
Paul Anderson <dcspaul@ed.ac.uk> 
Work by Adele Mikoliunaite 

with Kami Vaniea 
http://homepages.inf.ed.ac.uk/dcspaul

Usability and Confusion in 
Configuration Languages

mailto:dcspaul@ed.ac.uk?subject=
http://homepages.inf.ed.ac.uk/dcspaul


Motivation

Configuration errors are responsible for a lot of system failures 
‣ 2009 - the Swedish Internet down for 1 hour 
‣ 2010 - Facebook down for 2.5 hours 

Administrators have to deal with many different “languages” 
‣ Every application has its own configuration file format 
‣ Special-purpose configuration languages can be very complex 
‣ We suspect that this is a common source of errors 

We are interested in designing new languages 
‣ Which are both more expressive, but also more intuitive 
‣ This involves understanding what is “intuitive” to real, working 

system administrators



The Survey

Adele surveyed about 350 users 
‣ Mostly real, working system administrators 
‣ Representative of the target audience 

Asked questions about a small number of examples 
‣ The examples use a “made up” but typical language 
‣ Very little direction given - looking for intuitive answers 
‣ Multiple-choice questions & opportunity for free-text comments 

Questions focussed on a number of concepts 
‣ “Order” 
‣ “Inheritance” 
‣ “References” (static vs dynamic) & “Scope” 

There are no “right” or “wrong” answers 
‣ But the results were very interesting!



Experience

39. How many years have you used configuration management?

40. Please choose how much you agree or disagree with each of the following statements:

40.1. I could change the location of my home directory.

40.1.a. I could change the location of my home directory.

40.2. I could write a program that sorts the numbers in the file.

40.2.a. I could write a program that sorts the numbers in the file.

40.3. I am familiar with how management tools (such as Puppet and Smart Frog) work.

I have not used it

Less than 1 year

More than 1 year, but no more 

than 2 years

More than 2 years, but no more 

than 5 years

More than 5 years, but no more 

than 10 years

More than 10 years

Prefer not to answer

62  (16.1%)

32  (8.3%)

35  (9.1%)

119  (31%)

84  (21.9%)

49  (12.8%)

3  (0.8%)

Strongly Disagree

Disagree

Neither Agree or Disagree

Agree

Strongly Agree

Don't know

9  (2.3%)

10  (2.6%)

10  (2.6%)

43  (11.2%)

301  (78.6%)

10  (2.6%)

Strongly Disagree

Disagree

Neither Agree or Disagree

Agree

Strongly Agree

Don't know

9  (2.4%)

8  (2.1%)

3  (0.8%)

45  (11.8%)

312  (81.7%)

5  (1.3%)

Summary | Survey “Configuration Languages” | Analyse https://admin.onlinesurveys.ac.uk/account/edinburgh/analyse/211027/

39 of 51 09/09/2016, 07:24

How many years have you used configuration management? 



Education

36. What is your gender?

36.a. If you selected Other, please specify:

Showing 1 response

I just wanted to check 'Other' for the fun of it. 211034-211027-15599564

37. What is the highest level of education you have achieved in Computer Science/IT field?

Male

Female

Prefer not to answer

Other

343  (89.3%)

18  (4.7%)

22  (5.7%)

1  (0.3%)

None

College

Bachelor's Degree

Master's Degree

Doctorate Degree

Degree in non-technical field

Prefer not to answer

Other

40  (10.4%)

57  (14.8%)

129  (33.6%)

84  (21.9%)

19  (4.9%)

15  (3.9%)

17  (4.4%)

23  (6%)

Summary | Survey “Configuration Languages” | Analyse https://admin.onlinesurveys.ac.uk/account/edinburgh/analyse/211027/

35 of 51 09/09/2016, 07:24

What is the highest level of education you have achieved in 
Computer Science/IT field?



