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Overview

➊ Con!guration Research (paul)
- overview of area & current work

➋ Agent-based con!guration with lcc (paul)
- centralised policy and distributed execution
- an example using the “lightweight coordination calculus”

➌ Planning for con!guration change (herry)
- centralised planning and work"ow execution
- distributed work"ow execution using

“behavioural signatures”
- distributed work"ow execution using lcc



Some Current Projects

◼ Constraint-based speci!cation (John Hewson)
◼ Planning for con!guration change (Herry)
◼ Agents and interaction models for VM Migration
◼ Student projects

- distributed planning for service changes
- planning deployments on the HP public cloud
- machine learning for VM migration

◼ Other interests
- Semantics, provenance and security

of con!guration speci!cations



Implementing Virtual 
Machine Migration Policies 

With LCC

Work with Shahriar Bijani
<S.Bijani@sms.ed.ac.uk>

http://homepages.inf.ed.ac.uk/s0880557



Centralised Configuration?
◼ Centralised con!guration 

- allows a global view with complete knowledge

◼ But ...
- it is not scalable
- it is not robust against communication failures
- federated environments have no obvious centre
- different security policies may apply to different 

subsystems

◼ The challenge ...
- devolve control to an appropriately low level
- but allow high-level policies to determine the behaviour



◼ Distributed con!guration with centralised policy
◼ Subsystem-speci!c mechanisms
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“OpenKnowledge” & LCC
◼ Agents execute “interaction models”
◼ Wrien in a “lightweight coordination calculus” (LCC)
◼ This provides a very general mechanism for doing 

distributed con!guration
◼ Policy is determined by the interaction models 

themselves which can be managed and distributed 
from a central point of control

◼ The choice of interaction model and the decision to 
participate in a particular “role” remains with the 
individual peer
- and hence, the management authority



A Simple LCC Example
a(buyer, B) ::
 ask(X) => a(shopkeeper, S) then
 price(X,P) <= a(shopkeeper, S) then
 buy(X,P) => a(shopkeeper, S)
             ← afford(X, P) then
 sold(X,P) <= a(shopkeeper, S)

a(shopkeeper, S) ::
  ask(X) <= a(buyer, B) then
  price(X, P) => a(buyer, B)
                 ← in_stock(X, P)then
  buy(X,P) <= a(buyer, B) then
  sold(X, P) => a(buyer, B)



An Example: VM Allocation

◼ Policy 1 - power saving
- pack VMs onto the minimum number of physical machines

◼ Policy 2 - agility
- maintain an even loading across the physical machines

role:
overloaded

role:
underloaded

migrate

Discovery service

IMIMIMIM



An Idle Host

a(idle, ID1) ::
      null
      ← overloaded(Status)
    then
      a(overload(Status), ID1)
  ) or (
      null
      ← underloaded(Status)
    then
      a(underload(Status), ID1)
  ) or (
    a(idle, ID1)
  )



An Overloaded Host
a(overloaded(Need), ID2) ::
    readyToMigrate(Need)
    => a(underloaded, ID3)
  then
    migration(OK)
    <= a(underloaded, ID3)
  then
    null
    ← migration(ID2, ID3)
  then
    a(idle, ID2)



An Underloaded Host
a(underloaded(Capacity), ID3) ::
    readyToMigrate(Need)
    <= a(overloaded, ID2)
  then
    migration(OK)
    => a(overloaded, ID2)
    ← canMigrate(Capacity, Need)
  then
    null ← waitForMigration()
  then
    a(idle, ID3)



Migration Example
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A Simulation
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Some Issues
◼ LCC can be used to implement more sophisticated 

protocols - such as “auctions” which are ideal for 
many con!guration scenarios

◼ But some things are hard to do without global 
knowledge
- balance the system so that all the machines have exactly 

the same load?

◼ Handling errors and timeouts in an unreliable 
distributed system is hard



Planning for
Configuration Changes

HP IRP

HP Innovation Research Project



Overview

Centralised Planner
(LISA) – Puppet +

ControlTier (Demo)

SFplanner
•New Planner (Demo)
•New Language

Automated Composition of
Behavioural Signature

Lightweight Coordination 
Calculus (LCC)

HPCloud

Multi-agent planning



Declarative approach
◼ Most commonly used today

◼ Popular tools: Puppet, Chef, LCFG

◼ Critical shortcomings
- Indeterminate order execution of actions
- Could violates the system’s constraints

A B

PC

A B

PC

Client must always refer to a running server



Solutions
◼ Declarative tools

- Possible sequences of states
1)  A.running = false          PC.refer = B  B.running = true             X
2)  PC.refer = B    A.running = false B.running = true             X
3)  B.running = true    A.running = false PC.refer = B   X

4)  A.running = false          B.running = true            PC.refer = B   X

5)  PC.refer = B    B.running = true   A.running = false             X
6)  B.running = true            PC.refer = B  A.running = false              √

- Highly likely producing the wrong sequence!

