
Constraint-Based Specifications for System

Configuration

John A. Hewson
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Centre for Intelligent Systems and their Applications

School of Informatics

University of Edinburgh

2013

Abstract

Declarative, object-oriented configuration management systems are widely used, and

there is a desire to extend such systems with automated analysis and decision-making.

This thesis introduces a new formulation for configuration management problems based

on the tools and techniques of constraint programming, which enables automated

decision-making.

We present ConfSolve, an object-oriented declarative configuration language, in

which logical constraints on a system can be specified. Verification, impact analysis,

and the generation of valid configurations can then be performed. This is achieved via

translation to the MiniZinc constraint programming language, which is in turn solved

via the Gecode constraint solver. We formally define the syntax, type system, and

semantics of ConfSolve, in order to provide it with a rigorous foundation. Additionally

we show that our implementation outperforms previous work, which utilised an SMT

solver, while adding new features such as optimisation.

We next develop an extension of the ConfSolve language, which facilitates not

only one-off configuration tasks, but also subsequent re-configurations in which the

previous state of the system is taken into account. In a practical setting one does not

wish for a re-configuration to deviate too far from the existing state, unless the benefits

are substantial. Re-configuration is of crucial importance if automated configuration

systems are to gain industry adoption. We present a novel approach to incorporat-

ing state-change into ConfSolve while remaining declarative and providing acceptable

performance.

i

Acknowledgements

Firstly, I would like to thank my supervisors, Paul Anderson and Andy Gordon, for

their time, support, and wisdom. Their enthusiasm for research is clear and compelling.

I would like to thank Paul Jackson for his guidance and insight, at a critical moment.

This thesis would not exist were it not for the support and love of my family. I

would like to thank my parents for their unquestioning faith and my wife, Kelley, for

her counsel, patience, and encouragement.

I’d like to thank those scholars with which I have had particularly insightful con-

versations about this thesis: Alva Couch, Tim Nelson, H. Herry, and Ed Smith. Thanks

too to those researchers in industry: Sharad Singhal and Andy Farrell from HP Labs,

Alois Haselboeck from Siemans, Austin Donnelly from Microsoft Research, and John

Wilkes from Google. A special thank you to Sharad for providing the Cauldron bina-

ries for benchmarking.

This work was funded by Microsoft Research through their European PhD Schol-

arship Programme.

ii

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(John A. Hewson)

iii

Related Publications

Some of the contents of this thesis are based on the following papers:

• J. A. Hewson and P. Anderson and A. D. Gordon. Constraint-Based Autonomic

Reconfiguration. In Proceedings of the Seventh IEEE International Conference

on Self-Adaptive and Self-Organizing Systems (SASO 2013), 2013.

• J. A. Hewson and P. Anderson and A. D. Gordon. A Declarative Approach to

Automated Configuration. In Proceedings of the 26th Large Installation System

Administration Conference (LISA’12), 2012.

• J. A. Hewson and P. Anderson. Modelling System Administration Problems

with CSPs. In Proceedings of the 10th International Workshop on Constraint

Modelling and Reformulation (ModRef’11), pages 73–82, 2011.

iv

Table of Contents

1 Introduction 1
1.1 Research Questions . 3

1.2 Contributions . 4

1.2.1 Configuration . 4

1.2.2 Reconfiguration . 4

1.3 Thesis structure . 5

2 Background 6
2.1 Configuration management . 6

2.1.1 Common Information Model (CIM) 6

2.1.2 Declarative configuration . 8

2.1.3 Declarative tools and languages 9

2.2 Constraint satisfaction . 12

2.2.1 Constraint programming . 12

2.2.2 Constraint solving: Gecode 14

2.2.3 Constraint modelling: MiniZinc 16

3 Related Work 19
3.1 Automated configuration . 19

3.1.1 Event-driven approaches . 19

3.1.2 Logic programming . 22

3.1.3 Boolean satisfiability (SAT) 23

3.1.4 Satisfiability modulo theories (SMT) 24

3.1.5 Generative CSP . 27

3.1.6 PoDIM . 28

3.2 Automated reconfiguration . 28

3.2.1 Event-driven approaches . 28

v

3.2.2 Logic programming . 29

3.2.3 Constraint programming (CP) 30

3.2.4 A.I. planning . 30

3.2.5 Local search . 30

3.2.6 SmartFrog & LCFG . 31

3.2.7 Dynamic software updating 31

3.3 Constraint modeling languages . 31

4 ConfSolve by Example 33
4.1 Language Features . 33

4.2 Variables and Classes . 33

4.3 Inheritance . 34

4.4 References . 35

4.5 Constraints . 35

4.6 Sets and quantifiers . 36

4.7 Optimisation . 38

4.8 Output . 38

4.9 Reconfiguration . 39

5 The Syntax and Semantics of ConfSolve 40
5.1 Core syntax of ConfSolve . 40

5.1.1 Derived syntax . 44

5.2 Type system . 45

5.3 ConfSolve and MiniZinc . 49

5.4 Translation to MiniZinc . 51

5.4.1 An example translation . 51

5.4.2 Quantifiers . 53

5.4.3 Correctness . 53

5.4.4 Static allocation . 54

5.4.5 Translation . 54

5.4.6 Solutions . 61

6 Evaluation of Configuration with ConfSolve 63
6.1 Experimental setup . 63

6.2 Virtual Machine assignment . 63

6.3 Cauldron Test Suite . 67

vi

6.4 Cauldron VM Allocation . 68

6.5 Summary . 69

7 Extending ConfSolve for Reconfiguration 70
7.1 Background . 70

7.2 Extended ConfSolve . 71

7.3 Parameter changes and migrations 72

7.4 An example translation . 73

7.5 Core Syntax extensions . 74

7.6 Architecture . 75

7.7 Translation to MiniZinc . 77

7.7.1 Parameters . 78

7.7.2 Previous values and change expressions 80

7.8 The min-changes heuristic . 84

8 Evaluation of Reconfiguration with ConfSolve 86
8.1 Reconfiguration strategies . 86

8.2 Experimental setup . 87

8.3 Adding Virtual Machines . 87

8.4 Parameters: Virtual Server Failure 91

8.5 Migration with Parameters:

Cloudbursting . 93

8.6 Summary . 98

9 Conclusions 100
9.1 Answers to research questions . 101

9.2 Further Work . 103

Bibliography 105

vii

List of Figures

1.1 A reconfiguration of virtual machine allocations 3

2.1 A MOF file . 7

2.2 A typical declarative configuration system 9

2.3 CFEngine management interface . 10

2.4 A CFEngine bundle to set the root password 11

2.5 A CFEngine bundle with an imperative command 11

2.6 A Puppet class for configuring NTP 13

2.7 The Puppet web-based management interface 14

3.1 An SML schema describing an IP address 21

3.2 An example Cauldron model . 26

3.3 An OCL postcondition . 29

5.1 Compiling and solving a ConfSolve model 50

6.1 Virtual machine allocation performance 66

6.2 Cauldron test suite run-time . 68

7.1 The two kinds of re-configuration 73

7.2 Compiling and solving an extended ConfSolve model 76

7.3 The translation of previous values of a class-level variable 82

8.1 Migration: adding virtual machines 87

8.2 Adding virtual machines evaluation 90

8.3 Virtual server failure . 91

8.4 Virtual server failure evaluation . 94

8.5 Cloudbursting . 95

8.6 Cloudbursting evaluation . 98

viii

List of Tables

6.1 Cauldron test suite run-time . 67

6.2 Virtual machine allocation run-time 69

ix

Chapter 1

Introduction

The role of the system administrator has changed significantly over the past twenty

years. The most visible difference being the rise of declarative configuration languages

and tools. Declarative configuration allows one to describe systems in terms of a de-

sired goal state, on a per-machine basis. Centralised servers compose configurations

for individual machines from declarative classes or “aspects”, acting as both a point of

control and as a catalogue of network truth. Modern systems have progressed far from

being managed with ad-hoc shell scripts and a human being at a computer terminal.

The driving force behind this change has predominantly been scale. Computer

systems are larger than ever, with cloud computing and infrastructure-as-a-service dat-

acenters bringing new challenges and higher administrator to machine ratios. Cen-

tralised, declarative tools provide other advantages though. Industry practice has shifted

towards repeatable, highly automated, resilient tools and processes, as embodied by the

DevOps movement.

Current declarative configuration tools are still organised around the concept of a

machine, a single “node”. As more software becomes network-based and virtualised

the individual machine is shifting from being the end point of a configuration to the

starting point. The question of how to manage the relationships between machines

arises. On the network relationships are dynamic; a “static” configuration, a single

point in time, is neither resilient nor flexible. A machine failure requires an adminis-

trator to manually alter the central configuration.

A “dynamic” configuration must express more than just a single configuration

and allow logical entities beyond single machines to be described. It is the invari-

ant constraints on the relationships between services, virtual machines, networks, and

other high-level components which are of interest. Object-orientation has been used

1

Chapter 1. Introduction 2

successfully in configuration management and is used to various degrees in current

declarative tools. Some efforts have been made to combine logic programming with

object-orientation for the purpose of validating configurations and generating valid

configurations from a more loosely specified policy.

This desire to state a problem as a set of logical constraints and have the computer

automatically find a solution is reflected in another area of computer science: constraint

programming. Constraint programming allows one to describe a problem in terms of

variables with finite domains and constraints over those variables. Constraints may be

drawn from logic, arithmetic, or set theory. The search strategy need not be described:

it is the task of the constraint solver to provide a good search method for each constraint

it permits. Indeed, we can see that constraint programming is a declarative paradigm.

In practice, constraint programming alone is insufficient to meet the needs of sys-

tem administrators. It takes an expert user and a significant refactoring of the problem

from a natural description to one which is practically solvable. The purpose of this the-

sis is to close the gap between logical languages and configuration languages. We find

inspiration in previous work by HP Labs, devising a performant formalised alternative

based on constraint programming, with a natural extension to constraint optimisation.

Existing configuration approaches treat configuration problems as one-off tasks:

initial configurations of a new system, starting from scratch. In practice the majority

of configuration tasks are incremental, starting from some existing state and applying

changes which take the existing configuration into account.

Take for example, the common problem of assigning virtual machines to physi-

cal hosts. After a system has been configured initially, it is desirable for subsequent

reconfigurations to take into account the current allocation of virtual machines so as

not to move virtual machines unnecessarily from one physical machine to the next, as

illustrated in Figure 1.1. When using a constraint-based approach such moves are to

be expected. The constraint solver will simply follow the quickest path to satisfaction

available to it.

Thus it is necessary to inform the solver about the previous state of the system

and how it affects subsequent configuration decisions. In this thesis we devise a novel

method to capture state and expose it within a declarative configuration language.

Chapter 1. Introduction 3

A

B

C

A

C

B

Figure 1.1: A reconfiguration of the allocation of virtual machines A–C to three
physical hosts. Virtual machines B and C have switched hosts unnecessarily as an
artefact of constraint-based reconfiguration.

1.1 Research Questions

This thesis originates from a research proposal by Paul Anderson and Michael Four-

man accepted by Microsoft Research for a PhD scholarship entitled constraint-based

specifications for system configuration. The research objectives are as follows:

1. Identify where constraint-based approaches to system configuration may be ad-

vantageous.

2. Investigate the suitability of existing constraint-based techniques for solving

configuration problems.

3. Propose a method which can apply the identified constraint-based techniques to

the identified configuration problems.

4. Design and implement a demonstration tool based on the proposed methods.

5. Evaluate the tool against the identified configuration problems.

In particular, existing configuration tools and research prototypes have lead to sev-

eral open questions, which there is a need to address:

6. Soft constraints, which need not be fully satisfied, need to be able to be modelled

and solved.

7. Small changes to the configuration problem should result in small changes to the

resulting solution.

8. The configuration interface needs to be appropriate for the intended users. Thus

novel features need to introduce a minimal amount of complexity.

Chapter 1. Introduction 4

1.2 Contributions

The main contributions of this thesis are divided into two parts. Firstly, we answer

the research questions which concern one-off automated configuration tasks similar to

those seen in current research. Secondly, we address the open questions surrounding

reconfiguration.

1.2.1 Configuration

With regards to configuration, the main contribution is to formally define and evaluate

a configuration language based on constraint satisfaction, specifically:

1. Define ConfSolve, a constraint-based object-oriented configuration language.

2. Define the translation of the language to a constraint satisfaction problem.

3. Demonstrate that the language can be used to model problems identified in pre-

vious work based on boolean satisfiability.

4. Show that translated models can scale to problems of a useful size.

1.2.2 Reconfiguration

With regards to reconfiguration, the main contribution is to extend our constraint-based

language with novel state-aware primitives based on constraint optimisation, specifi-

cally:

1. Define an extension to the ConfSolve language which incorporates reconfigura-

tion via state-aware constraints.

2. Define the translation of our extensions to a constraint satisfaction problem.

3. Show that ConfSolve reconfiguration primitives can offer a performance benefit

over a from-scratch configuration and a naive reconfiguration heuristic.

4. Show that translated models can scale to reconfiguration problems of a useful

size.

Chapter 1. Introduction 5

1.3 Thesis structure

The remainder of this thesis is structured as follows:

Chapter 2: Background Provides background material covering configuration man-

agement and constraint satisfaction. State-of-the-art model-driven approaches to

configuration management are summarised and discussed. Constraint satisfac-

tion tools and techniques used in the thesis are presented in detail.

Chapter 3: Related Work Discusses existing work which is relevant to this thesis.

It is divided into three major sections: automated configuration, automated re-

configuration, and constraint modelling languages. Each of the first two sections

are divided according to the constraint-solving approach used in the work.

Chapter 4: ConfSolve by Example Provides an overview of the ConfSolve language

developed in this thesis. This informal description is intended to demonstrate

each of the language features in a practical manner.

Chapter 5: The Syntax and Semantics of ConfSolve We define the abstract grammar

of the ConfSolve language and its output format and define its translation to a

constraint satisfaction problem encoded in MiniZinc.

Chapter 6: Evaluation of Configuration with ConfSolve The performance of Conf-

Solve is measured using several system configuration problems. A large virtual

machine allocation problem and several smaller problems from previous work,

which we benchmark against.

Chapter 7: Extending ConfSolve for Reconfiguration An extension to the basic Conf-

Solve language which permits reconfiguration described. We present a concep-

tual overview, example, syntax extensions, and a description of the translation of

the extended language to MiniZinc.

Chapter 8: Evaluation of Reconfiguration with ConfSolve The reconfiguration ex-

tensions for ConfSolve are evaluated against several system configuration prob-

lems. The problems from Chapter 6 are expanded to cover reconfiguration and

the three scenarios of parameter change, migration, and a combination of the

two.

Chapter 9: Conclusions Draws conclusions and outlines various directions for future

work.

Chapter 2

Background

This chapter provides background material covering configuration management and

constraint satisfaction. Popular model-driven approaches to configuration management

are summarised and discussed to give an insight into the state-of-the-art. Constraint

satisfaction is presented in detail, with the tools and techniques used in this thesis

explained and differentiated from similar techniques.

2.1 Configuration management

There are a wide range of tools which facilitate the task of system configuration. Sys-

tem administrators have developed and adopted competing approaches which reflect

the changes seen in programming languages over the same period of time. That

is, a shift from basic scripting languages to object-oriented modeling and finally a

more lightweight declarative approach. This centralised, abstracted, and automated

approach to system configuration has become known as configuration management.

2.1.1 Common Information Model (CIM)

Object-oriented programming techniques have influenced configuration management.