Some Background …



Configuration Files

nobody:*:-2:-2:Unprivileged User:/var/empty:/usr/bin/false
root:*:0:0:System Administrator:/var/root:/bin/sh
daemon:*:1:1:System Services:/var/root:/usr/bin/false

<Printer infcups_inf_ed_ac_uk>
UUID urn:uuid:ce4a90db-e344-3f51-7500-2bec9245be5f
MakeModel Xerox WC 7535, 3.65.3
DeviceURI ipp://infcups.inf.ed.ac.uk/printers/if132m0
Attribute marker-names Black Print Cartridge HP 
Q1339A,Maintenance Kit HP 110V-Q2436A, 220V-Q2437A
</Printer>

R$* $: < $1 > housekeeping <>

R$+ < $* >
 < $2 >

strip excess on left

R< $* > $+
 < $1 > strip excess on right

R<> $@ < @ > MAIL FROM:<> case

R< $+ > $: $1 remove housekeeping <>

<IfM
odul

e mi
me_m

odul
e>

    
Type

sCon
fig 

conf
/mim

e.ty
pes

    
AddT

ype 
appl

icat
ion/

x-co
mpre

ss .
Z

    
AddT

ype 
appl

icat
ion/

x-gz
ip .

gz .
tgz

</If
Modu

le>



Configuration Languages

Motivation … 
‣ A common language for specifying configuration file contents 

- or at least, a macro-language for composing pre-defined fragments 
and providing parameterised templates 

‣ Enforcing relationships between parameters in different files 
- the firewall permits access to the port being used by the web server 

‣ Sharing of common configuration between different machines 
- machines A and B are both web servers 

‣ Enforcing relationships between the configuration of different 
machines 
- the client should use the same port number as the server 

‣ Managing policy at a higher level 
- students should not be allowed to log in to any machine with access to 

the exam papers



Imperative vs Declarative Languages

Imperative languages 
‣ These “feel like” imperative scripting languages 

- with some domain-specific features 
‣ They provide operations to explicitly manipulate configuration files 

- and control structures to sequence the operations 
- eg. “add this line to file X if it is not already present” 

‣ They are popular because this is familiar to most sysadmins 

Declarative languages 
‣ These “feel like” the configuration files themselves 

- most of the data is attribute/value pairs of configuration parameters 
‣ They provide features to specialise and compose configurations 

- parameterisation, inclusion, inheritance 

Most practical languages have elements of both of these 
‣ But they will tend towards one approach or the other



Imperative vs Declarative Languages

if [ [ 0 ne $(getent passed elmo > /dev/null)$? ]
then
  user add elms —gid sysadmin -n
fi
GID=`getent passwd elmo |awk -F: {print $4}’`
GROUP=`getent group $GID |awk -F: {print $1}’`
if [ $GROUP != $GID ] && [ $GROUP != sysadmin ]
then 
  user mod —gid $GROUP $USER
fi

user { ‘elmo’:
  ensure => present,
  gid => ‘sysadmin’,
}

Imperative (Bash script) 

Declarative (Puppet) 



Order …



Order

“Order Doesn’t Matter” 
‣ Is a mantra of declarative configuration advocates 
‣ But in practice, it very often does!  

There are different types of “order” 
‣ “Lexical”, “Evaluation”, and “Deployment” 

Hidden dependencies can cause deployment order problems 
‣ We are not concerned with this aspect here 
‣ But it does add to the confusion in practice …

package { 'golang-go': ensure => present }
package { 'perl': ensure => absent }



Password File

This looks “declarative” …

nobody:*:-2:-2:Unprivileged User:/var/empty:/usr/bin/false
root:*:0:0:System Administrator:/var/root:/bin/sh
daemon:*:1:1:System Services:/var/root:/usr/bin/false

What happens if we have a duplicate name? 
‣ Last one wins? 
‣ First one wins? 
‣ Random one wins? 
‣ Error? 
‣ Attributes composed in some way?



