oooo
~zf° \“. THE UNIVERSITY of EDINBURG

Distributed Configuration
& Service Change Planning

Paul Anderson & Herry
<dcspaul@ed.ac.uk>
<h.herry@sms.ed.ac.uk>

http://homepages.inf.ed.ac.uk/dcspaul/
publications/hp-2012.pdf

Centre for Intelligent Systems
and their Applications

& informatics Cisa

mailto:h.herry@sms.ed.ac.uk
mailto:h.herry@sms.ed.ac.uk

Overview

@ Configuration Research (paul)

- overview of area & current work

€) Agent-based configuration with lcc (paul)

- centralised policy and distributed execution
- an example using the “lightweight coordination calculus”

€) Planning for configuration change (herry)

- centralised planning and workflow execution

- distributed workflow execution using
“behavioural signatures”

- distributed workflow execution using lcc

Some Current Projects

® Constraint-based specification (John Hewson)
B Planning for configuration change (Herry)
®m Agents and interaction models for VM Migration

" Student projects

- distributed planning for service changes
- planning deployments on the HP public cloud
- machine learning for VM migration

B Otherinterests

- Semantics, provenance and security
of configuration specifications

Implementing Virtual

Machine Migration Policies
With LCC

Work with Shahriar Bijani
<S.Bijani@sms.ed.ac.uk>

http://homepages.inf.ed.ac.uk/s0880557

Centralised Configuration?

B Centralised configuration
- allows a global view with complete knowledge

m But...

- it is not scalable

- it is nhot robust against communication failures

- federated environments have no obvious centre

- different security policies may apply to different
subsystems

® The challenge ...

- devolve control to an appropriately low level
- but allow high-level policies to determine the behaviour

GPrint (2003)
PRINT CONTROLLER

&\
E@ GLOBUS / \
--------------- » ‘ SmaerFr‘og I

SERVER
Daemon Print

= LeF6 | pring
orint OGSA Manager Monitor
......... > prin \
LCFG Portal I /

SLP print queue
announcements

SLP printer
PRINT anhhouncements _/
/- \ ‘ Heartbeat
[R RN ERER NN > Smar.TFr.og — —
LCFG Daemon E
Print LCFG Ipd A
\ Server component %

Printer

B Distributed configuration with centralised policy

B Subsystem-specific mechanisms

“OpenKnowledge” & LCC

® Agents execute “interaction models”
m Written in a “lightweight coordination calculus” (LCC)

" This provides a very general mechanism for doing
distributed configuration

B Policy is determined by the interaction models
themselves which can be managed and distributed
from a central point of control

® The choice of interaction model and the decision to
participate in a particular “role” remains with the
individual peer
- and hence, the management authority

A Simple LCC Example

a(buyer, B)
ask(X) => a(shopkeeper, S) then
price(X,P) <= a(shopkeeper, S) then
buy(X,P) => a(shopkeeper, S)

— afford(X, P) then
sold(X,P) <= a(shopkeeper, S)

a(shopkeeper, S)
ask(X) <= a(buyer, B) then
price(X, P) => a(buyer, B)
— 1in stock(X, P)then
buy(X,P) <= a(buyer, B) then
sold(X, P) => a(buyer, B)

An Example VM Allocation

R R R
| D M !t =D M D M !t
...... AR g
’ role:
underloaded& f overloaded

Discovery service

" Policy 1 - power saving
- pack YMs onto the minimum number of physical machines
B Policy 2 - agility

- maintain an even loading across the physical machines

An Idle Host

a(idle, ID1)

null
+— overloaded(Status)
then
a(overload(Status), ID1)
) or (
null
+— underloaded(Status)
then
a(underload(Status), ID1)
) or (

a(idle, IDI1)
)

An Overloaded Host

a(overloaded (Need), ID2) ::

readyToMigrate (Need)

=> a(underloaded, ID3)
then

migration (OK)

<= a(underloaded, ID3)
then

null

+— migration(ID2, ID3)
then

a(idle, ID2)

An Underloaded Host

a(underloaded(Capacity), ID3) ::
readyToMigrate (Need)
<= a(overloaded, ID2)
then
migration (OK)
=> a(overloaded, ID2)
+— canMigrate(Capacity, Need)
then
null < waitForMigration()
then
a(idle, ID3)

Migration Example

N é I |[OA 2

K|||(|v ||||||

B o

N
o
o

Physical Machine Load Average (%)
9
o

o

A Simulation

)

120% average load

RN 7 7
i ,- &07% average load
1 ! | ! | ! | ! |
5000 10000 15000 20000

Time (ms)

Some Issues

B LCC can be used to implement more sophisticated
protocols - such as “auctions” which are ideal for
many configuration scenarios

B But some things are hard to do without global
knowledge

- balance the system so that all the machines have exactly
the same load?