The Common Information Model (CIM) created in 1999, provides an object-oriented

meta-model for describing and managing computer systems in a standardised manner

[Distributed Management Task Force, 2010a]. It is the basis for a number of other

standards which define protocols for interacting with CIM objects on a machine in an

open, cross-platform manner. Remote management of CIM-described resources is pos-

sible using standardised web service protocols, with Web-Based Enterprise Manage-

6

Chapter 2. Background 7

[abstract]
class Win32_LogicalDisk
{

[read]
string DriveLetter;

[read, Units("KiloBytes")]
sint32 RawCapacity = 0;

[write]
string VolumeLabel;

[Dangerous]
boolean Format([in] boolean FastFormat);

};

Figure 2.1: A MOF file, describing a Windows logical disk. Types, read and write
properties, and methods are present. [Distributed Management Task Force, 1999]

ment [Distributed Management Task Force, 2010c] and WS-Management [Distributed

Management Task Force, 2010b] being widely used. However, CIM does not provide

a centralised configuration system; it is a standard description-method and protocol

rather than a configuration system.

A key component of CIM is the CIM Schema, which defines extensible, standard-

ised descriptions for an extensive range of hardware and software components. How-

ever, CIM models are primarily used for proprietary vendor-specific enterprise systems

which extend standard CIM classes. With so many non-standard CIM classes the value

of standardisation is not clear.

CIM includes a language to describe objects, the Managed Object Format which is

based on the Interface Definition Language (IDL) for language-independent interface

specification, typically used for remote procedure call. MOF is capable of describing

meta-models and schema, as well as classes, properties and method signatures. A

sample MOF file is shown in Figure 2.1.

CIM adoption has not been as widespread as perhaps it could have been. The com-

plexity of the protocols and schema, and the lack of need for such a system outside of

an enterprise environment has led to a situation where only large enterprise software

from companies such as IBM and HP provide CIM interfaces, and Microsoft Win-

dows, which has included an enterprise-targeted CIM interface since 2000 [Microsoft

Chapter 2. Background 8

Corporation, 2010].

There is a notable absence of CIM support in open-source software such as Linux.

The complexity of implementing CIM presents a significant opportunity cost to devel-

opers who would otherwise be contributing their time to developing the core function-

ality of their software [Brasher and Schopmeyer, 2006]. Furthermore, the CIM object

model allows the creation of object instances and the execution of instance methods

in an imperative manner and allows the existence CIM objects which do not provide a

declarative interface. This results in an imperative rather than declarative configuration

process.

2.1.2 Declarative configuration

The past twenty years has seen the rise of declarative configuration, in which the goal

state of the system is specified, rather than the steps required to achieve it. This concern

with the “what” rather than the “how” sets declarative configuration apart from scripts,

conditional actions, and calling methods on objects. Indeed, we can see that these

traditional forms of configuration are imperative. All declarative configuration systems

are based on two important principles:

Idempotence requires that when a configuration action is successfully repeated, the

outcome will be identical. This is important when using low-level abstractions, such as

a command which adds a line to a configuration file. A command which ensures that

a given line exists must instead be used, otherwise the file may contain the same line

numerous times. Idempotence is a desirable property because recovery from a failure

becomes possible simply by executing the configuration commands again; presuming

that the commands themselves do not cause the error. In practice, idempotence acts as

a substitute for atomicity, which is not achievable for configuration actions that cannot

be rolled-back [Kanies, 2003].

Convergence is a property of a system which moves eventually to a goal state. The

system does not have to be in a consistent, configured state at any point prior to conver-

gence. In such a system it is the continuous re-application of idempotent configuration

commands which enable the system to repeatedly reconfigure until the goal state is

reached. The are two advantages to this approach. Firstly, it is possible for the system

to recover from the failure of a given configuration by simply re-running the configu-

ration commands. For example, if a file on an unavailable remote server is required,

Chapter 2. Background 9

System
Administrator

Version
Control

Configuration
Server

Client

Client

Client

Push

Pull

Pull

Pull

Pull

Figure 2.2: A typical declarative configuration system. The system administrator
authors a declarative specification which is stored in version control. The config-
uration server periodically retrieves the latest revision and computes the configu-
ration for each of its clients. Clients periodically retrieve their configuration from
the server in a voluntary manner.

then when it is eventually available the configuration process will continue. Secondly,

the concept of convergence applies equally well to both individual machines and dis-

tributed systems. For example a server may require configuration to allow a client to

access it and the client may require configuring with the address of the server. As

one is inevitably configured before the other, there is an intermediate undefined state,

during which the system is converging towards the goal state of both client and server

being configured. In a convergent system we are not interested in the order in which

idempotent commands are executed, as long as they eventually converge.

2.1.3 Declarative tools and languages

There are several declarative configuration tools in use today. These tools are con-

ceptually similar and share the common goals of providing abstraction, encapsulation,

and site-wide automation. Each has a centralised architecture, where a server is re-

sponsible for distributing the appropriate configuration files to a specific machine. The

primitives provided by each configuration languages are comparatively low-level. The

concept of a logical component: a “bundle” of files or operations, exists to some extent

in each system. Lower-level primitives are combined with a mechanism for dividing

the machines to be configured into different “classes”, based on some machine-specific

variable, such as which operating system is installed. This allows the administrator to

Chapter 2. Background 10

Figure 2.3: CFEngine management interface, showing a knowledge management
view.

assign specific roles to various machines, or groups of machines. The configuration

system then combines the configuration aspects for the various classes into which each

machine falls, and so dynamically produces machine-specific configurations. Figure

2.2 shows the architecture typical of such systems.

The remainder of this section will examine several popular declarative configura-

tion tools. Each system has its own strengths and weaknesses, its own terminology, its

own abstractions over underlying resources, its own protocols, and its own configura-

tion language.

CFEngine

CFEngine was initially developed in 1993 and was one of the first declarative configu-

ration systems [Burgess et al., 1995] along with LCFG [Anderson and Scobie, 2000].

It follows the centralised model from Figure 2.2, and provides a declarative config-

uration language as well as a web-based management interface, shown in Figure 2.3

which facilitates knowledge management and auditing.

CFEngine is grounded in a theoretical model known as promise theory, which was

developed to describe the original CFEngine’s use of idempotent and convergent op-

erations. In CFEngine new configurations are pulled from the server by the client,

rather than pushed, which results in a voluntary process. Promise theory abstracts both

constraints over a local machine and between remote machines, enabling distributed

configuration processes to be modelled as promises to perform certain configuration

operations. While promise theory offers insights into distributed and delegated config-

Chapter 2. Background 11

bundle agent set_root_password
{
files:
"/etc/passwd"
comment => "Set the root password",
edit_line => set_user_field("root",2,"xyajd673j.ajhfu");

}

Figure 2.4: A CFEngine bundle, showing a bundle with a single file promise
which sets the root user’s password [CFEngine AS, 2008].

bundle agent mysql_running {
commands:
"/etc/init.d/mysql start"

}

Figure 2.5: CFEngine bundle with an imperative command to start MySQL. This
is not the recommended solution to this problem, but there are no measures to
prevent the user from writing such a configuration.

uration processes, it does not contain any formalisms which are of use in this thesis.

A CFEngine configuration files consists of a series of promises, grouped into bun-

dles. A bundle is a collection of promises which are applied together, and enforced

either on the client or the server. The body of a bundle is a template macro which

consists of a series of promises divided by type; Figure 2.4 shows a simple bundle

which sets the password of the root user. CFEngine’s low-level primitives such as

file editing and shell command execution can lead to the creation of non-convergent

operations. For example, in Figure 2.5 a promise which executes a shell command is

shown.

Puppet

Puppet is a popular configuration tool created in 2005 to supersede CFEngine [Puppet

Labs, 2008]. It follows the same centralised architecture and conforms closely to the

original CFEngine’s resource-based model, rather than modeling in terms of promises.

Like CFEngine it features a sophisticated web-based management interface, shown in

Chapter 2. Background 12

Figure 2.7. As we have already seen a basic example of CFEngine configuration, we

provide an extended concrete example of Puppet configuration in Figure 2.6.

2.2 Constraint satisfaction

This section introduces the concept of constraint programming and gives an overview

of theoretical and practical aspects before, then presents the constraint solving and

modelling tools used in this thesis.

2.2.1 Constraint programming

Constraint programming is an approach to solving combinatorial problems in which

relations between variables are expressed as constraints. It is a declarative paradigm;

constraints are logical invariants rather than individual steps to be executed. Constraint

programming emerged from constraint logic programming in the late 1980s, in which

constraint handling is embedded in a host language. Extended versions of Prolog were

among the first implementations [Rossi, van Beek, and Walsh, 2006].

Constraint satisfaction problem

The central theoretical concept of constraint programming is that of the constraint

satisfaction problem (CSP). A CSP consists of a finite set of variables, each associated

with a finite domain from which its values may be drawn, and a set of constraints that

restrict the possible values that variables can take simultaneously. A solution is an

assignment of values to variables which satisfies all constraints. In the general case

CSPs are NP-complete, as they are a generalisation of boolean satisfiability (SAT), the

first known NP-complete problem.

Constraint optimisation problem

An common extension of the CSP is the constraint optimisation problem (COP), in

which a CSP is augmented with a cost function which must be minimised or max-

imised. Equivalent formulations include MAX-CSP and Weighted CSP. The constraint

optimisation problem is NP-hard, since it involves solving CSP, which is NP-complete,

as a sub-step. Likewise, its boolean counterpart, MAX-SAT is also NP-hard.

Chapter 2. Background 13

ntp.pp

class ntp {
case $operatingsystem {
centos, redhat: {
$service_name = ’ntpd’
$conf_file = ’ntp.conf.el’

}
debian, ubuntu: {
$service_name = ’ntp’
$conf_file = ’ntp.conf.debian’

}
}

package { ’ntp’:
ensure => installed,

}

service { ’ntp’:
name => $service_name,
ensure => running,
enable => true,
subscribe => File[’ntp.conf’],

}

file { ’ntp.conf’:
path => ’/etc/ntp.conf’,
ensure => file,
require => Package[’ntp’],
source => "puppet:///modules/ntp/${conf_file}",

}
}

init.pp

node server1 {
include ntp

}

Figure 2.6: A complete Puppet class for configuring NTP [Puppet Labs, 2011].
The configuration varies between operating systems, one for CentOS and Red
Hat, another for Debian and Ubuntu. This configuration specifies that the NTP
binary package must be installed, that the NTP service should be running and
configured to use the ntp.conf file downloaded from the Puppet server. A single
machine, server1 is configured to use the NTP class.

Chapter 2. Background 14

Figure 2.7: The Puppet management interface, showing successful runs across an
entire site.

Completeness

When we talk of completeness in the context of constraint programming, it is in refer-

ence to the search procedure being used. A complete search procedure is an exhaustive

one, which covers the entire search space. This does not mean that every solution has

been individually tested though, as inference may be used to prune the search space.

An example of an incomplete search method is stochastic local search, in which the

search space is explored randomly for a fixed period of time. Thus even for a decidable

logic, the solver may return the result “unknown”.

Search completeness should not be confused with logical completeness. Consider

a search procedure for a (hypothetical) non-finite-domain CSP with constraints in first-

order logic. It will always have an incomplete search procedure because of the unde-

cidability of first-order logic, irrespective of the fact that there exist logically complete

deduction systems for first-order logic.

2.2.2 Constraint solving: Gecode

Constraint satisfaction problems are solved via a constraint solver. In this thesis we

make use of the Gecode solver, an efficient, award-winning open-source constraint

solver written in C++ [Gecode Team, 2006]. Gecode solves problems with finite do-

mains, using an exhaustive (i.e., complete) search.

Chapter 2. Background 15

Backtracking

The search procedure is built upon the process of backtracking. This is a recursive

algorithm where each variable is assigned a value in turn. Upon each assignment the

constraints on that variable are checked for consistency. If the assignment is consistent,

then a recursive call is made to assign the next variable. If the assignment is inconsis-

tent then the next value from the variables domain is tried. If their are no remaining

values, then the algorithm backtracks.

Constraint propagation

Backtracking is inefficient, and though modern constraint solvers will backtrack when

they need to, it is constraint propagation which is a form of inference, and provides

most of the solving ability. After a successful variable assignment the domains of each

variable that shares a constraint with the current variable are checked, and any values

incompatible with the newly assigned value are removed. This continues recursively

until no domains need pruning. If a domain is empty then backtracking is triggered.

Many CSPs can be solved entirely via propagation.

Modern CSP solvers rely upon the use of various propagators to perform con-

straint propagation. Each class of constraints has its own propagator that implements

an efficient inference algorithm for domain pruning, such as a propagator for linear

arithmetic. This gives CSP a potential advantage over SAT similar to that of SMT;

the solver is equipped with higher-level information about a problem and can employ

more efficient search strategies.

Branch and bound

So far we have discussed approaches to constraint satisfaction. In order to instead solve

a constraint optimisation problem, a branch and bound algorithm is employed along

with the methods above. This stores the cost of the best solution found during the

search and compares it to candidate partial solutions as they are encountered. When

a partial solution is reached which cannot be completed to achieve a better cost than

the stored best, then backtracking is triggered. This avoids an unnecessary search into

fruitless branches of the search tree, and is the method adopted by Gecode.

Chapter 2. Background 16

Set domains

Variables may be integers, arrays, or sets of integers. Yet the domain of a set variable

is the cartesian product of its element type’s members, which is too large to store in

memory, especially as backtracking keeps copies of domains. This problem is solved

by requiring sets of variable cardinality to have a finite element type. A set of 1..5 is

allowed, but a set of int is not, which ensures that set variables have a known upper-

bound on their cardinality. Gecode and other solvers then approximate set domains

as an interval, consisting of only the upper and lower bounds. These upper and lower

bounds are themselves sets, as the domain stored in full would be a set of sets. Such

sets are ordered based on inclusion (⊆), starting with the empty set and ending with the

set of all permissible elements. For a complete description of the process, see [Gervet,

1997].

2.2.3 Constraint modelling: MiniZinc

Constraint programming consists of writing models of a problem using constraints.

The constraints themselves are typically low-level, directly exposing the functionality

of the solver. For example, the constraint int_max(a,b,c) ensures that max(a,b) = c

holds, where a, b, and c are integers. At this level constraints are flat, they do not have

any nested expressions.

In order to ease the process of writing such programs, solvers typically provide a

modelling language which provides higher-level constructs. In recent years there has

been a move towards adopting a standard modelling language for constraint program-

ming and the language MiniZinc has emerged as a prominent standard supported by

numerous solvers [Nethercote, Stuckey, Becket, Brand, Duck, and Tack, 2007].

In MiniZinc the high-level and low-level representations of the model are sepa-

rated. The MiniZinc compiler accepts a MiniZinc model as its input, and generates a

low-level solver input file expressed in FlatZinc. The benefit of this approach is that it

is relatively simple for solver authors to implement FlatZinc support, as it is close to

the internal representation of constraints used by most solvers.

Chapter 2. Background 17

Take for example, the constraint a > 5∨b where a is an integer and b a boolean. It

may be modelled as follows in MiniZinc:

var int: a;
var bool: b;
constraint a > 5 \/ b;
solve satisfy;

Compiling with the MiniZinc compiler results in the following FlatZinc model:

var bool: BOOL____00001;
var int: a;
var bool: b;
constraint array_bool_or([BOOL____00001, b], true);
constraint int_le_reif(6, a, BOOL____00001);
solve satisfy;

The FlatZinc model represents a flattened version of the original model, in which

there are no nested expressions. The term a > 5 has been substituted with a new

variable BOOL____00001.

