on 15 physical machines. In this example, physical ma-
chines offload VMs if they have a load greater than 120% of the average, and
they accept VMs if they have a load less than 80%. Initially, the VMs are al-
located randomly and the resulting load is uneven.The system stabilises after
a time with all the physical machines except one within the desired range (the
load on the remaining machine cannot be reduced because all of the machines
have a load greater than 80%). Further results and details of the simulator are
available in [5].

0 5000 10000 15000 20000

Time (ms)

0

50

100

150

200

Ph
ys

ic
al

 M
ac

hi
ne

 Lo
ad

 A
ve

ra
ge

 (%
)

120% average load

80% average load

Fig. 3. A simulation showing the load on 15 physical machines as they interact to
balance a load of 50 virtual machines.

6 Related Work

There is a considerable amount of existing work on load balancing of virtual
infrastructures (see, for example [1,2,15]). Most of this work assumes a central
service which collects monitoring data from the physical and virtual machines,
computes any necessary re-allocation, and orchestrates the appropriate migra-
tions. However, this leads to difficulties in managing the interactions of impera-
tive control algorithms[10], and limits the degree to which it is possible to exploit
the resources of a more federated environment[3,9].

VMWare is a popular provider of commercial management infrastructure for
virtual datacentres. The VMWare vSphere Distributed Resource Scheduler (DRS)
product allows the user to specify rules and policies to prioritise how resources are
allocated to virtual machines. DRS11“continuously monitors utilisation across
resource pools and intelligently aligns resources with business needs” . vSphere
Distributed Power Management (DPM) allows workloads to be consolidated onto
fewer servers so that the rest can be powered-down to reduce power consumption.
Citrix Essentials12 and Virtual Iron “Live capacity” 13 are other commercial
products offering similar functionality, and LBVM14 is an open-source product
based on Red Hat Cluster Suite. However, all of these products use a centralised
management model.

As noted by Kephart and Walsh[4], agent-based technologies are a natural fit
for implementing autonomic systems[6]; CatNets[11], for example, is a market-
based resource management system. Several people have applied agent-based
techniques to virtual machine management: Xing[16] describes a system where
“each virtual machine can make its own decision when and where to migrate
itself between the physical nodes” - for example, two VMs may notice that
the applications running on them are communicating frequently, and the VMs
may decide that they should attempt to migrate so that they are physically
closer. Spata and Rinaudo[8] describe a FIPA-compliant system with very similar
objectives to our own which is intended to load-balance VMs across a cluster.
However, we are not aware of any other implementation which is driven directly
from a declarative specification of the interaction model.

7 Conclusions and Future Work

We have demonstrated that an agent-based approach using LCC interaction
models is a viable technique for negotiating virtual machine placement and mi-
gration. This is especially appropriate where the number of machines involved
is very large and global knowledge is neither possible, nor necessary. It is also
applicable in federated situations where there is no single point of control, or
policy.

We have only described comparatively simple interactions, but the abstrac-
tion provided by the LCC model makes this an ideal basis to explore more com-
plicated scenarios. These might involve more sophisticated negotiations (such as
auctions), and/or more dimensions to the underlying metrics (such as memory
usage, bandwidth, proximity, etc.).

11 http://www.vmware.com/pdf/vmware_drs_wp.pdf
12 https://h20392.www2.hp.com/portal/swdepot/displayProductInfo.do?

productNumber=HPE4XSE
13 http://www.storageengineers.com/pdf_virtualiron/Evaluation_Guide_0107.

pdf
14 http://lbvm.sourceforge.net/

http://www.vmware.com/pdf/vmware_drs_wp.pdf
https://h20392.www2.hp.com/portal/swdepot/displayProductInfo.do?productNumber=HPE4XSE
https://h20392.www2.hp.com/portal/swdepot/displayProductInfo.do?productNumber=HPE4XSE
http://www.storageengineers.com/pdf_virtualiron/Evaluation_Guide_0107.pdf
http://www.storageengineers.com/pdf_virtualiron/Evaluation_Guide_0107.pdf
http://lbvm.sourceforge.net/

Acknowledgements: We would like to thank HP Labs Bristol, UK for provid-
ing the hardware for the experimental cluster, and Jun Le for allowing us to use
the data from his simulations.