◼ Our prototype
- Automated planning technique to generate the work!ow
- Each action has pre- and post-conditions



System Architecture (LISA ’11)



SFp planning system

◼ SFp language – object-oriented planning language

◼ Web service interface
- Submit planning problem using HTTP POST

◼ Implemented as an OSGi Bundle
- OSGi platform: Equinox or Felix
- Linux OS

◼ hp://homepages.inf.ed.ac.uk/s0978621/sfp.html

SFp Translator FDR

Fast-DownwardWorkflow

Problem
in SFp

Language

http://homepages.inf.ed.ac.uk/s0978621/sfp.html
http://homepages.inf.ed.ac.uk/s0978621/sfp.html


SFp planning system

◼ Demo: hp://hpvm2.diy.inf.ed.ac.uk 

http://hpvm2.diy.inf.ed.ac.uk/
http://hpvm2.diy.inf.ed.ac.uk/


Centralised Architecture

◼ Central Controller – generates and orchestrates the 
execute of the work"ow

◼ Problems – failure on the central controller
- The managed system is out of control
- Must compute the work"ow for every changes

◼ Proposed solution
- Executing the work"ow in distributed way
- Implant the pre-compiled work"ow onto the components
- Employ Behavioural Signature model



Behavioural Signature (BSig)

◼ Component can have state-dependencies

◼ If a change occurs, each component determines
- What action
- When to be executed

◼ Cascading effects

A BPC



BSig: Manual Composition

◼ Error prone, time consuming, hard to prove that the 
result is correct

◼ Complex task

◼ M components, N states per component

  (M2 – M) (N2) possible state dependencies

◼ Difficult to solve deadlock situation

◼ Proposed solution: automated composition



BSig: Automated Composition

◼ Fact – de!ne the state-dependencies, de!ne the 
work"ow

◼ User works in planning domain
- De!nes a set of pairs (initial, goal) states
- De!nes the global constraints

◼ Experts or engineers de!ne the actions

◼ Use the planner to generate the work"ow

◼ The generated work"ow is translated into state-
dependencies



BSig: Automated Composition
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Inputs for Composer

startServer {
   s   *Server
   precondition { }
   postcondition {
      $s.running true
   }
}

stopServer {
   s   *Server
   precondition { }
   postcondition {
      $s.running false
   }
}

changeReference {
   c   *Client
   s   *Server
   precondition {
      $s.running true
   }
   postcondition {
      $c.refer $s
   }
}

◼ Actions

◼ Components

A BPC



Inputs for Composer

designer

Pair #1
Initial: A.running, B.stopping, PC.refer=A
Goal: A.stopping, B.running, PC.refer=B

Pair #2
Initial: A.stopping, B.running, PC.refer=B
Goal: A.running, B.stopping, PC.refer=A

[None]

◼ Constraints ◼ Pairs (Initial, Goal)



Composition Process

◼ Pair #1

◼ Generated Work"ow
startService(B)  changeReference(PC, B)  stopService
(A)

◼ State-Transition
<none>  B.running  PC.refer=B  A.stopping

◼ State-dependencies
-<none>  B.running
-B.running  PC.refer=B
-PC.refer=B  A.stopping



Composition Process

◼ Pair #2

◼ Generated Work"ow
startService(A)  changeReference(PC, A)  stopService
(B)

◼ State Transition
<none>  A.running  PC.refer=A  B.stopping

◼ State-dependencies
-<none>  A.running
-A.running  PC.refer=A
-PC.refer=A  B.stopping



Composition Process

◼ Result State-Dependencies
1. B.running  PC.refer=B
2. PC.refer=B  A.stopping
3. A.running  PC.refer=A
4. PC.refer=A  B.stopping

A BPC
3

2

1 4



Cloud Burst of  3-Tier WebApps



Problem in BSig

◼ BSig’s state dependency – de!nes the dependency 
between two instances

◼ Resource pool problem
- Using one of multiple resources requires multiple state-

dependencies

◼ Repairing problem
- Replacing a failure component
- Require repairing the state-dependency



Problem in BSig
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LCC

◼ Lightweight Coordination Calculus

◼ De!ne relation between roles, not instances

◼ Notation for clearly de!ning the interaction between 
components in BSig

◼ Some interpreters
- OpenKnowledge, LiJ (Java)
- Okeileidh (Javascript, Node.js)



BSig vs LCC

◼ BSig ◼ LCC
- WS is a “Role”

WS-A WS-C

PC

WS

WS-A WS-B

PC

WS-C WS-B



BSig in LCC Notation
a(ws-b, B) ::
   set(refer,ws-a) => a(pc, PC) then
   achieve(running,false) <- at(refer,ws-a) <= a(pc, PC).

a(pc, PC) ::
   set(refer,ws-a) <= a(ws-b, B) then
   set(running,true) => a(ws-a, A) then
   at(running,true) <= a(ws-a, A) then
   at(refer,ws-a) => a(ws-b, B) <- achieve(refer,ws-a).

a(ws-a, A) ::
   set(running,true) <= (pc, PC) then
   at(running,true) => a(pc, PC) <- achieve(running,true).

A BPC



LCC Design Pattern for BSig
a(webService, WS) ::
    set(Variable, Value) <= a(pc, PC)!  then
    a(webServiceResponder(Variable, Value), WS) then
    at(Variable, Value) => a(pc, PC).!

a(webServiceResponder(Variable, Value), R) ::
    null <-- current(Variable, Value)!  or
    (
       null <- getPrecondition(Variable, Value, Comps, Vars, Vals) then
       a(webServicerequester(Comps, Vars, Vals), R) then
       null <- achieve(Variable, Value)
    ) or
    null <- achieve(Variable, Value).
!
a(webServiceRequester(C, Vars, Vals), R) ::
    null <- C = [] or
    (
       set(Var1, Val1) => a(C1, CX) <- list(C,C1,Cr) && list(Vars,Var1,Varr) 
          && list(Vals,Val1,Valr) then
       at(Var1, Val1) <= a(C1, CX) then
       a(webServiceRequester(Cr, Varr, Valr), R)
    ).



Future Works

◼ Automated composition of BSig for real use cases

◼ Adopt LCC relation on BSig

◼ Hierarchical composition for large scale system



 IRP

Thank you!
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