Apache

This looks “declarative” …

<IfModule mime_module>
    TypesConfig conf/mime.types
    AddType application/x-compress .Z
    AddType application/x-gzip .gz .tgz
</IfModule>

What happens if we have duplicate values? 
‣ Evaluation order and lexical order are not the same! …



“How the sections are merged"
The configuration sections are applied in a very particular order. Since this can have 
important effects on how configuration directives are interpreted, it is important to 
understand how this works. The order of merging is: 

    <Directory> (except regular expressions) and .htaccess done simultaneously 
                       (with .htaccess, if allowed, overriding <Directory>) 
    <DirectoryMatch> (and <Directory "~">) 
    <Files> and <FilesMatch> done simultaneously 
    <Location> and <LocationMatch> done simultaneously 
    <If> 

Apart from <Directory>, each group is processed in the order that they appear in the 
configuration files. <Directory> (group 1 above) is processed in the order shortest directory 
component to longest. So for example, <Directory "/var/web/dir"> will be processed before 
<Directory "/var/web/dir/subdir">. If multiple <Directory> sections apply to the same 
directory they are processed in the configuration file order. Configurations included via the 
Include directive will be treated as if they were inside the including file at the location of the 
Include directive. 

Sections inside <VirtualHost> sections are applied after the corresponding sections outside 
the virtual host definition. This allows virtual hosts to override the main server configuration. 

When the request is served by mod_proxy, the <Proxy> container takes the place of the 
<Directory> container in the processing order.

https://httpd.apache.org/docs/2.4/sections.html

https://httpd.apache.org/docs/2.4/sections.html


Do you think order matters?
30. Do you think order matters in the pseudo code used in this survey?

30.a. If you selected Other, please specify:

Showing all 20 responses   

Definitely doesn't matter within class definition. But if you gave me procedural code, then it would.

I realize that some configuration languages try to make everything procedural, but it didn't lookin

like that to me here.

211034-211027-15591591

Depends on the scoping rules and type of language (procedural vs declarative) 211034-211027-15592822

Order matters for inheritance, not for assignment. 211034-211027-15594331

depends on tab/other semantic nesting 211034-211027-15595072

It was not specified, so it could matter, it could not matter. My personal preference is that the

order does not matter.

211034-211027-15598495

Not in earlier examples, but I don't know what to think in the later ones. 211034-211027-15599811

there was a few that looked jsonish where the order was not important but it was shitty. i'd expect

proper precedence/ordering in configuration since during an outage due to a sw bug/configuration

error it makes debugging harder.

211034-211027-15641116

for certain elements it matters, for example variables, but not for the classes 211034-211027-15677479

Generally yes if it leads to ambiguity 211034-211027-15701119

Oddly-worded question. I worked on the assumption that order within a class was significant, but

that order of class declaration was not.

211034-211027-15734086

I do not know, it needs to be clearly defined and documented. 211034-211027-15734843

See 31 211034-211027-15735092

no for first one yes for second 211034-211027-15745024

I allowed order to be unimportant when using 'inherit'. But maybe it should be strict if we're going

to mix things up.

211034-211027-15766313

Apparently I was OK with things inheriting from those designed later, but didn't expect $variable

to have a value that hasn't been reached yet

211034-211027-15769373

In some places yes, in other places no 211034-211027-15769268

How is it possible to answer this question?????? 211034-211027-15769350

Some examples it seemed like order matters, some it seemed like it didn't. 211034-211027-15773183

The order of evaluation is undefined 211034-211027-15775832

Writing order may make it much easier for a person to read and understand, but the actual

inheritance order/hierarchy of the classes is what determines the values

211034-211027-15848875

Yes

No

I don't know

Other

172  (44.8%)

127  (33.1%)

65  (16.9%)

20  (5.2%)

Summary | Survey “Configuration Languages” | Analyse https://admin.onlinesurveys.ac.uk/account/edinburgh/analyse/211027/

24 of 51 09/09/2016, 07:24

(in the pseudo code used in this survey)

• “I interpreted code order as irrelevant.” 
• “I didn't spot any cases where ordering would have been significant to 

interpretation. “ 
• “I interpreted code order in a way that a computer would read through 

it and execute it in order and with indentations denoting layers.” 
• “Order of properties should not matter.  Order of variables should.” 
• “I worked on the assumption that order within a class was significant, 

but that order of class declaration was not.”