® Handling errors and timeouts in an unreliable
distributed system is hard

Planning for
Configuration Changes

HP Innovation Research Project

Overview

[Multi-agent planning }

Centralised Planner
(LISA) — Puppet +

SFplanner
*New Planner (Demo)

ControlTier (Demo) *New Language

Automated Composition of

Behavioural Signature rrClond j

Lightweight Coordination

Calculus (LCC)

Declarative approach

m Most commonly used today
m Popular tools: Puppet, Chef, LCFG

m Critical shortcomings

- Indeterminate order execution of actions
- Could violates the system’s constraints

A B A B

=\ PC

Client must always refer to a running server

Solutions

m Declarative tools
- Possible sequences of states

1) A.running=false = PC.refer=B B.running = true
2) PC.refer=B A.running = false B.running = true
5) B.running = true A.running = false PC.refer=B
4) A.running=false B.running = true PC.refer =B
5) PC.refer=B B.running = true A.running = false
©) B.running = true PC.refer=B A.running = false

- Highly likely producing the wrong sequence!

m Our prototype

- Automated planning technique to generate the workflow
- Each action has pre- and post-conditions

2 X X X X X

System Architecture

1 v

Goal State

Vendors

Actions
Database

Engineers Current

State

T

12

Planner

System Administrator

Plan
(Workflow)

Experts

Translator

>

Mapper

ControlTier
Workflow

(LISA *11)

Manifest

Puppet

9

ControlTier

Facter

SFp planning system

Problem
in SFp SFp Translator

Language

m SFp language - object-oriented planning language

m Web service interface
- Submit planning problem using HTTP POST

m Implemented as an OSGi Bundle

- OSGi platform: Equinox or Felix
- Linux OS5

m http://homepages.inf.ed.ac.uk/s0976621/sfp.html

http://homepages.inf.ed.ac.uk/s0978621/sfp.html
http://homepages.inf.ed.ac.uk/s0978621/sfp.html

SFp planning system

private-cloud public-cloud
node3 nodeb
db-a db-b
A A
node2 node5
app-a app-b
A A
nodel node4|
ws-a ws-b
A
A
B \.\. B
PC-3 % PC-1
PC-2

m Demo: http://hpvm?2.diy.inf.ed.ac.uk

http://hpvm2.diy.inf.ed.ac.uk/
http://hpvm2.diy.inf.ed.ac.uk/

Centralised Architecture

m Central Controller — generates and orchestrates the
execute of the workflow

m Problems - failure on the central controller
- The managed system is out of control
- Must compute the workflow for every changes

m Proposed solution
- Executing the workflow in distributed way
- Implant the pre-compiled workflow onto the components
- Employ Behavioural Sighature model

Behavioural Signature (BSig)

m Component can have state-dependencies

m If a change occurs, each component determines
- What action
- When to be executed

m Cascading effects

A PC B

running

stopping refer=B stopping

BSig: Manual Composition

m Error prone, time consuming, hard to prove that the
result is correct

m Complex task

m M components, N states per component
(M2 - M) (N2) possible state dependencies

m Difficult to solve deadlock situation

m Proposed solution: automated composition

BSig: Automated Composition

m Fact - define the state-dependencies, define the
workflow

m User works in planning domain
- Defines a set of pairs (initial, goal) states
- Defines the global constraints

m Experts or engineers define the actions
m Use the planner to generate the workflow

m The generated workflow is translated into state-
dependencies

BSig: Automated Composition

Offline

Components

Passive — Active BSIg

Sl el BSig model model

A set of pairs
Constraints (initial, goal) SEEEEEEEEEE g Goal states

states

designer administrator

Inputs for Composer

m Actions

startServer { stopServer { changeReference {
S *Server S *Server C *Client
precondition { } precondition { } S *Server
postcondition { postcondition { precondition {

