
Paul Anderson
dcspaul@ed.ac.uk

http://homepages.inf.ed.ac.uk/dcspaul

http://homepages.inf.ed.ac.uk/dcspaul/publications/dir-2012.pdf

Collaborative
Configurations

sysadmin

security specialist

sysadmin

security specialist

sysadmin

security specialist

vendor

sysadmin

security specialist

vendor

service
provider

sysadmin

security specialist

vendor

Aspect Composition

The problem is to compose these independent “aspects”
to form a consistent specification

‣ with no unnecessary human negotiation
- rapid configuration changes may be necessary to repair a failed system

We also need to be able to understand the “provenance”
of the resulting configuration parameters

‣ how was the value of that parameter computed ?

‣ if a particular parameter is wrong ...
- who needs to change what to fix it ?

‣ if a particular parameter requires special authorisation ...
- who was involved in contributing to its value, and are they authorised ?

•I need a port number
between 200 and 300
for my internal service
•Otherwise, I don’t really

care what it is
•But I have to pick a

single value
•Let’s use 210

•For security reasons,
only ports above 250
can be used for internal
services ?

P=210

P>250

•I need a port number
between 200 and 300
for my internal service
•Otherwise, I don’t really

care what it is
•But I have to pick a

single value
•Let’s use 210

•For security reasons,
only ports above 250
can be used for internal
services

P>250

P=273

P>200
P<300

273

Constraints

Using constraint solvers for configuration problems is not new

‣ Alloy for network configuration

‣ Cauldron (HP)

‣ VM allocation (Google challenge)

But we have a different motivation which changes the emphasis

‣ we want to integrate the constraints with a (usable) configuration
language to support a separation of concerns

‣ the constraint problems are o,en comparatively simple to solve, but
they are embedded in large volumes of “constant” configuration data

‣ some specific properties are important (see later) ...
- preferences (so, constraints)
- stability

I want at least two DHCP servers
on each network segment

I want my two database servers to
be on separate networks if possible
for robustness

I need at least one database machine that
students can log in to

I don’t want any core services running
on any machines that students are
authorised to log in to

Modelling

The most popular practical configuration languages ..

‣ are very good at reliably deploying large numbers of configuration
parameters to large numbers of machines

‣ but they are not good at modelling higher-level abstractions such as
those on the previous slide

‣ they have “evolved” gradually without a clear semantics

‣ and they have implementations which are not amenable to
experimental extensions

Confsolve is an experimental constraint-based configuration language

‣ supports the necessary modelling

‣ generates an intermediate language which can be transformed fairly
easily into an existing configuration language

Confsolve

An experimental constraint-based configuration language

‣ by John Hewson<john.hewson@ed.ac.uk>
http://homepages.inf.ed.ac.uk/s0968244/
(Sponsored by Microso, Research)

‣ a general-purpose configuration language
- no domain-specific knowledge
- output can easily be transformed into some other language (eg. Puppet)

‣ the data model is an object-oriented hierarchy
- constraints are possible at all levels

‣ compiles down to a standard constraint solver (MiniZinc)

‣ supports so, constraints and optimisation

‣ has a formal semantics for the translation

‣ supports “change minimisation”

Some Confsolve Classes

class Service {
 var host as ref Machine
 ...
}
class Datacenter {
 var machines as Machine[8]

}
class Machine { }
class Web_Srv extends Service { }
class Worker_Srv extends Service { }
class DHCP_Srv extends Service { }

Two Datacenters & Three Services

var cloud as Datacenter
var enterprise as Datacenter

var dhcp as DHCP_Service[2]
var worker as Worker_Service[3]
var web as Web_Service[3]

A Constraint

No two services on the same machine:

‣ this generates a correct configuration
- no explicit assignment at all
- not just validation

‣ this can be independently authored
- no collaboration with the service authors, or system managers is required

var services as ref Service[7]

where foreach (s1 in services) {
 foreach (s2 in services) {
 if (s1 != s2) {
 s1.host != s2.host
 }
 }
}

Web

DHCP

Work Web

Enterprise

Web DHCP

Work

Work

Cloud

Not a good solution!
Constraints are too loose

An Optimisation Constraint

“Favour Placement of Machines in the Enterprise”

‣ this policy can be defined completely independently

var utilisation as int

where utilisation == count (
 s in services
 where s.host in enterprise.machines)

maximize utilisation

Web

DHCP

Work

Web

Web DHCP

Work

Work

Enterprise Cloud

A much better solution

Add Six More Workers

var cloud as Datacenter
var enterprise as Datacenter

var dhcp as DHCP_Service[2]
var worker as Worker_Service[3]
var worker as Worker_Service[9]
var web as Web_Service[3]

Work

Work

Cloud

Add six more workers
➜ An unnecessary migration

Work

WorkWork

WorkWeb

Web

Web DHCP

Work

Work

Enterprise

DHCP

Work

Work

Work

Cloud

with “change minimisation”
no unnecessary migration

Work

WorkWork

WorkWeb

Web

Web DHCP

Work

Work

Enterprise

Work

DHCP

What’s Good ?