Profile.account

User {
  $card = active, 
  Profile { 
    account = $account, 
    type = $type
  } 
  $account = standard
} 

?



Profile.account19. Given the code above, what would you expect the value of variable Profile.account to be?

19.a. If you selected Other, please specify:

Showing all 13 responses   

Library.User.Profile.account should be undefined (variable set after use) 211034-211027-15591008

Depends on the scoping rules of the language 211034-211027-15592822

may be defined in outside scope as var, do not percieve this as data member reference 211034-211027-15592700

Would depend on whether $account was globally declared outside the scope of Library 211034-211027-15595405

Not accessible. But iff, it was accessible, I would say the answer would be "standard". 211034-211027-15699287

standard or undefined or error. I would most likely expect an error 211034-211027-15730771

It depends on how this language reads variables, either it could be standard or undefined because

account is set in the parent object but after the Profile object is defined

211034-211027-15731737

The $ sigil is used inconsistently by the example. Does $account represent the value of account? if

so then what does assignment mean for $type = student? How is Profile different from LIbrary that

is uses that syntax?

211034-211027-15755304

same 211034-211027-15755533

Depends on whether forward references are allowed. 211034-211027-15772020

Syntactically incorrect, cannot parse 211034-211027-15772261

Depends on scoping rules -- could be 'standard' or undefined. 211034-211027-15772686

Could be undefined or error. Should be Library.User.Profile.account 211034-211027-15776341

20. Given the code above, what would you expect the value of variable Profile.card to be?

Undefined

non-standard

Results in error

standard

I don’t know

Other

125  (32.6%)

0

46  (12%)

169  (44%)

31  (8.1%)

13  (3.4%)

active

I don’t know

non-active

Undefined

Results in error

Other

127  (33.1%)

26  (6.8%)

13  (3.4%)

132  (34.4%)

77  (20.1%)

9  (2.3%)

Summary | Survey “Configuration Languages” | Analyse https://admin.onlinesurveys.ac.uk/account/edinburgh/analyse/211027/

16 of 51 09/09/2016, 07:24

User {
  $card = active, 
  Profile { 
    account = $account, 
    type = $type
  } 
  $account = standard
} 



Confidence

It seems reasonable to have different answers 
‣ Since we didn’t give any guidance as to how the “made-up” 

language should be interpreted. 

But … 
‣ How confident were you? ….

22. Given the code above, what would you expect the value of variable User.card to be?

22.a. If you selected Other, please specify:

Showing all 7 responses   

No such property Library.User.card. However, there exists a Library.User.non-active=active 211034-211027-15591008

"active" : iff it is accessible. 211034-211027-15699287

The $ sigil is used inconsistently by the example. Does $account represent the value of account? if

so then what does assignment mean for $type = student? How is Profile different from LIbrary that

is uses that syntax?

211034-211027-15755304

same 211034-211027-15755533

There is no "card" field in "User", there is a "$card" field. 211034-211027-15772020

Syntactically incorrect, cannot parse 211034-211027-15772261

Could be undefined or error. Should be Library.User.$card 211034-211027-15776341

23. How confident were you with your answers to the questions above?

24. How easy was it to choose answers to the questions above?

Undefined

Results in error

active

non-active

I don’t know

Other

44  (11.5%)

36  (9.4%)

275  (71.6%)

3  (0.8%)

19  (4.9%)

7  (1.8%)

Not at all confident

Slightly confident

Somewhat confident

Moderately confident

Extremely confident

49  (12.8%)

72  (18.8%)

129  (33.6%)

116  (30.2%)

18  (4.7%)

Very difficult

Difficult

Neutral

Easy

Very easy

19  (4.9%)

103  (26.8%)

157  (40.9%)

86  (22.4%)

19  (4.9%)

Summary | Survey “Configuration Languages” | Analyse https://admin.onlinesurveys.ac.uk/account/edinburgh/analyse/211027/