S$Ss.running true $s.running false $s.running true

} } }

} } postcondition {

Sc.refer Ss

}

m Components

<>

B

refer=B

stopping

stopping

Inputs for Composer

m Constraints m Pairs (Initial, Goal)

[None] Pair #1
Initial: A.running, B.stopping, PC.refer=A
Goal:A.stopping, B.running, PC.refer=B

Pair #2
Initial: A.stopping, B.running, PC.refer=B
Goal:A.running, B.stopping, PC.refer=A

designer

Composition Process

m Pair #1

m Generated Workflow
startService(B) = changeReference(PC, B) 2 stopService
(A)

m State-Transition
<none> =2 B.running = PC.refer=B = A.stopping

m State-dependencies

-<none> = B.running

-B.running = PC.refer=B
-PC.refer=B = A.stopping

Composition Process

m Pair #2

m Generated Workflow
startService(A) = changeReference(PC, A) = stopService
(B)

m State Transition
<none> = A.running = PC.refer=A = B.stopping

m State-dependencies

-<none> = A.running

-A.running = PC.refer=A
-PC.refer=A = B.stopping

Composition Process

m Result State-Dependencies
1. B.running 2> PC.refer=B
2. PC.refer=B - A.stopping
3. A.running 2 PC.refer=A
4. PC.refer=A - B.stopping

refer=A running

stopping stopping

Cloud Burst of 3-Tier WebApps

(opa7)] (ops9) [ops5)

private-cloud public-cloud
node3 node6 [y
op65] [(opes) [(op6a)
db-a db-b
A A op75
node2 nodeb|
app-a app-b Cop30)
A L
op49
nodel noded
ws-a ws-b
A
=
PC-1 \

Problem in BSig

m BSig's state dependency - defines the dependency
between two instances

m Resource pool problem
- Using one of multiple resources requires multiple state-
dependencies

m Repairing problem
- Replacing a failure component
- Require repairing the state-dependency

WS-A

E

Problem in BSig

WS-B

E

A
PC

WS-C

E

WS-A

E

WS-B

E

LCC

m Lightweight Coordination Calculus
m Define relation between roles, not instances

m Notation for clearly defining the interaction between
components in BSig

m Some interpreters
- OpenKnowledge, LiJ (Java)
- Okeileidh (Javascript, Node.js)

BSig vs LCC

m LCC
- WS is a “Role”
WS-C
@ WS-A V‘%B WS-C
\\“ ’i- 1‘/,,

1 |

WS L_,:

[\

BSig in LCC Notation
a(ws-b, B)

set(refer,ws-a) => a(pc, PC) then
achieve(running, false) <- at(refer,ws-a) <= a(pc, PC).

a(pc, PC)
set(refer,ws-a) <= a(ws-b, B) then
set (running,true) => a(ws-a, A) then
at(running,true) <= a(ws-a, A) then
at(refer,ws-a) => a(ws-b, B) <- achieve(refer,ws-a).

a(ws-a, A)

set (running,true) <= (pc, PC) then
at(running,true) => a(pc, PC) <- achieve(running,true).

A PC B

running running

stopping stopping

LCC Design Pattern for BSig

a(webService, WS) ::
set (Variable, Value) <= a(pc, PC) then
a(webServiceResponder (Variable, Value), WS) then
at(Variable, Value) => a(pc, PC).

a(webServiceResponder (Variable, Value), R) ::

null <-- current(Variable, Value) or

(
null <- getPrecondition(Variable, Value, Comps, Vars, Vals) then
a(webServicerequester (Comps, Vars, Vals), R) then
null <- achieve(Variable, Value)

) or

null <- achieve(Variable, Value).

a(webServiceRequester(C, Vars, Vals), R) ::
null <- C = [] or
(
set(Varl, vVall) => a(Cl, CX) <- list(C,Cl,Cr) && list(Vars,Varl,Varr)
&& list(Vals,Vall,Valr) then
at(vVarl, VvVall) <= a(Cl, CX) then
a(webServiceRequester (Cr, Varr, Valr), R)

) .

Future Works

m Automated composition of BSig for real use cases
m Adopt LCC relation on BSig

m Hierarchical composition for large scale system

Thank you!

Q&A