References

1. Bobroff, N., Kochut, A., Beaty, K.: Dynamic placement of virtual machines for
managing SLA violations. Integrated Network Management, 2007. IM ’07. 10th
IFIP/IEEE International Symposium on pp. 119–128 (21 2007-Yearly 25 2007)

2. Bodk, P., Griffith, R., Sutton, C., Fox, A., Jordan, M., Patterson, D.: Statistical
machine learning makes automatic control practical for internet datacenters. In:
Proceedings of Workshop on Hot Topics in Cloud Computing (HotCloud) (2009)

3. Grit, L., Irwin, D., Aydan, Chase, J.: Virtual machine hosting for networked clus-
ters: Building the foundations for ”autonomic” orchestration. Virtualization Tech-
nology in Distributed Computing, 2006. VTDC 2006. pp. 7–7 (Nov 2006)

4. Kephart, J., Walsh, W.: An artificial intelligence perspective on autonomic com-
puting policies. In: Policies for Distributed Systems and Networks, 2004. POLICY
2004. Proceedings. Fifth IEEE International Workshop on. pp. 3 – 12 (june 2004)

5. Li, J.: Agent-based management of Virtual Machines for Cloud infrastructure.
Master’s thesis, School of Informatics, University of Edinburgh (2011)

6. Murch, R.: Autonomic Computing. IBM Press, 1 edn. (2004)
7. Pinninck, A.P.D., Kotoulas, S., Siebes, R.: The OpenKnowledge kernel. In: Pro-

ceedings of the IX CESSE conference (2007)
8. Rinaudo, M.O.S..S.: Virtual machine migration through an intelligent mobile

agents system for a cloud grid. In: Journal of Convergence Information Technology,
vol. 6. Advanced Institute of Convergence Information Technology (June 2011)

9. Ruth, P., Rhee, J., Xu, D., Kennell, R., Goasguen, S.: Autonomic live adaptation of
virtual computational environments in a multi-domain infrastructure. Autonomic
Computing, 2006. ICAC ’06. IEEE International Conference on pp. 5–14 (June
2006)

10. Schmid, M., Marinescu, D., Kroeger, R.: A Framework for Autonomic Performance
Management of Virtual Machine-Based Services. In: Proceedings of the 15th An-
nual Workshop of the HP Software University Association (June 2008)

11. Schnizler, B., Neumann, D., Veit, D., Reinicke, M., Streitberger, W., Eymann, T.,
Freitag, F., Chao, I., Chacin, P.: Catnets deliverable 1.1: Theoretical and compu-
tational basis. Tech. rep., CatNet Project (2005)

12. Siebes, R., Dupplaw, D., Kotoulas, S., de Pinninck Bas, A.P., van Harmelen, F.,
Robertson, D.: The OpenKnowledge System: an interaction-centered approach to
knowledge sharing. In: Meersman, R., Tari, Z. (eds.) Lecture Notes in Computer
Science. vol. 4803, pp. 381–390. Springer, Springer (2007)

13. Vichos, A.: Agent-based management of Virtual Machines for Cloud infrastructure.
Master’s thesis, School of Informatics, University of Edinburgh (2011)

14. Walton, C., Robertson, D.: Flexible multi-agent protocols. Tech. rep., University
of Edinburgh (2002)

15. Wood, T., Shenoy, P., Venkataramani, A., Yousif, M.: Black-box and gray-box
strategies for virtual machine migration. In: Proceedings of the 4th Usenix Sym-
posium on Networked Systems Design and Implementation. Usenix (April 2007)

16. Xing, L.: A Self-management Approach to Service Optimization and System In-
tegrity through Multi-agent Systems. Master’s thesis, University of Oslo, Depart-
ment of Informatics (May 2008)

	Multi-Agent Negotiation of Virtual Machine Migration Using the Lightweight Coordination Calculus