18 of 51 09/09/2016, 07:24



Inheritance …



Inheritance

Inheritance is common in declarative configuration languages 
‣ This is usually “instance” inheritance, not “type” inheritance 
‣ This is very useful for specifying variants of some default 

configuration  

The semantics can be extremely complicated 
‣ Puppet recommends against the use of inheritance, except for a 

few specific purposes 
- Google “puppet inheritance” 

‣ But the alternatives are not good 
- explicit parameterisation 

Multiple inheritance is not usually supported 
‣ But is often desirable



Bicycle.kickstand

Mountain-bike inherit Bicycle {
  tyre = 26, 
  kickstand = true
} 
Bicycle {  
  wheels = 700, 
  tyre = 28,
  kickstand = false,
  brakes = true
} 

?



Bicycle.kickstand

 
 

56 
 

 

Figure 11. The distribution of participant's answers to question 1 of the survey. 

Similar behaviour was also captured in one more question of the same kind, given 

code: 

[example 2] 
 

Mountain-bike inherit Bicycle  { 
            tyre = 26, 
            kickstand = true, 
} 
  
Bicycle  { 
            wheels = 700, 
            tyre = 28, 
            kickstand = false, 
            brakes = true, 
} 

And asked about the value of the variable, participants again chose a range of answers 

(see Figure 12). 

 

Figure 12. The distribution of participants answers to question 8 of the survey. 

In addition, when similar situation was presented again, almost all participants chose 

the same answer. Given this code: 

[example 3] 
 
Box  { 
        show-balance = true, 
} 

Mountain-bike inherit Bicycle {
  tyre = 26, 
  kickstand = true
} 
Bicycle {  
  wheels = 700, 
  tyre = 28,
  kickstand = false,
  brakes = true
} 



Player.showbalance

Box {  
  show-balance = true, 
}
Player {  
  tracks = 573, 
  genres = 11, 
  show-balance = false
}
MusicBox inherit Box inherit Player {
   genres = 9, 
}

?



Player.showbalance

 
 

57 
 

  
Player  { 
         tracks = 573, 
         genres = 11, 
         show-balance = false, 
} 
  
Music-box inherit Box inherit Player { 
         genres = 9, 
} 

And asked about value of the variable Player.show-balance, suddenly participants 

agreed with each other (see Figure 13). 

 

There seem to be significant correlation between consistency towards inheritance 

model and confidence (p = 0.000728).  

Multilevel inheritance was interpreted in more than two ways by the participants. The 

most popular approach was to follow the pattern of regular inheritance. In this way, if 

A inherits from B and B inherits from C, the B values would override the values 

inherited from C, and A would override values inherited by B. However, it was 

followed by less than half of the participants. The second most common approach was 

to assume that the last prototype in the chain (most to the left) would override the 

values on the right. In this case, if A inherits from B and B inherits from C, the A would 

receive values from C only, and those might override the values within A as well.  

When asked what is the value of variable music-box.show-balance in the code 

[example 3] presented previously, participants did not agree: 

 

Box {  
  show-balance = true, 
}
Player {  
  tracks = 573, 
  genres = 11, 
  show-balance = false
}
MusicBox inherit Box inherit Player {
   genres = 9, 
}



MusicBox.showbalance

Box {  
  show-balance = true, 
}
Player {  
  tracks = 573, 
  genres = 11, 
  show-balance = false
}
MusicBox inherit Box inherit Player {
   genres = 9, 
}

?



MusicBox.showbalance

 
 

57 
 

  
Player  { 
         tracks = 573, 
         genres = 11, 
         show-balance = false, 
} 
  
Music-box inherit Box inherit Player { 
         genres = 9, 
} 

And asked about value of the variable Player.show-balance, suddenly participants 

agreed with each other (see Figure 13). 

 

There seem to be significant correlation between consistency towards inheritance 

model and confidence (p = 0.000728).  