Furthermore, the MiniZinc compiler has performed a number of transformations

to produce a more efficient model. The logical disjunction has been replaced with the

constraint array_bool_or, which takes an array as its first argument and ensures that

at least one element has the truth value corresponding to the second argument, in this

case true.

The sub-expression a > 5 has been transformed into the constraint int_le_reif,

a reified constraint, in which the truth value of a constraint is reflected into a boolean

variable. In this case the inequality is reversed, and the translation results in the con-

straint (6≤ a) ⇐⇒ BOOL____00001.

Quantifiers

MiniZinc supports quantifiers, as well as aggregates such as sum and count. These

can be applied over set literals or constants, but not set variables. This is an important

limitation, as it excludes decision variables from being quantified.

For example, consider a set s with domain 1..3 and an integer n, it is not possible to

directly write the constraint ∃x∈s x > n using MiniZinc. Instead the quantified variable

must be replaced with a constant, namely the domain of s, which is 1..3. A model for

Chapter 2. Background 18

this is as follows:

var set of 1..3: s;
var int: n;

constraint
exists (x in 1..3) (
x in s /\ x > n

);

solve satisfy;

This model is un-rolled by the MiniZinc compiler into a much larger FlatZinc

model with three set_in (∈) and int_le_reif (≤) constraints. It is this need to

un-roll a finite number of constraints which prevents decision variables from being

quantified.

Limitations

As we have seen, MiniZinc’s quantifiers are quite limited in their use. Although

MiniZinc offers a much higher level of modelling than FlatZinc, it is still somewhat

restrictive as a language. Arrays of variables are supported, and directly correspond to

low-level array primitives in FlatZinc, however they must be of a fixed size. Variables

with set-domains are supported, so long as the element type of the set is finite. Such

sets have their cardinality determined by the solver, and this is a powerful modelling

feature. However, while arrays of set variables are permitted, the opposite is not. No

other nesting of arrays or sets is possible. Sets of sets, or sets of arrays cannot be

modelled directly.

We make use of MiniZinc as a convenient front-end to a constraint solver, and as

a target for formalisation of an executable semantics which is not far removed from

first-order logic. It’s unsuitability as a modelling language for system configuration

should, by this point, be clear.

Chapter 3

Related Work

This chapter discusses existing work which is relevant to this thesis. It is divided

into three major sections: automated configuration, automated re-configuration, and

constraint modelling languages. Each of the first two sections are divided according to

the constraint-solving approach used in the work, and within each subsection work is

presented approximately chronologically.

3.1 Automated configuration

This section discusses existing work related to automated configuration. It is structured

based on the underlying constraint-solving technology used in the work, starting with

event-driven methods and moving on to logic programming, boolean satisfiability, and

constraint satisfaction.

3.1.1 Event-driven approaches

The rules for configuring a system are expressed in a policy language. Such languages

can be grouped into a hierarchy [White et al., 2004]. At the bottom are action policies

in the form “if (condition) then (action)”. At the next level are goal policies, which

allow autonomic elements to decide how to implement them. At the top level are utility

function policies which are able to score system states based on desirability, for use in

an autonomic decision process. From the point of view of system configuration, action

policies are imperative, goal and utility function policies are declarative, regardless of

whether or not they incorporate otherwise declarative languages, such as first-order

logic.

19

Chapter 3. Related Work 20

One advantage of declarative approaches is compositionality: given requirements

A and B, a solution to A∧B is guaranteed to satisfy both A and B. However, an im-

perative approach does not; perhaps A must be enforced before B [Narain et al., 2008].

Furthermore, it has been observed [Couch and Gilfix, 1999] that a declarative language

is necessary for a system to be convergent. An imperative language would require code

to handle every possible system environment and failure scenario; existing components

would have to be changed or extended each time a new rule is added [Narain, 2005].

Ponder

Ponder is an object-oriented language for specifying security and management poli-

cies for distributed systems [Damianou, Dulay, Lupu, and Sloman, 2001]. It is an

event-driven, action policy language. Ponder builds on four core policy types: autho-

risation policies, event-triggered obligations, refrain policies, and delegation policies.

Constraints act to limit when policies are applicable, while meta-policies define which

policies are themselves permitted. Ponder is also capable of capturing roles, relation-

ships, and management structures pertaining to policy users. It has been successfully

combined with CIM and used to configure Linux routers [Lymberopoulos, Lupu, and

Sloman, 2004].

Object Constraint Language (OCL)

The Object Constraint Language (OCL) is the constraint language of UML, and is

an Object Management Group standard [Object Management Group, 2006]. It was

standardised without a precise formal semantics, which were later provided [Richters

and Gogolla, 1998], though weaknesses in the language were not able to be rectified.

OCL is built on the concepts of class invariants and method pre- and post-conditions

and is thus an action policy language. OCL expressions may incorporate the full power

of first-order logic and are necessarily undecidable.

Nevertheless, OCL is amenable to automatic analysis in restricted forms. Anal-

ysis typically consists of the verification of class invariants against method pre- and

post-conditions. UM2Alloy can translate an OCL model with bounded domains into

Alloy for verification, though it does not support postconditions [Anastasakis, Bor-

dbar, Georg, and Ray, 2007]. UMLtoCSP translates a bounded OCL model into a

CSP which is solved via ECLiPSe [Cabot, Clarisó, and Riera, 2008]. Strictly speaking

this is a constraint logic program (CLP) and not a pure constraint satisfaction prob-

Chapter 3. Related Work 21

lem (CSP). A translation of OCL to first-order logic allowed for subsequent checking

of the formula with a SAT solver, and was able to automatically verify unbounded

models [Clavel, Egea, and García de Dios, 2010].

Service Modeling Language (SML)

The Service Modeling Language (SML) was a Microsoft-driven attempt at producing

a standard metamodel and language for capturing complex configurations, including

constraints, which resulted in a W3C standard [W3C Members, 2007]. SML relies

heavily on XML, utilising elements, attributes, namespaces, XML schema, XPath,

XSLT transformations, and using Schematron for constraints. This is somewhat at odds

with the contemporary view that next-generation configuration languages should be

simple in order to avoid mistakes [Anderson, 2008]. SML was quickly abandoned by

Microsoft, citing performance and scalability issues [Vambenepe, 2008]. An example

of SML is given in Figure 3.1.

<xs:complexType name="IPAddress">
<xs:annotation>
<xs:appinfo>
<sch:schema xmlns:sch="http://purl.oclc.org/dsdl/schematron">
<sch:ns prefix="tns" uri="urn:IPAddress" />
<sch:pattern id="Length">
<sch:rule context=".">
<sch:assert test="tns:version != ’V4’ or count(tns:address) = 4">
A v4 IP address must have 4 bytes.

</sch:assert>
</sch:rule>

</sch:pattern>
</sch:schema>

</xs:appinfo>
</xs:annotation>
<xs:sequence>
<xs:element name="address" type="xs:byte" minOccurs="4" maxOccurs="4" />

</xs:sequence>
</xs:complexType>

<myIPAddress xmlns="urn:IPAddress">
<address>192</address>
<address>168</address>
<address>100</address>
<address>1</address>

</myIPAddress>

Figure 3.1: An SML schema describing an IP address (above) and its usage in a
model (below) [W3C Members, 2007].

Chapter 3. Related Work 22

3.1.2 Logic programming

There have been numerous efforts to translate policy languages into logical formulae,

from which induction may be performed to generate valid configurations. These pre-

dominantly make use of the logic programming language Prolog, which is based on

Horn clauses, a subset of first-order logic.

Couch & Gilfix were early advocates of the use of Prolog as a platform-independent

language for specifying goal policies, which could produce scripts that directly imple-

ment the policy as a low-level configuration [Couch and Gilfix, 1999]. However, they

conceded that interpreting Prolog code can be difficult for inexperienced users, and

that they did not view Prolog as a language for administrators to use directly. Ulti-

mately they advocated the creation of a tool which generates Prolog code from some

other policy language.

Configuration tools which incorporated Prolog soon emerged. Narain et al. created

a “service grammar” which allows the composition of lower-layer protocols while pre-

serving end-to-end security requirements [Narain et al., 2003]. The service rules are

implemented in Prolog, as high-level constraints describing valid configurations of

components in a network. The system is capable of generating valid configurations

given a set of components, as well as identifying inconsistencies or errors in existing

configurations.

Prototype system configuration tools developed at HP Labs also utilised logic pro-

gramming. An initial attempt attached policies to CIM classes using a modified ver-

sion of the object-oriented SmartFrog language and a custom logic solver [Sahai et al.,

2004b]. Subsequently this model was extended with “activities” attached to each CIM

class, which are used to create a workflow for the implementation of the generated

configuration [Sahai et al., 2004a]. A final prototype expresses constraints using an

extended version of the MOF file format used to describe CIM models [Hinrich et al.,

2004]. Although this final paper claims to formulate the problem as an Object-Oriented

Constraint Satisfaction Problem (CSP), its constraints are expressed as first-order logic

and solved with the EPILOG first-order resolution solver. Indeed, the authors note that

using this methodology it is possible to express constraints which are undecidable,

which would not be the case if the problem was represented as a finite domain CSP.

Logical constraints were added to the SmartFrog configuration language, which

is publicly available from HP Labs [Company, 2005]. The constraints are embedded

within the SmartFrog policy as literal strings of Prolog, delimited by #suchThat#.

Chapter 3. Related Work 23

Rightfully the authors note that this implementation leaves much to be desired in terms

of usability. Constraint satisfaction is provided by the ECLiPSe solver, which uses

a mixture of constraint and logic programming. One notable feature of SmartFrog’s

adoption of constraints is that they can be evaluated at run-time, in order to assign

values to variables at the time the policy is implemented on a client machine. However,

this means that the precise behaviour of the policy cannot be verified beforehand.

3.1.3 Boolean satisfiability (SAT)

Boolean satisfiability (SAT) is the problem of finding an assignment of variables in a

boolean formula which make the formula true. Compared with logic programming,

SAT is a highly restricted problem-solving method, however it has the advantage of

being decidable, and typically simple enough to solve efficiently.

Alloy

The Alloy Analyzer [Jackson, 2002] is a SAT-based relational modeling system. Al-

loy provides a language with relational and logical constraints, and given a bounded

search-space can find either instances or counterexamples of the model. Its design is

deliberately simple, focusing on only those elements which are amenable to automatic

analysis, and phrasing all data structuring with the notion of a relation. Alloy has rela-

tively poor support for sequences and integers [Jackson, 2012], which can be explained

by their cumbersome SAT encodings. While Alloy is a capable model finder, it does

not support the finding of optimal models, a significantly more complex task.

Network configurations have been automatically generated by directly modelling

the problem in Alloy [Narain, 2005]. However, this approach did not scale to networks

of a realistic size. Subsequently, Prolog was used to express constraints, and those

which Prolog could not solve directly were reduced to quantifier-free form and passed

directly to a solver [Narain et al., 2008]. The solver used was the Kodkod relational

logic solver which utilises a SAT solver and also serves as the backend to Alloy [Torlak

and Jackson, 2007]. Partial evaluation of the problem in Prolog results in far fewer

constraints being passed to the solver, and improved run times. However, the approach

is only capable of solving boolean combinations of simple arithmetic constraints on

integers, which the authors note is restrictive and they advocate the replacement of the

SAT solver with a more powerful SMT solver as possible future work.

Chapter 3. Related Work 24

Kodkod

The Margrave tool for firewall analysis makes use of the Kodkod solver [Nelson, Bar-

ratt, Dougherty, Fisler, and Krishnamurthi, 2010]. Margrave is able to take a Cisco

router configuration file and validate it, detecting overlaps and conflicts amongst rules,

and identifying the consequences of configuration edits. While Margrave’s perfor-

mance is acceptable, the authors note that it is slower than other more simple firewall

analysers and will scale poorly to large network sizes.

MiniSat

Engage is a prototype deployment system which makes use of the MiniSat SAT solver

to solve dependency constraints between components [Fischer, Majumdar, and Es-

maeilsabzali, 2012]. It has a small, formalised type system with component subtyp-

ing, though it does not include algebraic constraints. Deployments can be made to

Rackspace or Amazon Web Services. The configuration language is a subset of JSON

and focuses on describing resource structure and dependencies. Constraints are over

versioned dependencies, with greater than, less than, and equality constraints sup-

ported. Resources map onto a real-world entity such as "MySQL", with a “driver”

written in Python to control the resource. This is a similar approach to that seen in

CFEngine and Puppet.

3.1.4 Satisfiability modulo theories (SMT)

The satisfiability modulo theories (SMT) problem is a generalisation of the boolean

SAT problem, in which some variables are replaced with predicates from a range of

other theories; typically integers, real numbers, arrays, and bit vectors. This extends

the expressiveness of the SAT problem significantly, though it can introduce undecid-

able problems. The motivation for SMT is performance, for example the SAT encoding

of integers is particularly cumbersome, yet under SMT a linear solver could be used to

quickly solve algebraic constraints.

Cauldron

Cauldron represents the state-of-the-art in declarative configuration [Ramshaw, Sahai,

Saxe, and Singhal, 2006]. A research prototype, developed at HP Labs, it makes use of

an SMT solver to automatically generate valid configurations from an object-oriented,

Chapter 3. Related Work 25

declarative policy language.

Cauldron’s policy language incorporates object-oriented concepts from Java and

CIM, and is intended to be usable directly by a system administrator or designer. The

language includes classes, objects and primitives, arrays, single inheritance, and object

references, a well as a logical expression language for constraints. An example Caul-

dron model is shown in Figure 3.2, which is taken from [Ramshaw, Sahai, Saxe, and

Singhal, 2006].

Arrays in Cauldron may be of variable size, with a fixed upper bound, in which

case the solver is free to choose the cardinality of the set within the bound. Quanti-

fiers may be placed over array elements, but because of the upper bound this does not

result in search becoming incomplete. In Cauldron quantifiers are known as “group

operators” and take the form Q(id,arr,expr), where Q is either gand (group and) or

gor (group or)—which are the universal and existential quantifiers, respectively—id is

an identifier, arr is an array, and expr is a boolean expression.

Reference types in Cauldron act like pointers to objects, except that the object to

which they refer is decided by the solver. References cannot be null and are con-

strained to a specific type, ref Server must refer to a Server instance somewhere in

the solution.

Cauldron translates an object-oriented policy into a single first-order formula, which

is passed to the VeriFun solver [Walther and Schweitzer, 2003]. VeriFun is an SMT

solver, which may be used with different SAT solvers; the latest version of Cauldron

uses the LazySAT solver [Singla and Domingos, 2006]. VeriFun uses an instantiation-

based method to handle quantifiers, and as such its reasoning is not complete. It is

possible for VeriFun to produce a solution which is actually invalid.

Each field in a Cauldron class is converted into a function which returns the value

of the field given an object instance. Cauldron’s float is actually a rational, for

which VeriFun can only find solutions using a theory of rational linear arithmetic.

A precise definition of Cauldron’s translation process is not given, and its software

implementation has not been published, which makes it difficult to reason about the

semantics and limitations of Cauldron. The authors concluded their paper noting they

were seeking to improve Cauldron’s performance and test it on larger problems.

