
Distributed Configuration
& Service Change Planning

Paul Anderson & Herry
<dcspaul@ed.ac.uk>

<h.herry@sms.ed.ac.uk>

http://homepages.inf.ed.ac.uk/dcspaul/
publications/hp-2012.pdf

mailto:h.herry@sms.ed.ac.uk
mailto:h.herry@sms.ed.ac.uk

Overview

➊ Con!guration Research (paul)
- overview of area & current work

➋ Agent-based con!guration with lcc (paul)
- centralised policy and distributed execution
- an example using the “lightweight coordination calculus”

➌ Planning for con!guration change (herry)
- centralised planning and work"ow execution
- distributed work"ow execution using

“behavioural signatures”
- distributed work"ow execution using lcc

Some Current Projects

◼ Constraint-based speci!cation (John Hewson)
◼ Planning for con!guration change (Herry)
◼ Agents and interaction models for VM Migration
◼ Student projects

- distributed planning for service changes
- planning deployments on the HP public cloud
- machine learning for VM migration

◼ Other interests
- Semantics, provenance and security

of con!guration speci!cations

Implementing Virtual
Machine Migration Policies

With LCC

Work with Shahriar Bijani
<S.Bijani@sms.ed.ac.uk>

http://homepages.inf.ed.ac.uk/s0880557

Centralised Configuration?
◼ Centralised con!guration

- allows a global view with complete knowledge

◼ But ...
- it is not scalable
- it is not robust against communication failures
- federated environments have no obvious centre
- different security policies may apply to different

subsystems

◼ The challenge ...
- devolve control to an appropriately low level
- but allow high-level policies to determine the behaviour

◼ Distributed con!guration with centralised policy
◼ Subsystem-speci!c mechanisms

GPrint (2003)
PRINT CONTROLLER

Print
Manager

Print
Monitor

SmartFrog
Daemon

SLP printer
announcements

GLOBUS
SERVER

Gprint OGSA
Portal

PRINT
SERVER

SmartFrog
Daemon

LCFG lpd
component

Print
Server

Printer

Heartbeat

SLP print queue
announcements

LCFG

LCFG

LCFG

“OpenKnowledge” & LCC
◼ Agents execute “interaction models”
◼ Wrien in a “lightweight coordination calculus” (LCC)
◼ This provides a very general mechanism for doing

distributed con!guration
◼ Policy is determined by the interaction models

themselves which can be managed and distributed
from a central point of control

◼ The choice of interaction model and the decision to
participate in a particular “role” remains with the
individual peer
- and hence, the management authority

A Simple LCC Example
a(buyer, B) ::
 ask(X) => a(shopkeeper, S) then
 price(X,P) <= a(shopkeeper, S) then
 buy(X,P) => a(shopkeeper, S)
 ← afford(X, P) then
 sold(X,P) <= a(shopkeeper, S)

a(shopkeeper, S) ::
 ask(X) <= a(buyer, B) then
 price(X, P) => a(buyer, B)
 ← in_stock(X, P)then
 buy(X,P) <= a(buyer, B) then
 sold(X, P) => a(buyer, B)

An Example: VM Allocation

◼ Policy 1 - power saving
- pack VMs onto the minimum number of physical machines

◼ Policy 2 - agility
- maintain an even loading across the physical machines

role:
overloaded

role:
underloaded

migrate

Discovery service

IMIMIMIM

An Idle Host

a(idle, ID1) ::
 null
 ← overloaded(Status)
 then
 a(overload(Status), ID1)
) or (
 null
 ← underloaded(Status)
 then
 a(underload(Status), ID1)
) or (
 a(idle, ID1)
)

An Overloaded Host
a(overloaded(Need), ID2) ::
 readyToMigrate(Need)
 => a(underloaded, ID3)
 then
 migration(OK)
 <= a(underloaded, ID3)
 then
 null
 ← migration(ID2, ID3)
 then
 a(idle, ID2)

An Underloaded Host
a(underloaded(Capacity), ID3) ::
 readyToMigrate(Need)
 <= a(overloaded, ID2)
 then
 migration(OK)
 => a(overloaded, ID2)
 ← canMigrate(Capacity, Need)
 then
 null ← waitForMigration()
 then
 a(idle, ID3)