Multilevel inheritance was interpreted in more than two ways by the participants. The 

most popular approach was to follow the pattern of regular inheritance. In this way, if 

A inherits from B and B inherits from C, the B values would override the values 

inherited from C, and A would override values inherited by B. However, it was 

followed by less than half of the participants. The second most common approach was 

to assume that the last prototype in the chain (most to the left) would override the 

values on the right. In this case, if A inherits from B and B inherits from C, the A would 

receive values from C only, and those might override the values within A as well.  

When asked what is the value of variable music-box.show-balance in the code 

[example 3] presented previously, participants did not agree: 

 
Box {  
  show-balance = true, 
}
Player {  
  tracks = 573, 
  genres = 11, 
  show-balance = false
}
MusicBox inherit Box inherit Player {
   genres = 9, 
}



Confidence

But … 
‣ How confident were you? ….15. How confident you are with your answers to the questions abve?

16. How easy was it to choose answers to the questions above?

Not at all confident

Slightly confident

Somewhat confident

Moderately confident

Extremely confident

14  (3.6%)

44  (11.5%)

112  (29.2%)

155  (40.4%)

59  (15.4%)

Very difficult

Difficult

Neutral

Easy

Very easy

4  (1%)

56  (14.6%)

117  (30.5%)

157  (40.9%)

50  (13%)

Summary | Survey “Configuration Languages” | Analyse https://admin.onlinesurveys.ac.uk/account/edinburgh/analyse/211027/

12 of 51 09/09/2016, 07:24



Some Comments on Inheritance

• “Inheritance is useful when used in high level programming languages. 
Inheritance in a CfgMgmt System often leads to complexity and should 
therefor be avoided. ” 

• “Multiple inheritance was a mistake.“ 

• “it is strange that _instances_ can _inherit_. I would totally grok 
'extends'. 'inherit' is more for classes.” 

• “The inheritance question was not difficult at all, probably because I 
have been educated and trained in object-oriented design and 
programming.” 



References …



References & Scoping

References are a common source of confusion 
‣ “Static” vs “Dynamic” references 

- Puppet has recently changed from largely dynamic to “mostly” static 
‣ Interaction with other features (e.g. inheritance) 
‣ Differences between “Resources”, “Classes” and “Variables” 
‣ Scope is also confusing 

- We didn’t have the time to probe this explicitly 

Do you know how static & dynamic scoping work?
32. Do you know how static and dynamic scoping works?

Yes

No

Other

236  (61.5%)

120  (31.3%)

28  (7.3%)

Summary | Survey “Configuration Languages” | Analyse https://admin.onlinesurveys.ac.uk/account/edinburgh/analyse/211027/

27 of 51 09/09/2016, 07:24



MyService.Client.port

Service {  
  $port = 30, 
  Client {  
    port = $port, 
  }  
  Server { 
    port = $port
  } 
}  
MyService inherit Service.Client { 
  $port = 36
} 

?
Unfortunate 

Typo!



26. Given the code above, what would you expect the value of variable My-server.Client.port to be?

26.a. If you selected Other, please specify:

Showing all 5 responses

Error. Line 11 shouldn't be possible 211034-211027-15594751

My-server.Client is undefined (it'd be fine if the inherit was Service, but it's directly subclassing

Client); My-server.port would be 36

211034-211027-15594844

even '30,' (string) to answer one have to look at language grammar... 211034-211027-15622658

Syntactically incorrect, cannot parse 211034-211027-15772261

My-Server is a Service.Client, it does not contain a Client. 211034-211027-15776341

27. How confident you are with your answers to the questions above?

28. How easy was it to choose answers to the questions above?

30

Undefined

36

Results in error

6

I don't know

Other

76  (19.8%)

27  (7%)

177  (46.1%)

68  (17.7%)

1  (0.3%)

30  (7.8%)

5  (1.3%)

Not at all confident

Slightly confident

Somewhat confident

Moderately confident

Extremely confident

47  (12.2%)

49  (12.8%)

117  (30.5%)

114  (29.7%)

57  (14.8%)

Very difficult

Difficult

Neutral

Easy

Very easy

17  (4.4%)

69  (18%)

131  (34.1%)

124  (32.3%)

43  (11.2%)

Summary | Survey “Configuration Languages” | Analyse https://admin.onlinesurveys.ac.uk/account/edinburgh/analyse/211027/

21 of 51 09/09/2016, 07:24

Service {  
  $port = 30, 
  Client {  
    port = $port, 
  }  
  Server { 
    port = $port
  } 
}  
MyService inherit Service.Client { 
  $port = 36
} 

MyService.Client.port

Unfortunate 
Typo!