Users can specify and change their own requirements completely
independently

‣ and the resulting configurations are guaranteed to match the
requirements

If some constraint changes, the system can automatically generate a
new valid configuration (if one exists)

‣ things may change because of requirement changes

‣ or, for example, failures

‣ the deployment of the new configuration can be scheduled with
automated planning tools

When the system reconfigures, it can do so with the minimum
disruption necessary to meet the final requirements

What’s Not So Good ?

It is very hard to specify comparative “costs”

‣ I could leave one service unnecessarily in the cloud, or I could move
it back into the datacenter, but I would need to shuffle ten other
servers to do so - which is best?

It is quite hard to avoid over-specifying or under-specifying constraints

‣ we either miss good solutions, or deploy bad ones

It can be hard for humans to predict the effects

‣ sysadmins are very nervous with this degree of automation

Sometimes there may be no solution

‣ and it is difficult to understand why

Performance can be unpredictable

‣ it is not always obvious what is computationally expensive

Provenance

Who is responsible for the fact that service X is running in the cloud
when it shouldn’t be? !

‣ many people may have specified constraints contributing to this

‣ perhaps it was the fault of someone who said nothing at all!
- i.e. there should have been a constraint preventing this

Who needs to fix it?

‣ and how?

We have started to look at provenance in configuration languages

‣ with James Cheney <jcheney@inf.ed.ac.uk>
http://homepages.inf.ed.ac.uk/jcheney/

This is very complex when we allow full constraints

‣ but the problems exist in much simpler practical situations ...

class genericServer {
 timeServer = ts@reliable.com
 ... 742 more parameters ...
}

class widgetServer isa genericServer {
 ...
}

class salesServer isa widgetServer {
 ...
 ...
}

node serverA isa salesServer {
 ip = 1.2.3.4
 ...
}

Value Inheritance

Alice

Bob

Carol

Dave

class genericServer {
 timeServer = ts@reliable.com
 ... 742 more parameters ...
}

class widgetServer isa genericServer {
 ...
}

class salesServer isa widgetServer {
 ...
 ...
}

node serverA isa salesServer {
 ip = 1.2.3.4
 ...
}

 Alice Works For The Tool Vendor

• Alice develops generic templates
• this one is for a generic server
• it specifies the default “timeserver”
• this is set to some reliable public service

Alice

Bob

Carol

Dave

class genericServer {
 timeServer = ts@reliable.com
 ... 742 more parameters ...
}

class widgetServer isa genericServer {
 ...
}

class salesServer isa widgetServer {
 ...
 ...
}

node serverA isa salesServer {
 ip = 1.2.3.4
 ...
}

Bob Is The Senior Admin For widgets.com

• Bob develops local templates
• these inherit from the generic ones
• Bob overrides some parameters
• but not the default timeserver

Alice

Bob

Carol

Dave

class genericServer {
 timeServer = ts@reliable.com
 ... 742 more parameters ...
}

class widgetServer isa genericServer {
 ...
}

class salesServer isa widgetServer {
 ...
 ...
}

node serverA isa salesServer {
 ip = 1.2.3.4
 ...
}

Carol Is The Admin For The Sales Dept

• Carol inherits Bob’s templates
• she overrides some parameters
• but not the default timeserver

Alice

Bob

Carol

Dave

class genericServer {
 timeServer = ts@reliable.com
 ... 742 more parameters ...
}

class widgetServer isa genericServer {
 ...
}

class salesServer isa widgetServer {
 ...
 ...
}

node serverA isa salesServer {
 ip = 1.2.3.4
 ...
}

 Dave Is The Technician

• Dave configures the individual machines
• he assigns one of Carol’s templates
• overriding a few machine-specific values