Chapter 3. Related Work 26

Database {
}

Computer {
purchaseCost: float;

}

Application {
licenseFee: float;

}

Server {
cost: float;
comp: Computer;
app: Application;
satisfy cost == comp.purchaseCost + app.licenseFee;
satisfy cost <= 2000;

}

DataServer extends Server {
data: Database;

}

DataCenter {
serv: DataServer[..12];
satisfy gand(i, serv, serv[i].cost <= 1500);

manager: (ref DataServer)[2];
satisfy gand(i, manager,

gor(j, serv, manager[i] == serv[j]));
satisfy manager[0] != manager[1];

}

main {
dc: DataCenter;

}

Figure 3.2: An example Cauldron model from [Ramshaw, Sahai, Saxe, and Sing-
hal, 2006]. With classes for Computer, Application, and DataCenter, and a single
global DataCenter dc. A Server consists of a Computer and and Application,
while a DataServer extends this with a Database. Each DataCenter contains up
to 12 Servers with an individual cost of less than 1500. Two servers are desig-
nated as managers, with a constraint that the manager is chosen from among this
DataCenter’s servers, and that the two managers cannot be equal.

Chapter 3. Related Work 27

3.1.5 Generative CSP

A component-based model of configuration has been seen as desirable for some time

[Mittal and Frayman, 1989]. This original vision for configuration allows unbounded

dynamic creation of components and as such cannot be described by a classical CSP.

The desire for a CSP formalism which allows for the introduction of variables and

constraints not known a priori has led to the development of several variations on

the CSP formalism, notably the Dynamic CSP [Mittal and Falkenhainer, 1990] and

Composite CSP [Sabin and Freuder, 1996]. Neither of these formalisms account for

component connections which have unbounded cardinality, which, while obviously

leading to an infinite search space, is nonetheless sometimes desirable, particularly for

speculative design tasks.

The problem of dynamically introduced components was addressed by a deriva-

tive of the Dynamic CSP: the Generative CSP [Stumptner and Haselböck, 1993]. It

provides an object-oriented type hierarchy with inheritance, where types contain dec-

larations of attributes, connection ports, and constraints. Both attributes and ports are

strongly typed, and constraints may be applied to either. Constraints can reference

neighbour components only, though it is possible to chain constraints together to nav-

igate the component hierarchy. New components are added to the solution only when

strictly required, so solutions with fewer components are preferred. The number of

components is not fixed, as in a standard CSP, and do not require explicit activation as

in a Dynamic or Composite CSP. To determine the size of the search space, the upper

bound on the cardinality of each port is calculated with respect to its constraints. Pre-

sumably this is an overestimate, but specific details are not given. To further reduce

the size of the search space, problems are decomposed into “packages” of almost-

independent sub-problems. Generative CSPs were developed further at Siemens, re-

sulting in the COCOS system used to configure large telephone exchanges, with over

40,000 components [Stumptner, Friedrich, and Haselböck, 1998].

However, the modern approach to modelling such CSPs is to describe dynamic

problems as a series of classical CSPs, rather than adopting a specialised formalism.

Thus there has been little response to the Generative CSP paradigm. Very few details

of the COCOS system or its language are available, some fifteen years later.

Chapter 3. Related Work 28

3.1.6 PoDIM

PoDIM is a framework for the Eiffel language which allows constraints on objects to

be described with a SQL-like syntax using an Entity-Relationship model [Delaet and

Joosen, 2007]. As a configuration language it has no definition beyond its implemen-

tation as a domain-specific language for Eiffel. Subsequent efforts to combine PoDIM

with an existing configuration reached the conclusion that PoDIM’s implementation

did not scale to problems of practical size [Delaet, Anderson, and Joosen, 2008].

3.2 Automated reconfiguration

This section discusses existing work related to automated reconfiguration. It is struc-

tured based on the underlying constraint-solving technology used in the work, starting

with event-driven methods and moving on to logic programming, constraint program-

ming, and A.I. planning.

3.2.1 Event-driven approaches

OCL, as discussed, is an event-driven approach which incorporates pre- and post-

conditions [Object Management Group, 2006]. As an event-driven policy language

it is able to describe more than one configuration task, as subsequent tasks may be

triggered by events. This is a form of reconfiguration, in which the original policy

describes how the system should react to change. Within OCL postconditions it is

possible to refer back to values from the previous state of the model by adding @pre

as a postfix to any variable name, as shown in Figure 3.3. Reconfiguration with OCL

suffers from the same drawbacks as configuration, primarily that the approach is im-

perative with respect to the system, with methods describing a sequence of actions to

be taken, rather than a final goal state.

A graph-based language for reconfiguring of software architectures was proposed

in [Wermelinger, Lopes, and Fiadeiro, 2001]. Reconfigurations are treated as opera-

tions on graphs, namely additions and removal of components and connections. The

proposed language is procedural, with Pascal-like scripts specifying a series of actions

on components with preconditions. These actions are translated into rewrite rules on

the component graph. The paper is illustrative; neither the the complete translation

process nor formal definitions are provided.

Chapter 3. Related Work 29

context Machine::addDisk(size : Integer) : Integer
post addDiskPost:
totalSize = totalSize@pre + size

Figure 3.3: An OCL postcondition, in which the Machine class’ totalSize is in-
cremented after the addDisk method is called. The @pre postfix provides access
to the previous value of a variable, in this case totalSize@pre.

3.2.2 Logic programming

Rhizoma is an experimental distributed software deployment system which utilises

constraints [Yin, Cappos, Baumann, and Roscoe, 2008]. It is capable of generat-

ing configurations given a set of resources and constraints over them, both described

in Prolog. The ECLiPSe constraint-logic-programming system is used to solve con-

straints, using a centrally-stored knowledge base reflecting the system state. Decision-

making is made only on an elected “leader” node, though any node is capable of be-

coming the leader. Optimisation plays an important role in Rhizoma. The ability of

ECLiPSe to maximise a utility function is used to configure a distributed service to

maximise its performance constraints, and take into account the cost of acquiring and

releasing virtual machines. Configurations do not consist of a declarative goal state,

but instead a set of “moves” which improve the service’s state. Starting from the

current system state, Rhizoma makes it possible to try to limit the number of moves

in order to obtain a lower-impact reconfiguration. However, limiting the number of

moves does not guarantee a minimal-impact reconfiguration when counteracted by an

objective function.

In [Castaldi, Costantini, Gentile, and Tocchio, 2004], the DALI multi-agent system

is combined with Lira, a network-based reconfiguration system. The combination of

DALI’s Prolog-based reasoning with Lira’s Java-based networking protocols allows

global reconfigurations to be performed dynamically through the cooperation of the

agents. Reconfiguration tasks are encoded as a set of action rules with preconditions.

Like Rhizoma, the use of rules with preconditions makes this an action policy lan-

guage, despite the fact that individual logical constraints are expressed declaratively.

Chapter 3. Related Work 30

3.2.3 Constraint programming (CP)

Virtual machine allocation using a constraint programming (CP) solver was studied as

the bin-repacking scheduling problem in [Hermenier, Demassey, and Lorca, 2011].

This problem starts with a sub-optimal placement of virtual machines onto physi-

cal machines, perhaps due to a failure occurring. The virtual machines are then re-

assigned, with the number of moves being minimised. The output of the constraint

program is a series of “moves”, hence it is both a bin-packing and scheduling problem.

The problem was encoded as a constraint program using the Choco CSP solving library

[Jussien, Rochart, Lorca, et al., 2008]. The solver was able to solve models with up

to 2,000 servers and 10,000 virtual machines in around 220 seconds, using a heuristic

“repair mode” in which some of the well-placed virtual machines were a priori fixed to

their current location. The results were incorporated into the virtual machine manager

Entropy [Hermenier, Lorca, Menaud, Muller, and Lawall, 2009].

3.2.4 A.I. planning

Planit combines a simple system configuration tool with an A.I. planner to perform

reconfiguration tasks [Arshad, Heimbigner, and Wolf, 2003]. Planning constraints are

written in the standard PDDL planning language, and solved with the LPG planner

[Gerevini and Serina, 2002]. Planit has a built-in model of machines and components

which may run upon them. Reconfiguration is performed after component failure by

incorporating the non-failed components into the goal state used by the planner, and

updating the initial state to match the system. This means that reconfigurations which

would require moving a non-failed component are not possible.

3.2.5 Local search

The 2011–2012 Google/ROADEF challenge covered a machine reassignment task at

large-scale [ROADEF, 2011]. The goal was to improve the usage of a set of machines,

which each had a number of processes assigned to them. Scheduling was not taken

into account, instead the goal was to generate a better static configuration within five

minutes. Hard constraints included limits on the capacity of each machine versus

the resources required by each process, certain processes which conflict with each

other, and dependencies between processes. Soft constraints included minimising the

percentage load of each machine, the balancing of work across available machines,

Chapter 3. Related Work 31

and the cost of moving a process, which varies between machines.

The scale of the problem was large: up to 5,000 machines and 50,000 processes.

The winning entry was a custom-coded local search method, which iteratively tries

to replace the current solution with an improved one [Gavranović, Buljubašić, and

Demirović, 2012]. Heuristics were devised specifically for the problem, and the search

progresses by performing problem-specific moves such as swapping pairs of virtual

machines. Such local search methods are not complete, as they can become trapped

in local minima, however we can see that when tailored well, the results can be im-

pressive. Another downside to this approach is that expert knowledge is required to

craft the solving strategy and heuristics, and the solver is limited to solving exactly

one specific problem.

3.2.6 SmartFrog & LCFG

The SmartFrog and LCFG configurations tools were combined in [Anderson, Gold-

sack, and Paterson, 2003] to create a prototype tool capable of exploiting SmartFrog’s

component-based peer-to-peer orchestration with LCFG’s low-level system configur-

ing abilities. Although the system is able to respond to change, its logic to do so is

custom-coded in Java for each component.

3.2.7 Dynamic software updating

Dynamic Software Updating (DSU) is a formalised methodology in which C programs

may be updated at runtime, [Hicks and Nettles, 2005]. DSU provides the ability to infer

a runtime patch based on changes between source files, in a manner similar to the Unix

diff utility. Some changes ultimately require manual intervention, but the approach

taken to automating patch generation is interesting due to the fact that changes between

the new and old program are inferred.

3.3 Constraint modeling languages

This section discusses recent research into modelling languages for constraint pro-

gramming (CP). Such languages build on top of the CSP formulation of the problem,

in terms of variables, domains, and constraints. This thesis makes use of once such

language, MiniZinc which is discussed in section 2.2.3.

Chapter 3. Related Work 32

The Zinc language, of which MiniZinc is a subset, is a rich solver-independent

modelling language [Marriott, Nethercote, Rafeh, Stuckey, De La Banda, and Wallace,

2008]. Zinc incorporates far more functionality than MiniZinc, including features such

as coercions via unification, both continuous and discrete domains, records types, tu-

ples, enumerations, and fixed-size nestable sets and arrays. However, in practice only

the G12 solver supports Zinc, and it is missing support for many key features [Stuckey,

de la Banda, Maher, Marriott, Slaney, Somogyi, Wallace, and Walsh, 2005]. Nor has a

compiler capable of translating Zinc to MiniZinc been developed.

Essence is a solver-independent modelling language based around natural language

and discrete mathematics [Frisch, Grum, Jefferson, Hernández, and Miguel, 2007].

It aims to provide a familiar interface to those outside the CP community who are

familiar with discrete mathematics. Essence is less sophisticated than Zinc, lacking

user-defined predicates, functions, or constrained types, but it is still ambitious and

far more complex than MiniZinc. Its features are mathematically inspired: nestable

sets, multi-sets, relations, partitions, and functions. Like Zinc, implementations of

Essence have suffered from the inherent complexity of the language and the mismatch

between what can be expressed and what current CSP solvers can solve. Indeed, it took

four years for the first full prototype compiler for Essence to appear [Akgun, Miguel,

Jefferson, Frisch, and Hnich, 2011], and it is compatible with only a single CSP solver.

s-COMMA is an object-oriented constraint modelling language which provides

classes, subtyping, and conditional components. A conditional component is field with

a constraint which determines whether or not that field’s object should be instantiated.

s-COMMA does not include sets or arrays, which greatly simplifies the semantics of

conditional components. Nor does it support quantification, or object references as

seen in Cauldron (see section 3.1.4). s-COMMA interfaces directly with a number of

constraint solvers such as Gecode/J and ECLiPSe.

Chapter 4

ConfSolve by Example

This chapter provides an overview of the ConfSolve language developed in this thesis.

This informal description is intended to demonstrate each of the language features in a

practical manner.

4.1 Language Features

ConfSolve provides the user with an object-oriented declarative language, with a Java-

like syntax, which adheres to several key principles:

1. Order never matters. Declaration and usage can occur in any order with no

difference in meaning.

2. Everything is an expression, except declarations.

3. All classes are equal: there are no built-in classes with special meanings such as

Machine or File.

4.2 Variables and Classes

A ConfSolve model consists of a global scope in which strongly-typed variables,

classes, and enumerations may be declared. For example, a simple machine may be

defined as:

33

Chapter 4. ConfSolve by Example 34

enum OperatingSystem { Windows, UNIX, OSX }

class Machine {
var os as OperatingSystem;
var cpus as 1..4;
var memory as int;

}

var m0 as Machine;

In which m0 is a Machine object in the global scope, with members os, an enumeration;

cpus, an integer subrange; and memory, an unbounded integer. This declaration of a

variable of type Machine results in a new Machine object being statically allocated.

Member variables may also declare objects, allowing the nesting of child objects

within a parent object. For example, we could add a network interface to the machine

definition:

class Machine {
...
var en0 as NetworkInterface;

}

class NetworkInterface {
var subnet as 0..3;

}

An instance of NetworkInterface will be created whenever a Machine is instantiated.

The lifetime of the NetworkInterface instance is tied to that of its parent object, and is

not shared between different instances of Machine.

4.3 Inheritance

Objects support classical single inheritance via abstract classes. For example, we de-

clare a class model machine-roles, with specialised subclasses for web servers:

abstract class Role {
var machine as ref Machine;

}

class WebServer extends Role {
var port as 0..65535;

}

Chapter 4. ConfSolve by Example 35

4.4 References

Associations between objects are modelled using reference types. References are han-

dles to objects elsewhere in the model, which cannot be null. By default, object decla-

ration is instantiation. Consider an instance of the web server role:

var ws1 as WebServer;

In the previous declaration of the Role class, the variable machine was declared as a

Machine reference. Thus ws1 contains a reference to a machine, in this case it will refer

to m0, as it is the only machine we have so far declared. The solver will automatically

assign the value of a reference to any instance of the appropriate type, so if we always

wanted ws1 to run on m1 we would also need to write:

ws1.machine = m1;

Which is an example of an equality constraint.