Confidence

But … 
‣ How confident were you? ….

26. Given the code above, what would you expect the value of variable My-server.Client.port to be?

26.a. If you selected Other, please specify:

Showing all 5 responses

Error. Line 11 shouldn't be possible 211034-211027-15594751

My-server.Client is undefined (it'd be fine if the inherit was Service, but it's directly subclassing

Client); My-server.port would be 36

211034-211027-15594844

even '30,' (string) to answer one have to look at language grammar... 211034-211027-15622658

Syntactically incorrect, cannot parse 211034-211027-15772261

My-Server is a Service.Client, it does not contain a Client. 211034-211027-15776341

27. How confident you are with your answers to the questions above?

28. How easy was it to choose answers to the questions above?

30

Undefined

36

Results in error

6

I don't know

Other

76  (19.8%)

27  (7%)

177  (46.1%)

68  (17.7%)

1  (0.3%)

30  (7.8%)

5  (1.3%)

Not at all confident

Slightly confident

Somewhat confident

Moderately confident

Extremely confident

47  (12.2%)

49  (12.8%)

117  (30.5%)

114  (29.7%)

57  (14.8%)

Very difficult

Difficult

Neutral

Easy

Very easy

17  (4.4%)

69  (18%)

131  (34.1%)

124  (32.3%)

43  (11.2%)

Summary | Survey “Configuration Languages” | Analyse https://admin.onlinesurveys.ac.uk/account/edinburgh/analyse/211027/

21 of 51 09/09/2016, 07:24

‣ Although this is not such a good indicator because of the typo



Some Observations (Conclusions?)

SysAdmins work with a huge variety of languages 
‣ The intuition that they bring to new languages varies significantly 
‣ They sometimes have a confidence in their interpretation which is 

not always justified 
‣ It seems likely that this is responsible for at least some of the 

common configuration errors 
‣ Existing languages often have very complex semantics 
‣ Sysadmin programming experience can be very varied …

• “Seems like an odd language since it appears to be defining types and 
variables. I suppose they could be class vars, but still seems odd.” 

• “Data structures should be immutable for least surprise.“ 
• “It wasn't clear to me the purpose of the inherit syntax. Is that 

applying the Message formating to the Post?” 
• “Order of properties should not matter.  Order of variables should.” 
• “This sounds like another way of saying declarative vs imperative.” (on 

static/dynamic scope)



Some Implications ?

Some pointers for new language design … 
‣ Consider the usability for the target users 
‣ Keep the semantics consistent and simple 
‣ Explicitly use new/different syntax and terminology for features 

which behave differently from exiting languages (e.g. 
“inheritance”) 

‣ Avoid dependence on properties such as “order” whose 
significance is frequently misinterpreted 

‣ Have implementations which support simulated experimentation



Further Work

Some more analysis of the existing data would be interesting 
‣ A search for significant correlations - e.g. 

- between previous language experience and various answers 
- between confidence factors and consistency in answers 

‣ A more in-depth qualitative analysis of the free-text comments 
- many off these are very interesting 

Experimental languages 
‣ Incorporating some of the lessons from these investigations into 

an experimental language which can then be evaluated 

This work is a good basis for a Phd thesis 
‣ We have a proposal!



The End

References 
‣ Adele Mikoliunaite 

- Usability of System Configuration Languages, MSc dissertation 2016 
‣ Paul Anderson 

- The L3 Configuration Language 
- Assorted other talks & papers

http://homepages.inf.ed.ac.uk/dcspaul

http://homepages.inf.ed.ac.uk/dcspaul