Migration Example

1

2

3

4

5

6

7

8

9

3

4

5

2

6

7

1

8

9

PM1 PM2 PM3 PM4 PM1 PM2 PM3 PM4

A Simulation

0 5000 10000 15000 20000

Time (ms)

0

50

100

150

200

Ph
ys

ic
al

 M
ac

hi
ne

 Lo
ad

 A
ve

ra
ge

 (%
)

120% average load

80% average load

Some Issues
◼ LCC can be used to implement more sophisticated

protocols - such as “auctions” which are ideal for
many con!guration scenarios

◼ But some things are hard to do without global
knowledge
- balance the system so that all the machines have exactly

the same load?

◼ Handling errors and timeouts in an unreliable
distributed system is hard

Planning for
Configuration Changes

HP IRP

HP Innovation Research Project

Overview

Centralised Planner
(LISA) – Puppet +

ControlTier (Demo)

SFplanner
•New Planner (Demo)
•New Language

Automated Composition of
Behavioural Signature

Lightweight Coordination
Calculus (LCC)

HPCloud

Multi-agent planning

Declarative approach
◼ Most commonly used today

◼ Popular tools: Puppet, Chef, LCFG

◼ Critical shortcomings
- Indeterminate order execution of actions
- Could violates the system’s constraints

A B

PC

A B

PC

Client must always refer to a running server

Solutions
◼ Declarative tools

- Possible sequences of states
1) A.running = false PC.refer = B B.running = true X
2) PC.refer = B A.running = false B.running = true X
3) B.running = true A.running = false PC.refer = B X

4) A.running = false B.running = true PC.refer = B X

5) PC.refer = B B.running = true A.running = false X
6) B.running = true PC.refer = B A.running = false √

- Highly likely producing the wrong sequence!

◼ Our prototype
- Automated planning technique to generate the work!ow
- Each action has pre- and post-conditions

System Architecture (LISA ’11)

SFp planning system

◼ SFp language – object-oriented planning language

◼ Web service interface
- Submit planning problem using HTTP POST

◼ Implemented as an OSGi Bundle
- OSGi platform: Equinox or Felix
- Linux OS

◼ hp://homepages.inf.ed.ac.uk/s0978621/sfp.html

SFp Translator FDR

Fast-DownwardWorkflow

Problem
in SFp

Language

http://homepages.inf.ed.ac.uk/s0978621/sfp.html
http://homepages.inf.ed.ac.uk/s0978621/sfp.html

SFp planning system

◼ Demo: hp://hpvm2.diy.inf.ed.ac.uk

http://hpvm2.diy.inf.ed.ac.uk/
http://hpvm2.diy.inf.ed.ac.uk/

Centralised Architecture

◼ Central Controller – generates and orchestrates the
execute of the work"ow

◼ Problems – failure on the central controller
- The managed system is out of control
- Must compute the work"ow for every changes

◼ Proposed solution
- Executing the work"ow in distributed way
- Implant the pre-compiled work"ow onto the components
- Employ Behavioural Signature model

Behavioural Signature (BSig)

◼ Component can have state-dependencies

◼ If a change occurs, each component determines
- What action
- When to be executed

◼ Cascading effects

A BPC

BSig: Manual Composition

◼ Error prone, time consuming, hard to prove that the
result is correct

◼ Complex task

◼ M components, N states per component

 (M2 – M) (N2) possible state dependencies

◼ Difficult to solve deadlock situation

◼ Proposed solution: automated composition

BSig: Automated Composition

◼ Fact – de!ne the state-dependencies, de!ne the
work"ow

◼ User works in planning domain
- De!nes a set of pairs (initial, goal) states
- De!nes the global constraints

◼ Experts or engineers de!ne the actions

◼ Use the planner to generate the work"ow

◼ The generated work"ow is translated into state-
dependencies

BSig: Automated Composition

Components

Composer Passive
BSig model

designer

A set of pairs
(initial, goal)

states
Constraints

administrator

Goal states

OnlineOffline
Actions

Active BSig
model

Inputs for Composer

startServer {
 s *Server
 precondition { }
 postcondition {
 $s.running true
 }
}

stopServer {
 s *Server
 precondition { }
 postcondition {
 $s.running false
 }
}

changeReference {
 c *Client
 s *Server
 precondition {
 $s.running true
 }
 postcondition {
 $c.refer $s
 }
}