4.5 Constraints

Constraints are expressions which must hold in any solution to the model. For example,

introducing a database-server role which can be either a slave or master, and must be

peered with another slave or master, as appropriate:

enum DatabaseRole { Master, Slave }

class DatabaseServer extends Role {
var role as DatabaseRole;

// slave or master
var peer as ref DatabaseServer;

// the peer cannot be itself
peer != this;

// a master’s peer must be a slave,
// and a slave’s peer must be a master
role != peer.role;

}

Chapter 4. ConfSolve by Example 36

This allow us to define two database server roles:

var masterDB as DatabaseServer;
masterDB.role = DatabaseRole.Master;
masterDB.peer = slaveDB;

var slaveDB as DatabaseServer;
slaveDB.role = DatabaseRole.Slave;
slaveDB.peer = masterDB;

Likewise we may define logical boot-disks on a SAN for each physical machine,

and assign logical boot-disks to the two roles:

var db_disk as LogicalDisk;
db_disk.capacityGB = 2048;

var web_disk as LogicalDisk;
web_disk.capacityGB = 10;

Updating the declarations of Machine, WebServer and DatabaseServer with:

class Machine {
...
var bootDisk as ref LogicalDisk;

}

class WebServer extends Role {
...
machine.bootDisk = web_disk;

}

class DatabaseServer extends Role {
...
machine.bootDisk = db_disk;

}

4.6 Sets and quantifiers

Sets of variables may be declared, for example 10 web servers:

var webServers as WebServer[10];

Chapter 4. ConfSolve by Example 37

A quantified constraint over the members of webServers can ensure that each server’s

port is set to 80, as long as the role is not running on m0:

forall ws in webServers where ws.machine != m0 {
ws.port = 80;

};

As the port of m0 is not constrained, the solver is free to choose its value. Should we

want to specify it ourselves, we could write:

m0.port = 443;

So far our model contains only one Machine, m0, let’s declare a class to describe a rack

of 24 machines:

class Rack {
var machines as Machine[24];

}

var r1 as Rack;
var r2 as Rack;

Here machines is declared as a set of objects, 24 new instances of Machine will be

created as children of each Rack instance, in this case r1.

Given the following constraints, which place the master and slave databases in

different racks:

masterDB.machine in r1;
slaveDB.machine in r2;

If rack r2 fails, is there a valid solution? The answer is clearly no, and we can perform

a quick impact analysis of such a failure by simply commenting out r2. Alternatively

we could modify the definition of a Role to be:

abstract class Role {
var machine as ref Machine;
machine in r2.machines = false;

}

In either case ConfSolve will report that there is no valid solution to the model.

Chapter 4. ConfSolve by Example 38

4.7 Optimisation

Minimisation and maximisation constraints may be used for any solver-populated vari-

able. The solver will find not just a valid value, but an optimal value, given some ex-

pression to be maximised or minimised. For example, if we prefer database masters

and slaves to be in different racks, but this is not a hard constraint, then we can remove

the constraints:

masterDB.machine in r1;
slaveDB.machine in r2;

Replacing them with a constraint maximising the number of machines with peers on

different racks:

var databases as ref DatabaseServer[2];
var racks as ref Rack[2];

maximize sum r in racks {
count (db in databases
where db.machine in r.machines
!= db.peer.machine in r.machines);

};

4.8 Output

The final output of the ConfSolve compiler, once solving is complete, is an object-tree

in a format similar to the popular JavaScript Object Notation (JSON) format, which

we call ConfSolve Output Notation (CSON). We describe CSON in full in Section

5.4.6 and explain the rationale for its design. As an illustrative example, the CSON

corresponding to the model containing only m0 is as follows:

{
m0: Machine {
os: OperatingSystem.UNIX,
cpus: int 4,
memory: int 1024,
en0: NetworkInterface {
subnet: 0,

},

Chapter 4. ConfSolve by Example 39

bootDisk: ref LogicalDisk web_disk,
},
web_disk: LogicalDisk {
capacityGB: int 10,

},
}

4.9 Reconfiguration

This completes the description of the features of the basic ConfSolve language, the

formal description of which is given in Chapter 5. There is more to the ConfSolve

language though, in Chapter 7 we develop a series of extensions which facilitate re-

configuration tasks.

Chapter 5

The Syntax and Semantics of

ConfSolve

In this chapter we define the abstract grammar of the ConfSolve language and its out-

put format, and define its translation to a constraint satisfaction problem encoded in

MiniZinc. This chapter is based on work from [Hewson, Anderson, and Gordon, 2012]

and [Hewson and Anderson, 2011].

5.1 Core syntax of ConfSolve

This section describes the abstract grammar of ConfSolve, which is independent of

the concrete grammar which we chose for our implementation, and does not include

concrete syntax such as semicolons, comments, or whitespace rules. This provides a

concise description of the language, free from unnecessary detail. It also allows others

to use their own concrete syntax, but adopt the ConfSolve abstract syntax tree (AST)

in order to apply the same translation steps to target MiniZinc.

To avoid redundancy, we first define a minimal core language, and then a series of

derived constructs which are defined in terms of the core language.

Syntax of types:

T ::= type
int integer
t element type
t[] set of t
c [n] set of objects, with cardinality n

40

Chapter 5. The Syntax and Semantics of ConfSolve 41

t ::= element type
bool boolean
S integer subset
u enumeration
c object

S ::= {i1, . . . , in} integer subset

Identifiers are represented by metavariables: c is a class name, v is a variable name,

u is an enum name, ai is an enum member, l is a field name; i, m and n are integers;

and b is a boolean: true or false.

A ConfSolve type is either a boolean, and unbounded integer, an finite subset of

integers, an enumeration, and object, a set of element types, or a set of objects with

a fixed cardinality. Nesting of set types is not supported, as there is no direct way to

represent sets of sets in MiniZinc, however an object may contain a set field, which

may itself contain objects, giving the user the means to model arbitrary nesting via

objects. Variable declarations may not be of type c[], which is reserved for use during

type checking (see section 5.2).

Integers are the only unbounded type in ConfSolve, as is the case in MiniZinc.

Consequently a set of int cannot be declared, a restriction which we formally impose

when we describe the type system in section 5.2. This restriction stems from the fact

that quantifiers are unrolled as part of the MiniZinc to FlatZinc compilation process,

which is not possible when the domain of the quantifier is infinite. As it is usually

undesirable to have unbounded models, it is worth observing that the benefit of the

int type is that it allows constants whose domain is not known to be declared and

assigned separately. Thus one can define var id as int and later write the constraint

id = 4. It also allows the user to avoid having to specify the domain of functionally

defined variable values which ultimately depend on only variables with finite domains,

for example the domain of x = 5∗ y+3, where y is a constant defined elsewhere.

To reduce the complexity of the MiniZinc encoding, sets of objects c[n] have the

same upper and lower bound n on their cardinality. As an alternative, the user may

instead use a fixed cardinality set of objects, and a variable cardinality set of references

with a constraint that the latter must be resolved to only members of the former. The

derived expressions in Section 5.1.1 address the declaration of such fixed-cardinality

sets.

Chapter 5. The Syntax and Semantics of ConfSolve 42

Syntax of expressions:

e ::= expression
this current object
v variable
e.l field access
u.a enum member
e.size set cardinality
e1 BinOp e2 binary operator
Fold (v in e1 where e2) (e3) fold
bool2int(e) cast bool to int
-e arithmetic negation
!e logical not
[e1, . . . ,en] set literal
b boolean literal
i integer literal
(e) parenthesis

Fold ::= fold operator
forall | exists quantification
sum summation

Variables, constants, binary and unary operators, and parenthetical expressions are

defined in the standard manner. Object field access e.l evaluates to the field l of object

e. Enum constants are written in a fully-qualified manner as u.a, where u is the name

of the enumeration and a is a constituent member. The current object can be accessed

via this within the body of a ClassDecl. For expressions with set-type, e.size evaluates

to the cardinality of the set given by e. Three folds over sets are defined: universal

quantification, forall, existential quantification, exists, and summation, sum. Folds

include a where expression which filters the set prior to evaluating the fold. Finally,

the function bool2int provides type-casting between boolean and integer types.

Binary operators:

BinOp ::= binary operator
= | > | >= | < | <= | in relational
union | intersection | subset set
&& | || | -> | <-> logical
+ | - | / | * | ˆ |mod arithmetic

Chapter 5. The Syntax and Semantics of ConfSolve 43

Relational operators use the standard C-like notation, with the addition of in which

is the set membership operator ∈, and subset which is the subset operator ⊂. Logical

operators are and, or, implies, and biconditional. Arithmetic operators are standard,

where ˆ is exponentiation, and mod is modulo.

Syntax of models:

Model ::= model
Declaration* declarations

Declaration ::= declaration
ClassDecl class decl.
EnumDecl enum decl.
VarDecl var decl.
Constraint constraint

ClassDecl ::= class decl.
abstract? class c extends c′ {

(VarDecl | Constraint)*
}

EnumDecl ::= enum decl.
enum u {a1, . . . ,an}

VarDecl ::= variable decl.
var v as T
var v as ref c object reference

Constraint ::= constraint
e hard constraint
maximize e soft constraint

Identifiers are represented by metavariables: c is a class name, v is a variable name,

u is an enum name, ai is an enum member, l is a field name; i, m and n are integers.

A model consists of a series of declarations, of either classes, enumerations, vari-

ables, or constraints. A class declaration may contain any number of nested variable

or constraint declarations, and it may extend another class.

A declaration class c extends c′ is well-formed if and only if, there is a well-formed

class declaration for c′ and the inheritance hierarchy is acyclic, or if c′ is the top class,

denoted by the distinguished name ∅. A well-formed class may contain duplicate field

names.

Enumerations consist of a name and a non-empty a set of identifiers, which defines

its members. Variables are always declared with a type T . Object reference variables

Chapter 5. The Syntax and Semantics of ConfSolve 44

may be declared using var v as ref c. This creates a reference which will resolve at

solve-time to an instance of c elsewhere in the model, whereas the declaration var v as
c allocates a new instance of c.

5.1.1 Derived syntax

The grammar above describes the core of the ConfSolve language. The full language

contains a number of constructs which are derived from the core language, to keep

the core and its translation as simple as possible. These syntactic re-write rules are

performed by the parser in our implementation. The relation , means "equal by defi-

nition".

Derived declarations:

class c { (VarDecl | Constraint)* } ,

class c extends ∅ { (VarDecl | Constraint)* }

var v as m .. n , var v as {x | x ∈ N, x≥ m∧ x≤ n}

var v as t[m .. n] ,

var v as t[]

v.size >= m && v.size <= n

minimize e , maximize −e

Classes without a base type extend the top class, denoted by the distinguished name

∅. Integer subsets may be declared as ranges. Variable cardinality sets are given a

shorthand notation. Minimisation is defined as negated maximisation.

Derived expressions:

Fold (x in e1) (e2) , Fold (x in e1 where true) (e2)

count (x in e1 where e2) , sum (x in e1 where e2) (1)

count (x in e1) , count (x in e1 where true)

e1! = e2 , !(e1 = e2)

{e1; . . . ;en}, (e1∧·· ·∧ en)

Chapter 5. The Syntax and Semantics of ConfSolve 45

Quantifiers without filters are defined as having an always-true filter. The body of

a forall expression is defined as the logical conjunction of its sub-expressions. The

count expression is defined in terms of summation. The “not equals” operator is de-

fined as negated equality. Finally, a semicolon-delimited expression block is defined

as the conjunction of its sub-expressions.

5.2 Type system

From the information presented so far, we are able to recognise a syntactically correct

ConfSolve program. However, not all syntactically correct ConfSolve programs are

well-formed. For example, a program which compares booleans with integers, declares

a set of int, or makes use of undeclared variables. To complete our description of

ConfSolve, it is necessary to describe its type system.

Static typing serves two purposes, firstly to provide a level of compile-time safety,

and secondly to satisfy the CSP solver’s requirement that a domain is specified for

each variable. The smaller the domain, the better performance one can expect from the

solver. This is why the type 1..3 is more desirable than the type int.
We formally specify ConfSolve’s type system as a proof system, which is a declar-

ative specification of the rules governing the assignment of types to expressions. This

is separate from the actual type checking algorithm used in the ConfSolve compiler

which implements these rules.

Within a proof system types are assigned to expressions via typing judgements,

which are applied recursively, and take the form:

(Name)
premises

conclusion

where premises may be written on multiple lines or separated with a space. Judgements

which contain expressions require a typing environment to resolve variable names to

their declared type, which is similar to the concept of a symbol table, used when im-

plementing such systems.

Chapter 5. The Syntax and Semantics of ConfSolve 46

Environments:

E ::= v1 : T1, . . . ,vn : Tn type environments

dom(v1 : T1, . . . ,vn : Tn) = {v1, . . .vn} environment domain

We now begin the formal specification. Type system judgements may be made with

respect to a typing environment E, of the form v1 : T1, . . . ,vn : Tn, which assigns a type

to each in-scope variable. We write ∅ for the initial environment with an empty map.

Typing judgements:

E ` � environment E is well-formed

` T the type T is well-formed

T <: T ′ type T is a subtype of T ′

E ` e : T in E, expression e has type T

There are four judgements which we may make. That an environment is well

formed, that a type is well-formed, that a type is a subtype of another, and that an

expression has a given type.

Rules of well-formed environments and types:

Where Dc is the set of class declarations and De is the set of enum declarations.

(Env Empty)

∅ ` �

(Env Var)

E ` � ` T v /∈ dom(E)

E,v : T ` �

(Type Bool)

` bool

(Type Int)

` int

(Type Int Sub)

` S

(Type Enum)

enum u {ai
i∈1..n } ∈ De

` u

(Type Obj)

c′ 6=∅ →` c′

class c extends c′ {. . .} ∈ Dc

` c

(Type Obj Set)

` c

` c[n]

A well-formed environment is either empty, or contains a mapping of variable

names to types. A well-formed type is either a bool, and int, an enum, an integer

Chapter 5. The Syntax and Semantics of ConfSolve 47

subset, an object, a set of t, or a set of objects with a fixed cardinality. These rules

and those which follow make use of definitions introduced in the syntax of types and

expressions in section 5.1.

Rules of subtyping

(Extends)
class c extends c′ {. . .}

c <: c′

(Reflex)
` T

T <: T

(Trans)
T <: T ′

T ′ <: T ′′

T <: T ′′

(Set Subtype)
t <: t ′

t[]<: t ′[]

(Obj n-Set Subtype)
c <: c′

c[n]<: c′[n]

(Obj Set Subtype)
` c

c[n]<: c[]

(Int Sub)

S <: int

(Int Sub Union)

S <: S∪S′

Our rules of type assignment make heavy use of subtyping for all types, not just

objects, in order to make the type-assignment rules simpler. The first three rules define

the familiar rules of class-based inheritance, reflexivity (that a type is a subtype of

itself) and transitivity (that a subtype is a subtype of any of its supertypes). The next

three rules extend this notion to sets. The final two rules define integer subsets as a

subtype of int, and that an integer subset is a subtype of the union between that subset

and another subset. Thus {1,2} <: int, the purpose of which will be explained shortly.

