
Paul Anderson
dcspaul@ed.ac.uk

http://homepages.inf.ed.ac.uk/dcspaul

http://homepages.inf.ed.ac.uk/dcspaul/publications/cisa-2013.pdf

OK - Who Broke Everything ?
Provenance in system

configuration languages

http://homepages.inf.ed.ac.uk/dcspaul/publications/cisa-2012.pdf
http://homepages.inf.ed.ac.uk/dcspaul/publications/cisa-2012.pdf

service
provider

sysadmin

security specialist

vendor

Aspect Composition

A configuration tool composes the independent “aspects”
to form a consistent specification

‣ different tools support different languages and approaches

But the process can be complicated and involve a lot data

‣ simple order precedence

‣ more complex functions

‣ arbitrary constraints

So the “provenance” of the resulting configuration o$en unclear

How?

why? Where ?

42

Provenance

Who is responsible for the fact that service X is running in the cloud
when it shouldn’t be? !

‣ many people may have specified rules contributing to this

‣ perhaps it was the fault of someone who said nothing at all!
- i.e. there should have been a constraint preventing this

Were they all authorised to specify this?

Who needs to fix it?

‣ and how?

This has some analogies with provenance issues in databases

‣ James Cheney <jcheney@inf.ed.ac.uk> & I would like to explore this

‣ we have a Microso& Phd award for this topic

mailto:jcheney@inf.ed.ac.uk
mailto:jcheney@inf.ed.ac.uk

A Typical Problem ...

class genericServer {
 timeServer = ts@reliable.com
 ... 742 more parameters ...
}

class widgetServer isa genericServer {
 ...
}

class salesServer isa widgetServer {
 ...
 ...
}

node serverA isa salesServer {
 ip = 1.2.3.4
 ...
}

Value Inheritance

Alice

Bob

Carol

Dave

class genericServer {
 timeServer = ts@reliable.com
 ... 742 more parameters ...
}

class widgetServer isa genericServer {
 ...
}

class salesServer isa widgetServer {
 ...
 ...
}

node serverA isa salesServer {
 ip = 1.2.3.4
 ...
}

 Alice Works For The Tool Vendor

• Alice develops generic templates
• this one is for a generic server
• it specifies the default “timeserver”
• this is set to some reliable public service

Alice

Bob

Carol

Dave

class genericServer {
 timeServer = ts@reliable.com
 ... 742 more parameters ...
}

class widgetServer isa genericServer {
 ...
}

class salesServer isa widgetServer {
 ...
 ...
}

node serverA isa salesServer {
 ip = 1.2.3.4
 ...
}

Bob Is The Senior Admin For widgets.com

• Bob develops local templates
• these inherit from the generic ones
• Bob overrides some parameters
• but not the default timeserver

Alice

Bob

Carol

Dave

class genericServer {
 timeServer = ts@reliable.com
 ... 742 more parameters ...
}

class widgetServer isa genericServer {
 ...
}

class salesServer isa widgetServer {
 ...
 ...
}

node serverA isa salesServer {
 ip = 1.2.3.4
 ...
}

Carol Is The Admin For The Sales Dept

• Carol inherits Bob’s templates
• she overrides some parameters
• but not the default timeserver

Alice

Bob

Carol

Dave

class genericServer {
 timeServer = ts@reliable.com
 ... 742 more parameters ...
}

class widgetServer isa genericServer {
 ...
}

class salesServer isa widgetServer {
 ...
 ...
}

node serverA isa salesServer {
 ip = 1.2.3.4
 ...
}

 Dave Is The Technician

• Dave configures the individual machines
• he assigns one of Carol’s templates
• overriding a few machine-specific values