◼ Actions

◼ Components

A BPC

Inputs for Composer

designer

Pair #1
Initial: A.running, B.stopping, PC.refer=A
Goal: A.stopping, B.running, PC.refer=B

Pair #2
Initial: A.stopping, B.running, PC.refer=B
Goal: A.running, B.stopping, PC.refer=A

[None]

◼ Constraints ◼ Pairs (Initial, Goal)

Composition Process

◼ Pair #1

◼ Generated Work"ow
startService(B)  changeReference(PC, B)  stopService
(A)

◼ State-Transition
<none>  B.running  PC.refer=B  A.stopping

◼ State-dependencies
-<none>  B.running
-B.running  PC.refer=B
-PC.refer=B  A.stopping

Composition Process

◼ Pair #2

◼ Generated Work"ow
startService(A)  changeReference(PC, A)  stopService
(B)

◼ State Transition
<none>  A.running  PC.refer=A  B.stopping

◼ State-dependencies
-<none>  A.running
-A.running  PC.refer=A
-PC.refer=A  B.stopping

Composition Process

◼ Result State-Dependencies
1. B.running  PC.refer=B
2. PC.refer=B  A.stopping
3. A.running  PC.refer=A
4. PC.refer=A  B.stopping

A BPC
3

2

1 4

Cloud Burst of 3-Tier WebApps

Problem in BSig

◼ BSig’s state dependency – de!nes the dependency
between two instances

◼ Resource pool problem
- Using one of multiple resources requires multiple state-

dependencies

◼ Repairing problem
- Replacing a failure component
- Require repairing the state-dependency

Problem in BSig

WS-A WS-B

PC

WS-C WS-A WS-B

PC

WS-A WS-B

PC

LCC

◼ Lightweight Coordination Calculus

◼ De!ne relation between roles, not instances

◼ Notation for clearly de!ning the interaction between
components in BSig

◼ Some interpreters
- OpenKnowledge, LiJ (Java)
- Okeileidh (Javascript, Node.js)

BSig vs LCC

◼ BSig ◼ LCC
- WS is a “Role”

WS-A WS-C

PC

WS

WS-A WS-B

PC

WS-C WS-B

BSig in LCC Notation
a(ws-b, B) ::
 set(refer,ws-a) => a(pc, PC) then
 achieve(running,false) <- at(refer,ws-a) <= a(pc, PC).

a(pc, PC) ::
 set(refer,ws-a) <= a(ws-b, B) then
 set(running,true) => a(ws-a, A) then
 at(running,true) <= a(ws-a, A) then
 at(refer,ws-a) => a(ws-b, B) <- achieve(refer,ws-a).

a(ws-a, A) ::
 set(running,true) <= (pc, PC) then
 at(running,true) => a(pc, PC) <- achieve(running,true).

A BPC

LCC Design Pattern for BSig
a(webService, WS) ::
 set(Variable, Value) <= a(pc, PC)! then
 a(webServiceResponder(Variable, Value), WS) then
 at(Variable, Value) => a(pc, PC).!

a(webServiceResponder(Variable, Value), R) ::
 null <-- current(Variable, Value)! or
 (
 null <- getPrecondition(Variable, Value, Comps, Vars, Vals) then
 a(webServicerequester(Comps, Vars, Vals), R) then
 null <- achieve(Variable, Value)
) or
 null <- achieve(Variable, Value).
!
a(webServiceRequester(C, Vars, Vals), R) ::
 null <- C = [] or
 (
 set(Var1, Val1) => a(C1, CX) <- list(C,C1,Cr) && list(Vars,Var1,Varr)
 && list(Vals,Val1,Valr) then
 at(Var1, Val1) <= a(C1, CX) then
 a(webServiceRequester(Cr, Varr, Valr), R)
).

Future Works

◼ Automated composition of BSig for real use cases

◼ Adopt LCC relation on BSig

◼ Hierarchical composition for large scale system

 IRP

Thank you!

Q & A