With all of the pre-requisites in place, we can finally present the rules of type

assignment for expressions:

Rules of type assignment: E ` e : T

(Subsum)
E ` e : T
T <: T ′

E ` e : T ′

(Var)
E ` � (v : T) ∈ E

E ` v : T

(Bool Const)
E ` �

E ` b : bool

(Int Const)
E ` �

E ` i : {i}

(Enum Const)
E ` �

E ` u.a : u

(Set)
E ` ei : t ∀i ∈ 1..n

E ` [e1, . . . ,en] : t[]

(Eq)
E ` e1 : T
E ` e2 : T

E ` e1 = e2 : bool

(Ineq Op)
⊕ ∈ {>,>=,<,<=}

E ` e1 : int
E ` e2 : int

E ` e1⊕ e2 : bool

(In Op)
E ` e1 : T
E ` e2 : t[]

E ` e1 in e2 : bool

Chapter 5. The Syntax and Semantics of ConfSolve 48

(Subset Op)
E ` e1 : t[]
E ` e2 : t[]

E ` e1 subset e2 : bool

(Logical Op)
⊕ ∈ logical

E ` e1 : bool
E ` e2 : bool

E ` e1⊕ e2 : bool

(Set Op)
⊕ ∈ {union, intersection}

E ` e1 : t[] E ` e2 : t[]

E ` e1⊕ e2 : t[]

(Int Sub Set Op)
⊕ ∈ {union, intersection}

E ` e1 : S1[]
E ` e2 : S2[]

E ` e1⊕ e2 : (S1⊕S2)[]

(Arith Op Int)
⊕ ∈ arithmetic

E ` e1 : int
E ` e2 : int

E ` e1⊕ e2 : int

(Arith Op Int Sub)
⊕ ∈ arithmetic

E ` e1 : S1 E ` e2 : S2

E ` e1⊕ e2 : {x1⊕ x2 | x1 ∈ S1, x2 ∈ S2}

(Dot)
E ` e : c c <: c′ j ∈ 1..n

class c extends c′ {var li as Ti
i∈1..n }

E ` e.l j : Tj

(This)
E ` �

E ` thisc : c

(Set Card)
E ` e : t[]

E ` e.size : int

(Channel)
E ` e : int

E ` int2bool(e) : bool

(Quant)
Q ∈ {forall,exists} E ` e1 : t[]

E,v : t ` e2 : bool E,v : t ` e3 : bool
E ` Q v in e1 where e2 (e3) : bool

(Sum)
E ` e1 : t[]

E,v : t ` e2 : bool E,v : t ` e3 : int
E ` sum v in e1 where e2 (e3) : int

The first rule is that of subsumption, that an expression of a type may also take

any of its supertypes. This is followed by variable resolution in the environment,

and boolean integer and enumeration constants. The type of an integer constant is

a singleton set containing the constant’s value. This is significant, because ConfSolve

forbids sets of integers, thus the set literal [1,2,3] is legal in ConfSolve, having type

{1}∪{2}∪{3} = {1,2,3}. Indeed, it is the reason why the integer literal 1 has type

{1}, and why the type system makes an effort not to promote to integer subsets to int
too readily.

The rules for comparisons (Eq)–(Logical Op) are relatively straightforward, and

make heavy use of the subtyping rules. For example, recall that S is a subtype of int
and is this subject to the rule (Ineq Op). Likewise, when we state that both expressions

in the equality (Eq) rule must be of type T , we imply only that for both types there

exists a common supertype for which they may be substituted.

Chapter 5. The Syntax and Semantics of ConfSolve 49

The set operation (Set Op) follows a similar form, but (Int Sub Set Op) provides

a specialised rule for handling integer subsets, which applies the intersection or union

operator to the subset itself, as appropriate. The arithmetic operations (Arith Op Int)

and (Arith Op Int Sub) follow this same pattern, with the latter being somewhat un-

usual. Namely, that for arithmetic operations between integer subsets, the resulting

type is the integer subset containing the result of the application of the operation to

all pairs in the two source subsets. The motivation for this is the same as for the (Int

Const) rule, that the expression 1+2 has type 3, and thus the set literal [1+2] is legal.

This is a design decision to obtain the most precise type possible for an expression, in

order to reduce the domain which the solver will search for values of a given type.

The next four rules, from (Dot) to (Channel) specify types for member variable

access, the this pseudo-variable, set cardinality, and channeling integers to booleans.

The final two rules specify types for quantification and summation expressions,

which are the only rules which introduce variables into the environment, i.e., the scope

of v is e2 and e3, the where and body clauses, respectively.

In order to provide a succinct notation, the system has the following derived proper-

ties: if T <: T ′ then ` T and ` T ′; and if E ` e : T then E ` � and ` T and freevars(e)⊆
dom(E). That is, that the subtype judgement always involves well-formed types, and

that any free variables in an expression are well-formed members of its environment.

5.3 ConfSolve and MiniZinc

In this section we provide an overview of the process of compiling and solving a

ConfSolve model, and of the MiniZinc constraint modelling language.

Compiling and solving a ConfSolve model requires several steps, which are illus-

trated in Figure 5.1; the steps are as follows:

1. The ConfSolve compiler is invoked; the model is translated into a CSP expressed

in MiniZinc. This is described in Section 5.4.5.

2. The MiniZinc model is compiled into a FlatZinc model using mzn2fzn [Nether-

cote, Stuckey, Becket, Brand, Duck, and Tack, 2007].

3. The FlatZinc model is solved using a constraint solver. In our implementation

we use Gecode [Gecode Team, 2006].

Chapter 5. The Syntax and Semantics of ConfSolve 50

ConfSolve Compiler

ConfSolve Model

MiniZinc Model

MiniZinc Compiler (mzn2fzn)

FlatZinc Model

CSP Solver (Gecode)

Flat Solution

ConfSolve Post-Processor

ConfSolve Solution (CSON)

Figure 5.1: Compiling and solving a ConfSolve model. White boxes are files,
shaded boxes are processes.

Chapter 5. The Syntax and Semantics of ConfSolve 51

4. The solution found by the solver is parsed by the ConfSolve post-processor and

combined with the original model to produce an object-tree (CSON) represent-

ing the solution. This is described in Section 5.4.6.

5.4 Translation to MiniZinc

This section defines the translation from a ConfSolve model to MiniZinc in terms of

their abstract grammars. The translation occurs in two phases: a static allocation phase

in which indexes are generated for each object and an upper-bound on the number of

object instances in the model is calculated, and a translation phase in which a MiniZinc

abstract syntax tree is constructed.

5.4.1 An example translation

We begin with an example translation, showing in detail a MiniZinc model generated

by the ConfSolve compiler. We use the DatabaseServer model from Section 4.1, with

four instances of DatabaseServer:

enum DatabaseRole { Master, Slave }

class DatabaseServer extends Role {
var role as DatabaseRole;

// slave or master
var peer as ref DatabaseServer;

// the peer cannot be itself
peer != this;

// a master’s peer must be a slave,
// and a slave’s peer must be a master
role != peer.role;

}

// instances
var master1 as DatabaseServer;
master1.role = DatabaseRole.Master;

var slave1 as DatabaseServer;
slave1.role = DatabaseRole.Slave;

var master2 as DatabaseServer;

Chapter 5. The Syntax and Semantics of ConfSolve 52

master2.role = DatabaseRole.Master;

var slave2 as DatabaseServer;
slave2.role = DatabaseRole.Slave;

The resulting MiniZinc model begins with variable declarations. As MiniZinc does

not support records or objects, each field in the DatabaseServer class is declared as a

separate array, where the number of elements in the array is equal to the number of

DatabaseServer instances in the model, in this case four. The domain of the array

elements correspond to the type of the field. In the following example the Databas-

eServer_role has as its domain the contiguous set of integers 1..2, which are indexes

into the DatabaseRole enumeration:

array[1..4] of var 1..2: DatabaseServer_role;
array[1..4] of var 1..4: DatabaseServer_peer;

Constraints are first-order expressions which restrict the values a variable may take

from its domain. Each is a boolean expression which must evaluate to true. In this

case, the constraints come from the DatabaseServer class, and so are wrapped with

a forall expression which applies the constraint to all instances of DatabaseServer,

and defines the value of the variable this to be an index into the field arrays for the

DatabaseServer class. The identifier this has no special meaning in MiniZinc, and

was chosen simply to facilitate translation:

constraint
forall (this in 1..4) (
DatabaseServer_peer[this] != this
);

constraint
forall (this in 1..4) (
DatabaseServer_role[this] !=
DatabaseServer_role[DatabaseServer_peer[this]]

);

Each MiniZinc model must have a solve goal, which can be to either minimise or

maximise an expression, or simply satisfy the constraints in the model. In this case the

goal is the latter:

Chapter 5. The Syntax and Semantics of ConfSolve 53

solve satisfy;

Finally, the model must specify which variables values will be output by the solver.

This is useful when the model includes constants or intermediate variables, the values

of which are not of interest. In this case, it is simply:

output [
show(DatabaseServer_role),
show(DatabaseServer_peer)
];

5.4.2 Quantifiers

ConfSolve does not place any restrictions on quantifiers. However, the ConfSolve type

system limits all sets to finite domains, thus sets of int are forbidden, and therefore

so is any non-finite quantification. This is necessary to ensure decidability; quantifi-

cation in MiniZinc must be finite for the same reason. The MiniZinc compiler unrolls

quantified expressions at compile-time, which means that nested quantifiers can cause

an explosion in the size of the generated FlatZinc model. A nested quantification over

two set of m and n elements, respectively, generates m× n unrolled sub-expressions.

We have been satisfied with the performance of large models, but there is necessarily

a limit to their scaling, which we examine in Chapter 6.

5.4.3 Correctness

Our translation from ConfSolve to MiniZinc aims to satisfy a number of correctness

properties. Firstly, that a well-formed ConfSolve model should yield a well-formed

MiniZinc model; that is, a MiniZinc model free of invalid syntax or invalidly typed

expressions and declarations. Secondly, a well-formed ConfSolve type should yield a

well-formed MiniZinc domain. Thirdly, a well-formed ConfSolve expression should

yield well-formed MiniZinc expression, in which there are no type errors. Finally, the

MiniZinc model should be equivalent to the ConfSolve model. We define this equiv-

alence in terms of solutions: a MiniZinc model is equivalent to a ConfSolve model

when it produces equivalent solutions. A solution to a ConfSolve model is an assign-

ment of structured variables to values (expressed in CSON) in which all constraints in

Chapter 5. The Syntax and Semantics of ConfSolve 54

the model are satisfied. An equivalent solution to a MiniZinc model is an assignment

of flattened variables to values (expressed in FlatZinc) which can be mapped back to

the original ConfSolve model to produce a valid solution.

We do not provide a formal proof of these correctness properties in our translation.

However, as informal evidence for the correctness of our translation procedure we

validated each of the examples used in the thesis by hand, along with many other test

models designed with edge-cases in mind.

5.4.4 Static allocation

The static allocation phase determines the upper bound on the number of instances of

each class, assigns each object an index, and records which indices are assigned to the

subclasses of a given class. Its purpose is to generate the following two data structures,

for use in the later translation phase:

count is a map from a class names c to an integer representing the count of the number

of instances of c in the model.

indices is a map from a class name c to a set of integers representing the indices of

each instance of c or one of its subclasses.

The values of count and indices are updated incrementally as counting progresses

via the method described below. In order to handle inheritance we introduce the con-

cept of a root class, that is, the topmost class in any given hierarchy. Formally, root(c)

is c when the superclass of c is ∅, otherwise it is the topmost superclass of c. The

process of counting is as follows:

Given the definition class c extends c′, for each global declaration var v as T :

when T = c, count(root(c)) is incremented, and its value is added to the sets indices(c),

and to indices(c∗) for each ancestor c∗ which c extends. This process is then re-

peated for each field var v as T declared in class c or any ancestor of c.

when T = c[n], the case for T = c is repeated n times.

5.4.5 Translation

The translation describes the process of generating a MiniZinc abstract syntax tree

from a ConfSolve abstract syntax tree. We make use of the notation JxK to mean "the

translation of x", where x is some syntactic construct, such as a type or expression.

Chapter 5. The Syntax and Semantics of ConfSolve 55

Translation of types JT K:

JintK , int
JboolK , bool

J{i1, . . . , in}K , {i1, . . . , in}
JuK , 1 .. num(u)

JcK ,

{ indices(c)} if c is abstract MiniZinc: {x,y,z} is a set domain

1 .. count(c) otherwise MiniZinc: 1..n is a range domain

Jc[n]K , set of JcK
Jt[]K , set of JtK

Here we define JT K to be the MiniZinc translation of a ConfSolve type T , where

num(u) is the number of elements in enum u. Each ConfSolve type maps directly onto

a MiniZinc type, with the exception of enumerations and objects which are translated to

integer indices. For set types, the translation is recursive, but only to one level, because

MiniZinc does not permit sets of sets. The translation process has not yet begun: the

translation of a type is used as an intermediate step in the translations which follow.

Translation of global variable declarations:

Let index(c) be a non-pure function which generates a new index of class root(c)

by counting and returns its value. For each global declaration var v as T , introduce a

declaration:

when T = c[n]

JT K : v = {for i ∈ 1..n, index(c)}

MiniZinc: omitting the var keyword declares a constant

when T = c

JT K : v = index(c)

otherwise

var JT K : v

For each global declaration var v as ref c, introduce a declaration:

var JcK : v

The translation phase proceeds in a similar manner to the counting phase, and

makes use of object indices generated in exactly the same manner as those in the count

map. It is important that these indices are the same, so that an index corresponds to

Chapter 5. The Syntax and Semantics of ConfSolve 56

the correct value in the indices map. We define a non-pure function index(c) which

generates a new index of class root(c) by counting, and returns its value.

Translation begins with global variable declarations, as shown above. When the

type of the declared variable is a set of objects of class c with cardinality n, indices

are generated for each of the n objects. When the type is a object of class c, a single

index is generated. For all other types no values are assigned, and a var declaration is

introduced.

Reference variable declarations are translated in the same manner as the “other-

wise” case, that is a var declaration is introduced whose domain is the translation of

the c type given in the translation of types above.

Translation of class-level variable declarations:

For each ClassDecl defining a class c where count(c)> 0, containing fields

var fi as Ti
i∈1..n, introduce an array for each field fi:

when Ti = c′[n]

array [1 ..count(c)] of JTiK : c_ fi = [for i ∈ 1..count(c), { for j ∈ 1..n, index(c′) }]

when Ti = c′

array [1 ..count(c)] of JTiK : c_ fi = [for i ∈ 1..count(c), index(c′)]

otherwise

array [1 ..count(c)] of var JTiK : c_ fi

Where class c contains fields var fi as ref ci
i∈1..n,

introduce an array for each field fi:

array [1 ..count(c)] of var JciK : c_ fi

Variable declarations nested within classes are translated by introducing an array
which will contain the values of that field for all instances of some class c. When the

type of the declared variable is a set of objects of class c′ with cardinality n, an array of

sets (the only nested construct permitted by MiniZinc) is declared, and for each of the

count(c) instances, n indices are generated. When the type is an object of class c′ the

declaration is simpler: an array of indices is introduced, one for each of the count(c)

instances. For all other types no values are assigned, and array of var is introduced.

Once again, reference variable declarations are translated in the same manner as

the “otherwise” case, where a var declaration is introduced whose domain is the trans-

lation of the type ci.

Chapter 5. The Syntax and Semantics of ConfSolve 57

Translation of global constraints:

For each global constraint e, introduce a statement:

constraint JeK

For each global constraint maximize e, update the objective expression o:

when o is undefined

o = JeK

otherwise

o = o+ JeK

The translation of hard constraints consists of translating their expressions, which

we discuss later. The objective expression o is the sum of every maximisation goal’s

expression, and is maintained throughout the translation phase. Each maximize con-

straint corresponds to a sub-expression in the objective function.

Translation of class-level constraints:

For each ClassDecl defining a class c where

count(c)> 0, for each constraint e, introduce a statement:

constraint forall (this in 1 ..count(c)) (JeK)

For each global constraint maximize e, update the objective expression o:

when o is undefined

o = JeK

otherwise

o = o+ sum (this in 1 ..count(c))(JeK)

Constraints may also be declared at the class-level, in which case they apply to

every instance of that class. The translation occurs in the same manner as for global

constraints, except that the constraints are placed over all instances in aggregate via

forall for hard constraints and sum for maximisation constraints.

Chapter 5. The Syntax and Semantics of ConfSolve 58

Translation of expressions JeK:

JvK , (see below)

JthisK , this

Je.lK , classof (e)_l [JeK]

Ju.aK , eindex(u,a)

Je1 Op e2K , Je1K JOpK Je2K

Je.sizeK , card(JeK)

Fold (v in e1 where e2) (e3), (see below)

Jbool2int(e)K , bool2int(JeK)

J−eK ,−JeK

J!eK , not JeK

J[e1, . . . ,en]K , (see below)

Je1 ˆ e2K , pow(Je1K,Je2K)

JtrueK , true

JfalseK , false

JiK , i

The MiniZinc translation JeK of a ConfSolve expression e is given above, where

eindex(u,a) is the index of element a in the declaration enum u {a1 . . .an}, and classof (e)

is the identifier c when the type of e is an object of class c. Expressions are translated

recursively, with the exception of literals.