Alice

Bob

Carol

Dave

class genericServer {
 timeServer = ts@reliable.com
 ... 742 more parameters ...
}

class widgetServer isa genericServer {
 ...
}

class salesServer isa widgetServer {
 timeServer = ts@sales.widget.com
 ...
}

node serverA isa salesServer {
 ip = 1.2.3.4
 ...
}

Carol Adds A Local Timeserver

Alice

Bob

Carol

Dave

✔

class genericServer {
 timeServer = ts@unreliable.com
 ... 742 more parameters ...
}

class widgetServer isa genericServer {
 ...
}

class salesServer isa widgetServer {
 timeServer = ts@sales.widget.com
 ...
}

node serverA isa salesServer {
 ip = 1.2.3.4
 ...
}

Alice Ships A New Template

Alice

Bob

Carol

Dave

✔

class genericServer {
 timeServer = ts@unreliable.com
 ... 742 more parameters ...
}

class widgetServer isa genericServer {
 ...
}

class salesServer isa widgetServer {
 timeServer = ts@sales.widget.com
 ...
}

node serverA isa salesServer {
 ip = 1.2.3.4
 ...
}

Carol Withdraws Her Change

Alice

Bob

Carol

Dave

✘

Whose “Fault” Is This?

Dave’s server broke and he got the blame from the users

‣ in fact, all of the machines in the Sales Department are broken!

‣ but he says he didn’t change anything at all

Carol says she just put the parameter back to the default

‣ so it can’t be her fault - this is exactly the same as it was before

Bob says he carefully checked the new default configuration

‣ in fact, he ran some regression tests and the new configuration
produced exactly the same results as the old one on all of the Sales
Department machines

Alice says that she changed this default ages ago

‣ and it is up to the users to check these changes are appropriate

‣ although it is Alice’s value which appears in the final configuration

Who Should Fix It? And How?

Alice probably isn’t going to change this

‣ she presumably had a good reason for the new value

‣ and she doesn’t work for us anyway, so she may break it again ...

Dave doesn’t want to set it on his individual machines

‣ although he might do this as an interim fix!

‣ which will of course cause problems later, if it doesn’t get removed

Carol just wants the same value as the rest of the company

‣ although she could make an interim fix too

But it is probably Bob who needs to make a company-wide change ?

‣ even though he was not responsible for any of the changes which
exposed the problem

Tracking Provenance

We need to know who authored what

‣ relating source text diffs to semantic changes is not reliable

Every value must have a corresponding provenance expression

‣ the language needs a “provenance semantics”
as well as the conventional “value semantics”

‣ there may be multiple different interpretations for different
purposes

The provenance tends to be “explosive”

‣ “everyone had their fingers in this”

‣ we may need to evaluate (for example) both branches of a
conditional

This needs to be implemented in the configuration compiler

A Provenance Semantics ?

{Alice} X=2

{Bob} Y=3

{Carol} if X==2 then

{Dave} Y=4

{Carol} else

{Erin} Y=5

{Carol} fi

The value of Y is 4
Because Dave said so
But Alice had a say in this
If she changed her line, the result
would be different
So did Carol
P = {D,A,C} ?
But what about Erin?
If her value was 4, then it would no
longer matter what Alice said!

Some Questions

Perhaps we need multiple notions of provenance for different
purposes?

‣ using the result for security (allow/disallow changes) ?

Is the history is important to understanding ?

‣ when Alice changed the default value, the configuration started to
“smell bad”, even though there was no immediate consequences

‣ even though the specification is entirely declarative, it may be useful
to know “how we got here”

Perhaps we can assign some degree of “robustness” ?

‣ the above configuration is less robust in some sense, because it is
more likely to break when things change

‣ is it right that things should break if I back out a change ?

‣ can I be warned when that situation is likely to occur ?

Paul Anderson
dcspaul@ed.ac.uk

http://homepages.inf.ed.ac.uk/dcspaul

http://homepages.inf.ed.ac.uk/dcspaul/publications/cisa-2013.pdf

OK - Who Broke Everything ?
Provenance in system

configuration languages

http://homepages.inf.ed.ac.uk/dcspaul/publications/cisa-2012.pdf
http://homepages.inf.ed.ac.uk/dcspaul/publications/cisa-2012.pdf