Alice

Bob

Carol

Dave

class genericServer {
 timeServer = ts@reliable.com
 ... 742 more parameters ...
}

class widgetServer isa genericServer {
 ...
}

class salesServer isa widgetServer {
 timeServer = ts@sales.widget.com
 ...
}

node serverA isa salesServer {
 ip = 1.2.3.4
 ...
}

Carol Adds A Local Timeserver

Alice

Bob

Carol

Dave

✔

class genericServer {
 timeServer = ts@unreliable.com
 ... 742 more parameters ...
}

class widgetServer isa genericServer {
 ...
}

class salesServer isa widgetServer {
 timeServer = ts@sales.widget.com
 ...
}

node serverA isa salesServer {
 ip = 1.2.3.4
 ...
}

Alice Ships A New Template

Alice

Bob

Carol

Dave

✔

class genericServer {
 timeServer = ts@unreliable.com
 ... 742 more parameters ...
}

class widgetServer isa genericServer {
 ...
}

class salesServer isa widgetServer {
 timeServer = ts@sales.widget.com
 ...
}

node serverA isa salesServer {
 ip = 1.2.3.4
 ...
}

Carol Withdraws Her Change

Alice

Bob

Carol

Dave

✘

Whose “Fault” Is This?

Dave’s server broke and he got the blame from the users

‣ in fact, all of the machines in the Sales Department are broken!

‣ but he says he didn’t change anything at all

Carol says she just put the parameter back to the default

‣ so it can’t be her fault - this is exactly the same as it was before

Bob says he carefully checked the new default configuration

‣ in fact, he ran some regression tests and the new configuration
produced exactly the same results as the old one on all of the Sales
Department machines

Alice says that the purpose of a new version is to change things!

‣ and it is up to the users to check these changes are appropriate

‣ although it is Alice’s value which appears in the final configuration

Who Should Fix It? And How?

Alice probably isn’t going to change this

‣ she presumably had a good reason for the new value

‣ and she doesn’t work for us anyway, so she may break it again ...

Dave doesn’t want to set it on his individual machines

‣ although he might do this as an interim fix!

‣ which will of course cause problems later, if it doesn’t get removed

Carol just wants the same value as the rest of the company

‣ although she could make an interim fix too

But, it is probably Bob who needs to make a company-wide change ?

‣ even though he was not responsible for any of the changes which
exposed the problem

Tracking Provenance Is Hard

We need to know who authored what

‣ relating source text diffs to semantic changes is not reliable

Every value must have a corresponding provenance expression

‣ the language needs a “provenance semantics”
as well as the conventional “value semantics”

‣ there may be multiple different interpretations for different
purposes

The provenance tends to be “explosive”

‣ “everyone had their fingers in this”

‣ we may need to evaluate (for example) both branches of a
conditional

This needs to be implemented in the configuration compiler

Some Questions

Perhaps the history is important to understanding ?

‣ when Alice changed the default value, the configuration started to
“smell bad”, even though there was no immediate consequences

‣ even though the specification is entirely declarative, it may be
important to know “how we got here”

Perhaps we can assign some degree of “robustness” ?

‣ the above configuration is less robust in some sense, because it is
more likely to break when things change

‣ is it right that things should break if I back out a change ?

‣ can I be warned when that situation is likely to occur ?

Provenance for a constraint-based language seems very hard

‣ can we still do something meaningful ?

Some Conclusions

Constraint-based (declarative) configuration languages seem promising

‣ they are capable of supporting the automatic composition of
intersecting aspects

‣ but a fully-general constraint-solver is probably not appropriate for
production use

‣ some human-factors research would be very useful to determine
typical usage patterns which could be incorporated into a production
language in a more usable way

We need better configuration languages & implementations

‣ which support higher-level modelling

‣ and have clearer semantics

‣ and extensible implementations

More Conclusions

A better understanding of configuration language provenance
seems important

‣ for security

‣ and for debugging / problem fixing

‣ we may be able to learn from work in database provenance

This involves some interesting problems

‣ including clearer semantics for realistic configuration languages

‣ we are looking for a Phd student

Publications

A Declarative Approach to Automated Configuration
John Hewson & Andrew Gordon & Paul Anderson
Large Installation Systems Administration Conference (LISA ’12)
(to be published)

Toward Provenance-Based Security for Configuration Languages
Paul Anderson & James Cheney
The 4th Usenix Workshop on the Theory and Practice of Provenance
http://homepages.inf.ed.ac.uk/dcspaul/publications/
tapp12-final15.pdf

Modelling System Administration Problems with CSPs
John Hewson & Paul Anderson
The 10th International Workshop on Constraint Modelling and
Reformulation (ModRef 2011)
http://homepages.inf.ed.ac.uk/dcspaul/publications/
ConfSolve-ModRef2011.pdf

Questions

Comments

Use Cases

Paul Anderson
dcspaul@ed.ac.uk

http://homepages.inf.ed.ac.uk/dcspaul

http://homepages.inf.ed.ac.uk/dcspaul/publications/dir-2012.pdf

Collaborative
Configurations