The keyword this is translated into the identifier “this”, which has no special mean-

ing in MiniZinc. Instead, it is simply a quantified variable defined in the forall expres-

sion in the prior Translation of Class-Level Constraints section.

Translation of variables JvK:

Within the scope of class c, the translation JvK of a variable v is:

when v is declared in class c′ ∈ c∗

c′_v[this]

otherwise

v

Variables in expressions are translated in one of two ways depending on their type.

If the variable occurs within the scope of class c and was declared in c′ which is either

Chapter 5. The Syntax and Semantics of ConfSolve 59

c or one of its ancestors, then the result is a lookup in the array corresponding to field v

of the current instance (i.e., this) of class c′. For example, where c′ is DatabaseServer,

and v is “role”, the translation is:

DatabaseServer_role[this]

Otherwise, v is either a global variable or a quantified variable (from a fold), and

translates directly to its identifier.

Translation of folds:

The translation of a fold expression Fold (v in e1 where e2) (e3) is given by:

Fold (JvK in r) (b)

where r ,

when e1 is of type c[n]

1 ..count(c)

when e1 is of type u[]

1 ..num(u)

when e1 is of type {i1, . . . , in}[]
{i1, . . . , in}

when e1 is of type bool[]
{true, false}

and b ,

when Fold = sum
bool2int(v in Je1K /\ Je2K) * Je3K

otherwise

v in Je1K /\ Je2K -> (Je3K)

Folds such as foreach translate to a similar construct in MiniZinc, but one in which

the fold must be over a set of constant value, because the MiniZinc compiler unrolls

the fold at compile-time. Therefore, the translation consists of a fold of an expression

body b over a constant range r, which need not be contiguous.

The range r depends on the type of the expression e1, which the fold is over. When

it is a set of objects of type c, the range is the indices of all c instances. When the

type is an enum, it is the valid indices of the enumeration. When the type is an integer

subset the range is that subset.

Chapter 5. The Syntax and Semantics of ConfSolve 60

Ranges are larger than one might expect. Because MiniZinc requires that ranges

are constant, the range must contain all values of the relevant type, and we must cor-

respondingly wrap the body expression e3 with the implication, v ∈ e1 ⇒ e3, so that

the constraint is placed over only members of the set in the current solution. In fact,

because ConfSolve also allows a filter expression e2, this becomes v ∈ e1∧ e2⇒ e3.

The body expression b in fact takes two forms. For a forall or exists, the logical

form just mentioned is used. For a sum, an arithmetic form is used: bool2int(v ∈
e1∧ e2)× e3, where bool2int returns a 0/1 value given a false/true boolean.

Translation of binary operators JBinOpK:

J&&K , /\

J||K , \/

J/K , div
JBinOp′K , BinOp′

Binary operators are directly translated to MiniZinc operators. BinOp′ denotes all

operators not explicitly listed.

Reduction of set literal expressions:

The reduction of a set literal expression [e1, . . . ,en] of type T is given by:

In the current scope, insert the declaration:

var set__s as T

Where T is a well-formed type which satisfies the (Set) typing judgement in

section 5.2 and s is a unique integer.

In the current scope assume the constraint:

constraint e1 in set__s ∧·· ·∧ en in set__s

Finally, the derived expression is:

[e1, . . . ,en], set__s

The translation of set literal expression is defined in terms of a reduction to a vari-

able and associated constraints at the ConfSolve level, which should be performed

before any of the other transformation steps previously listed. This reduction is neces-

sary as it allows variables to appear inside set literals, which would otherwise not be

legal in MiniZinc.

Chapter 5. The Syntax and Semantics of ConfSolve 61

Solve statement:

when o is undefined

solve satisfy

otherwise

solve maximize o

The translation to MiniZinc concludes with the introduction of a solve statement,

the purpose of which is to provide a criteria for the solver’s search, which may be either

a satisfaction of the constraints, or maximisation of an objective expression.

5.4.6 Solutions

After solving, the output of the ConfSolve post-processor is an object-tree, the syntax

of which we refer to as ConfSolve Output Notation (CSON).

To obtain a solution the translated MiniZinc is compiled into FlatZinc and solved

using Gecode, which outputs assignments for each variable in a simple text-based for-

mat defined by FlatZinc. Generating a CSON tree from this text is straightforward: the

steps of the translation process are repeated, but whenever a MiniZinc variable would

be introduced, we instead read its value from the output file, and emit the correspond-

ing CSON representation:

Syntax of CSON:

V ::= value
i integer
true | false boolean
u.a enum member
c {Member*} object
ref Target object reference
t[n]{V1, . . . ,Vn} set literal

Member ::= member
v : V variable name : value

Target ::= target
v variable
Target.l field access
Target[i] set access

Chapter 5. The Syntax and Semantics of ConfSolve 62

Each CSON value corresponds to a type in ConfSolve. The solution output consists of

a single anonymous object representing the global scope. Nested within this are values

for each variable. In the special case of references, the value is the fully-qualified

name of the target variable, in which members of sets may be accessed via index, for

example v[i]. f resolves to the value of field f of the i th element of the set v.

CSON is not a sub-language of ConfSolve. This is because of the encoding scheme

used for sets of objects in MiniZinc. The fields of a given class are translated as arrays

indexed by object index. For example the array Server_host contains one element for

each Server object in the model. When the model contains a set of objects, such as

Server[5], then their indexes will map to a contiguous range of elements in the array.

However, because we have taken a set and represented it as an array, a symmetry is

introduced. An ordering of objects within the set will be present in solutions to the

model. This ordering must be represented CSON output for two reasons, given below.

Firstly, the ordering is necessary for the resolution of reference values. A reference

is expressed as a path to some target object. In order for the path to traverse an object

in a set, there must be a unique way in which to identify that object, and so CSON uses

the position of the object in the translated set as its identity in the path. For example

server[3] would be the third element of the server set.

Secondly, in Chapter 7 we extend ConfSolve for reconfiguration, in which a pre-

viously obtained solution is used as the starting point for subsequent configuration

changes. It is therefore necessary to preserve the set ordering, otherwise the mapping

between existing solution objects and model objects will be lost. CSON achieves this

by annotating set elements with their index in the translated array, so that this informa-

tion is available to the ConfSolve compiler when compiling a reconfiguration problem.

Chapter 6

Evaluation of Configuration with

ConfSolve

In this chapter the performance of ConfSolve is measured using several system con-

figuration problems: a large virtual machine allocation problem and several smaller

problems from previous work, which we benchmark against.

The purpose of this evaluation is to demonstrate that ConfSolve can be used to

model a number of different configuration problems, and is capable of successfully

finding solutions to them. Furthermore, we want to ensure that ConfSolve is able to

perform adequately on large models.

6.1 Experimental setup

The evaluation was performed on a machine with a 2GHz Intel Core i7 processor and

8GB of RAM, running Mac OS X version 10.8.1. We used the 64-bit MiniZinc to

FlatZinc converter version 1.5.1 with the --no-optimize flag, and the 64-bit Gecode

FlatZinc interpreter version 3.7.1.

6.2 Virtual Machine assignment

In this evaluation we use ConfSolve to generate an assignment of virtual machines to

physical machines in an Infrastructure as a Service (IaaS) configuration. Each physical

machine is identical, having 8 CPUs and 16GB or memory. Each virtual machine

has variables representing its requirements on the physical machine resources. These

declarations are as follows:

63

Chapter 6. Evaluation of Configuration with ConfSolve 64

class Machine {
var cpu as int; // 1 unit = 1/2 core
var memory as int; // MB
var disk as int; // GB

cpu = 16; // 2x Quad Core
memory = 16384; // 16 GB
disk = 2048; // 2 TB

}

abstract class VM {
var host as ref Machine;
var disk as int;
var cpu as int;
var memory as int;

}

Virtual machines may be one of two sizes, large and small. Large machines have 4

CPU units, 3.5GB of memory, and 500GB of disk. Small machines have 1 CPU unit,

768MB of memory and 20GB of disk:

class SmallVM extends VM {
cpu = 1;
memory = 768;
disk = 20;

}

class LargeVM extends VM {
cpu = 4;
memory = 3584;
disk = 500;

}

The infrastructure consists of two racks of 48 physical machines, onto which we wish

to allocate 350 small and 100 large virtual machines:

// physical machine instances
var rack1 as Machine[48];
var rack2 as Machine[48];

// virtual machine instances
var smallVMs as SmallVM[350];
var largeVMs as LargeVM[100];

Chapter 6. Evaluation of Configuration with ConfSolve 65

We define a constraint on virtual machine placement, as otherwise there is nothing

to prevent every virtual machine from having the same host:

var machines as ref Machine[96];
var vms as ref VM[450];

forall m in machines {
sum vm in vms where vm.host = m {
vm.cpu;

} <= m.cpu;

sum vm in vms where vm.host = m {
r.memory;

} <= m.memory;

sum vm in vms where vm.host = m {
r.disk;

} <= m.disk;
};

This constraint states that for each physical machine, the sum of the required quantity

of each resource over all virtual machines hosted on it, must be less than the quantity

of that resource provided by the physical machine. In other words, that the virtual

machines assigned do not, in aggregate, consume more resources than are available.

This is repeated for the three resources, cpu, memory, and disk.

From this model, ConfSolve is able to automatically generate assignments of vir-

tual machines to physical machines (PMs), by automatically finding values for the

host variable of each VM instance.

Results

The performance achieved when scaling the problem up to 900 virtual machines is

shown in Figure 6.1. We did not attempt higher numbers because the time to run

the experiment scales highly non-linearly due to poor performance of the MiniZinc

compiler. Virtual machine allocation problems in the enterprise range from 10s to

100s of machines. We are satisfied that ConfSolve is a viable configuration tool for

tasks at this scale.

Surprisingly, the MiniZinc compiler is the bottleneck. We are not aware of any

task which the compiler performs which has a fundamentally non-linear time bound.

Indeed, the MiniZinc compilation process is fully documented in [Nethercote, 2012].

Chapter 6. Evaluation of Configuration with ConfSolve 66

0 200 400 600 800

0

10

20

VMs

So
lv

e
Ti

m
e

(s
ec

)

(a)

0 200 400 600 800

0

2

4

VMs

M
em

or
y

(G
B

)
(b)

200 400 600 800

0

50

100

150

VMs

To
ta

lT
im

e
(s

ec
)

Other
Solver
MiniZinc

(c)

Figure 6.1: Virtual machine allocation performance. a) Solve time. This is the time
taken for Gecode to find a solution to the FlatZinc problem. b) Solver memory us-
age, with peak usag of almost 6GB. c) Total time, including the time for MiniZinc
compilation which, surprisingly, dominates the process. Times are disjoint. Solver
referes to Gecode, and Other referes to the time taken for the ConfSolve compiler,
post-processor and intermediate scripts.

Chapter 6. Evaluation of Configuration with ConfSolve 67

Problem ConfSolve Cauldron
Geometry 93 327
Firewall 145 504
QM4 394 2077
ServerComplex7 652 3149
ServerComplex10 875 4254

Table 6.1: Cauldron test suite run-time in milliseconds, averaged over three runs.
Shows ConfSolve consistently outperforming Cauldron.

6.3 Cauldron Test Suite

ConfSolve uses a similar object-oriented language to Cauldron [Ramshaw, Sahai, Saxe,

and Singhal, 2006], a policy-based design tool which is able to describe CIM mod-

els. Cauldron is able to generate solutions to these constraint-based system designs;

an example of configuring an enterprise server with physical partitions is provided in

[Ramshaw, Sahai, Saxe, and Singhal, 2006].

HP Labs kindly provided us with a copy of the Cauldron binary (version rel.10c)

and a number of sample problems from their test suite. We do not have permission to

reproduce these sample problems, but the example described at length in [Ramshaw,

Sahai, Saxe, and Singhal, 2006] is representative in terms of scope and size. We trans-

lated a representative subset of these problems into ConfSolve models in order to con-

firm that ConfSolve can represent existing constraint-based configuration models.

Results

We benchmarked the solution time of equivalent ConfSolve and Cauldron models,

the results of which can be found in Table 6.1. ConfSolve consistently out-performs

Cauldron by a factor of around four on the test hardware described at the beginning of

this section. This difference is plotted in Figure 6.2.

The build of Cauldron which we were provided with makes use of a private build of

the VeriFun theorem prover [Walther and Schweitzer, 2003]. This is used by Cauldron

in conjunction with a custom SAT solver which uses the LazySAT algorithm [Singla

and Domingos, 2006]. Given that Cauldron dates from 2007 and is no longer under

development, more recent SAT solvers may provide a performance improvement, but

Cauldron is a “black box” and we have no way to determine if this is the case.

Chapter 6. Evaluation of Configuration with ConfSolve 68

Geo
metr

y

Fire
wall

QM
4

Serv
erC

om
ple

x7

Serv
erC

om
ple

x1
0

1,000

2,000

3,000

4,000

Ti
m

e
(m

s)

ConfSolve

Cauldron

Figure 6.2: Plot of the Cauldron test suite run-time in milliseconds, averaged over
three runs. ConfSolve is approximately five times faster than Cauldron.

6.4 Cauldron VM Allocation

The Cauldron test suite problems are relatively small in terms of search-space, despite

some models being over 100 lines of code. We therefore translated our large-scale VM

example into an equivalent Cauldron model in order to compare performance at scale.

Results

The results in Table 6.2 show that, for this example at least, Cauldron does not scale to

practical problem sizes, failing when only 17 virtual machines are to be allocated to 5

physical machines. This may seem surprising at first, but Cauldron remains a prototype

and problems of moderate scale are beyond its design parameters. ConfSolve, however,

was able to scale to 900 virtual machines. We did not attempt higher numbers because

the time to run the experiment scales highly non-linearly due to the poor performance

of the MiniZinc compiler, as shown in Figure 6.1. We suspect that ConfSolve could

scale much further were improvements to be made to the MiniZinc compiler, though

this problem lies beyond our control.

Chapter 6. Evaluation of Configuration with ConfSolve 69

Problem (Virtual:Physical) ConfSolve Cauldron
VM Allocation 4:2 151 1717
VM Allocation 8:2 165 2115
VM Allocation 16:4 177 3995
VM Allocation 17:5 194 -
VM Allocation 50:96 2774 -
VM Allocation 100:96 6739 -
VM Allocation 200:96 16,331 -
VM Allocation 700:96 109,589 -
VM Allocation 900:96 167,701 -

Table 6.2: Virtual machine allocation run-time in milliseconds, averaged over
three runs. Cauldron failed to return any results beyond 17 virtual machines.

6.5 Summary

We have evaluated the performance of ConfSolve at scale using a virtual machine

allocation problem. Such problems are commonplace in larger enterprises. ConfSolve

performs well, finding solutions with up to 900 virtual machines allocated across 96

physical machines.

We compare ConfSolve with the closest existing work, Cauldron. This is in part

to verify that ConfSolve can simply express such models. Benchmarking was also

performed, with ConfSolve sustaining a 4x speed improvement.

Finally, the virtual machine allocation problem was benchmarked against Caul-

dron, in order to compare scaling performance between these tools. We found that

Cauldron did not scale to problems of a practical size. ConfSolve is therefore the first

general purpose configuration tool to do so.

Chapter 7

Extending ConfSolve for

Reconfiguration

In this chapter an extension to the basic ConfSolve language which permits reconfig-

uration is described. We present a conceptual overview, example, syntax extensions,

and a description of the translation of the extended language to MiniZinc.

7.1 Background

The configuration problems which we have examined so far have been one-off tasks;

initial configurations of a new system, starting from scratch. In practice the majority

of configuration tasks are incremental, starting from some existing state and applying

changes which take the existing configuration into account.

Take for example, the virtual machine assignment problem from Section 6.2. After

the system has been configured initially, it is desirable for subsequent reconfigurations

to take into account the current allocation of virtual machines so as not to move virtual

machines unnecessarily from one physical machine to the next. Such moves are to be

expected, as the CSP solver may explore a different subsection of the solution space if

we were to simply re-run a modified version of the initial configuration problem. Thus

we must somehow inform the solver about the previous state of the system, and how it

affects subsequent configuration decisions.

70

Chapter 7. Extending ConfSolve for Reconfiguration 71

7.2 Extended ConfSolve

Given that re-configuration is fundamental to the configuration process, we have ex-

tended the basic ConfSolve language with variables and expressions which depend on

the current state of the system:

parameters are variables which explicitly take their values from an external source

previous value expressions provide access to the prior ConfSolve solution

init and change blocks allow separate inital- and re-configuration constraints

Let us examine a simple example based on the virtual machine allocation problem,

in which we allocate virtual machines across a rack of physical machines with a 4:1

ratio. Bin-packing constraints are ignored to keep the example minimal. The goal of

this model is that a reconfiguration should never move a virtual machine off its physical

host, unless that host machine has failed.

// model.csm
class Machine {
param failed as bool;

}

abstract class VM {
var host as ref Machine;

}

var rack1 as Machine[48];
var vms as VM[192];

change {
forall vm in vms where !vm.host.failed {
vm.host = ~vm.host;

};
}

The Machine class represents physical machines, which may be in a failed state.

We presume an external monitoring system determines this, and triggers a re-run of

ConfSolve. The VM class represents a virtual machine, which has a physical host

reference. Variables rack1 and vms provide instances of both physical and virtual

machines. Finally, the change block contains the constraints which are enforced when

a re-configuration occurs (that is every configuration except the initial configuration).

Chapter 7. Extending ConfSolve for Reconfiguration 72

The change constraint is a hard constraint specifying that if a virtual machine’s host

has not failed, then the value of vm.host must be equal to its value in the previous

solution, ∼vm.host. The operator ∼e yields the value of e in the previous solution to

the model, may only be used within a change block, and assumes that the AST of the

model has not changed: only parameters may change their values. Parameter values

are described as CSON and provided in a separate file. The structure of the parameter

file must match the structure of the ConfSolve model, such as the following extract:

// params.cson
{
rack1: [
Machine { failed: false },
Machine { failed: true },
Machine { failed: false },
// ...

In which the second machine in rack1 has failed.

7.3 Parameter changes and migrations

We now examine the concepts of extended ConfSolve formally: m is a ConfSolve

model, P are the model’s CSON parameters, and S is the model’s previous CSON

solution. In the initial instance S is undefined. We define two distinct kinds of re-

configuration scenario:

parameter change is a reconfiguration triggered by a change in value of one of the

model’s parameters P. We presume some external system is monitoring and

updating parameter values to reflect the current system state.

migration is a modification of the model m itself, altering its AST. The result is a

new model. It is also possible to migrate the model’s parameters P and previous

solution S to correspond to the new AST where appropriate, for instance when

renaming a variable.

These two re-configuration scenarios are illustrated in Figure 7.1. Both take into

account the model m, previous solution S, and and parameters P. Thus when re-

configuring the next ConfSolve solution S′ is a function of m, S, and P.

Chapter 7. Extending ConfSolve for Reconfiguration 73

m

P1

a) Parameter Change

b) Migration

S1

m

P1

m

P2

S3

m

S1 S2

P2

m2m1

P1

S3

m2

P2

P2

S1

Figure 7.1: The two kinds of re-configuration. Bold arrows indicate ConfSolve
compilation/solving. a) Initial configuration of model m with parameters P1 results
in solution S1. Updated parameters P2 are obtained, and a new solution S3 found.
b) Migration via modification of model m1 to m2 along with its parameters and
solution is followed by re-solving to get solution S3

By distinguishing parameter changes from migrations we separate re-configuration

tasks into two kinds. The first being tasks which are explicitly captured in the model:

the parameters which are expected to change regularly, perhaps every few minutes. The

second being tasks which are less-common alterations of the model itself: migrations

between different versions of the model. Examples of such migrations include changes

to the infrastructure or the kinds of services present, i.e., the removal and addition of

new classes, objects and constraints.

7.4 An example translation

A simple example of a ConfSolve to MiniZinc translation is given below. A ConfSolve

model contains four object instances of the class Server which has a solver-assigned

id between 1 and 10. A reconfiguration constraint restricts the value of id to be equal

to its previous value (if any):

Chapter 7. Extending ConfSolve for Reconfiguration 74

class Server {
var id as 1..10;
change { id = ~id; }

}
var servers as Server[4];

The MiniZinc translation of this problem introduces the prior state in a variable

prefixed with _old and translates the reconfiguration constraint accordingly. The indi-

vidual fields are flattened into arrays, indexed by object. The object indices are in the

range 1..4 as there are four instances of Server in the model:

// MiniZinc
1..4: servers = [1,2,3,4];
array[1..4] of var 1..10: Server_id;
array[1..4] of 1..10: old_Server_id = [2,4,6,8];

constraint
forall (i in 1..4) (
Server_id[i] = old_Server_id[i]

);

7.5 Core Syntax extensions

This section presents the re-configuration extensions to the ConfSolve language for-

mally, in the same manner as Section 5.1.

Additional Syntax of expressions:

e ::= expression
∼e previous value

Extended ConfSolve introduces just one new expression, the previous value ex-

pression which evaluates to the value of some expression e in the previous solution to

the ConfSolve model. It may only be used within a change block, introduced below.

Chapter 7. Extending ConfSolve for Reconfiguration 75

Changes to the syntax of models:

Declaration ::= declaration
ClassDecl class decl.
EnumDecl enum decl.
VarDecl var decl.
ParamDecl var decl.
Constraint constraint
ConstraintBlock constraint block

ClassDecl ::= class decl.
abstract? class c extends c′ {

(VarDecl | ParamDecl | Constraint | ConstraintBlock)*
}

ParamDecl ::= parameter decl.
param v as T
param v as ref c object reference

ConstraintBlock ::= constraint block
change { Constraint* } change block
init { Constraint* } initial block

A number of changes to the syntax of models in Section 5.1 are made in extended

ConfSolve. Parameters are introduced to complement variables; these take their values

from an external CSON representation which follows the same structure as the current

ConfSolve model. Constraint blocks are introduced at the global and class-nested lev-

els, which provide conditional compilation of constraints. Constraints in a init block

are enforced for the initial configuration only, while those in a change block are en-

forced only for subsequent re-configurations and so may contain the ∼e operator to

access the previous value of an expression.

7.6 Architecture

Our implementation of extended ConfSolve builds on top of the MiniZinc transla-

tion process and Gecode CSP solver described in Section 5.3. As shown in Figure

7.2 the basic process is extended by passing in both CSON-formatted parameters and

the CSON-formatted previous solution into the ConfSolve compiler in addition to the

ConfSolve model.

Chapter 7. Extending ConfSolve for Reconfiguration 76

ConfSolve Compiler

MiniZinc Model

MiniZinc Compiler (mzn2fzn)

FlatZinc Model

CSP Solver (Gecode)

Flat Solution

ConfSolve Post-Processor

ConfSolve Solution (CSON)

ConfSolve Model Parameters

Figure 7.2: Compiling and solving an extended ConfSolve model. White boxes
are files; shaded boxes are processes. The basic ConfSolve architecture has been
extended so that both models (as ConfSolve) and parameters (as CSON) are input
into the ConfSolve compiler, along with the previous solution (as CSON).

Chapter 7. Extending ConfSolve for Reconfiguration 77

7.7 Translation to MiniZinc

As with ConfSolve, the semantics of extended ConfSolve are defined by specifying

the translation of the language into MiniZinc. This sections consists of a number of

extensions and modifications of the translation scheme given in section 5.4.5.

Syntax of CSON values:

V ::= value
i integer
true | false boolean
u.a enum member
c {Member*} object
ref Target object reference
t[n]{V1, . . . ,Vn} set literal

Member ::= member
v : V variable name : value

Target ::= target
v variable
Target.l field access
Target[i] set access

The process of translating extended ConfSolve to MiniZinc begins with not only

a ConfSolve model, but also parameters and a previous solution, both expressed in

CSON, the ConfSolve object notation. The syntax of CSON, defined in Section 5.4.6

is reproduced above for reference.

The translations outlined below occur after the static allocation phase described

in section 5.4.4, in which indexes are assigned to each object, and the upper bound

count(c) is calculated for each class c.

Translation of CSON values JV K:

Given a CSON value V , its translation to MiniZinc JV K is defined as:

when V = true ∨ V = false ∨ V = i

V

when V = c {Member*} ∨ V = c[n]{V1, . . . ,Vn}
undefined

when V = t[n]{V1, . . . ,Vn}
{ for Vi ∈ {V1, . . . ,Vn}, JViK }

Chapter 7. Extending ConfSolve for Reconfiguration 78

when V = u.a

eindex(u,a)

when V = ref Target

the index of the object O where path(O) = Target

We first define the MiniZinc translation JV K of a ConfSolve value V , which is used

throughout the following translations. Boolean and integer values are translated as

literals. The translation of objects and sets of objects is undefined. Firstly because

their MiniZinc representation consists of a constant integer index (or a set of these),

which is already known from the ConfSolve model’s static allocation phase. Secondly,

the expansion of the object’s fields into arrays is handled later as part of the translation

of variables, so there is not a one to one correspondence between CSON values and

MiniZinc values in this case.

The translation of enumerations is the same as for the ConfSolve model: eindex(u,a)

is the index of element a in the declaration enum u {a1 . . .an}, as in section 5.4.5.

The translation of an object reference is the index of the object in the ConfSolve

model whose path matches the Target expression which may be either a variable, a

field access, or an indexed object-set access. Formally, we define it as the object O

with path(O) = Target where path(O) is the CSON Target expression corresponding

to the full path of the object within the global scope. Each object has a unique Target

path, for example rack[2].machines[4].hostname.

7.7.1 Parameters

The values of all ConfSolve parameters are contained in a single CSON AST, which

follows the same structure as the original model. The type of all parameter values must

match their declared type, i.e., param v as T . Parameter values do not affect the object

counting performed in the static allocation phase, because that is based on the type

only, and not the value. Sets of objects already have a fixed cardinality as part of their

type, so there is no way to introduce extra objects.

The translation of parameters is described as two new rules, which handle param v

as T , in both class-level and global scopes. These rules make use of the corresponding

CSON value for a given parameter, that is, the CSON value which has the equivalent

path in the CSON AST as the given parameter. If such a CSON value does not exist

for every parameter, then the translation cannot proceed.

Chapter 7. Extending ConfSolve for Reconfiguration 79

Translation of global parameter declarations:

For each global declaration param v as T , and corresponding CSON value V ,

introduce a declaration:

when T = c[n]∨T = c

the translation of global var v as T , according to Section 5.4.5

otherwise

JT K : v = JV K

For each global declaration param v as ref c, and corresponding CSON value V ,

introduce a declaration:

JcK : v = JV K

Objects and sets of objects are translated in the same manner as var declarations

in standard ConfSolve (see Section 5.4.5). This is due to the fact that their translation

consists of constant object indexes generated in the static allocation phase, rather than

user-specified CSON values such as integers, sets of integers, and booleans. The pur-

pose of an object parameter is therefore to allow the values of its fields to be specified

as CSON.

For all other types, parameters are translated into MiniZinc constants, which con-

sist of a compound declaration and assignment. Reference parameters are translated in

a similar manner, in which the CSON path to the object is mapped into an object index

via JV K.

Translation of class-level parameter declarations:

For each ClassDecl defining a class c where count(c)> 0, containing fields

param fi as Ti
i∈1..n, and corresponding CSON values Vj

j∈1..n, introduce a declaration

for each field fi:

when T = c[n]∨T = c

the translation of class-level var v as T , according to Section 5.4.5.

otherwise

array [1 ..count(c)] of JTiK : c_ fi = [for j ∈ 1..count(c),JVjK]

Where class c contains fields param fi as ref ci
i∈1..n, introduce a declaration for each

field fi:

array [1 ..count(c)] of JciK : c_ fi = (as above)

Chapter 7. Extending ConfSolve for Reconfiguration 80

Variables nested within classes are translated using an array containing all in-

stances of a particular field, where the object index is the index into the array. Objects

and sets of objects are once again translated in the same manner as var declarations

in standard MiniZinc (Section 5.4.5). All other types are translated as an array for

each field, containing the translated CSON value for each object index in 1..count(c).

Reference parameters are translated in the same manner.

7.7.2 Previous values and change expressions

The previous solution to a ConfSolve model is represented as a CSON AST. This is the

output of a previous run of ConfSolve. As with parameters, the values in the CSON

solution does not affect the object counting performed in the static allocation phase,

because it is based on type only, and not on value. The number of objects is therefore

fixed.

We assume that the AST of the model has not changed since it was used to generate

the previous solution. However, the value of the parameters may change freely. We

also include some relaxations of this assumption which allow for easier migrations.

The translation of previous value expressions, and change blocks is described by

both new rules and revisions of existing rules for translating variables and expressions.

Translation of change and init statements:

Iff performing a reconfiguration, for each statement change { ei ∈ Constraint* },

introduce a expression:

e1∧·· ·∧ en

Iff performing an initial configuration, for each statement init { ei ∈ Constraint* },

introduce a expression:

e1∧·· ·∧ en

Change and init statements are blocks containing constraints, and can appear both

at the global level and nested within classes. Their translation is a simple form of con-

ditional compilation: change blocks are translated as the conjunction of their constraint

expressions only when a re-configuration is being performed, otherwise they are not

translated. Likewise for init blocks.

Chapter 7. Extending ConfSolve for Reconfiguration 81

Additional translation of global variable declarations:

For each global declaration var v as T , where T 6= c[n]∧T 6= c, and corresponding

CSON value V , introduce a declaration:

JT K : old_v = JV K

For each global declaration var v as ref c, introduce a declaration:

JcK : old_v = JV K

A new translation step is defined for global variables, in addition to those in stan-

dard ConfSolve (Section 5.4.5). For global variables which are not objects or sets of

objects, a MiniZinc constant is introduced with the appropriate type, and with value

equal to the MiniZinc translation of its corresponding CSON value. The MiniZinc

variable name is prefixed with old_ as its purpose is to expose the previous value of

that variable within the MiniZinc model. Reference variables undergo an equivalent

translation.

Additional translation of class-level variable declarations:

For each ClassDecl defining a class c where count(c)> 0, containing fields

var fi as Ti
i∈1..n and corresponding CSON values Vj

j∈1..n, where Ti 6= c[n]∧Ti 6= c,

introduce a declaration for each field fi:

array [1 ..count(c)] of JTiK : old_c_ fi = [for j ∈ 1..count(c),JVjK]

If any corresponding CSON value Vj is undefined, then substitute the anonymous

variable _ in place of JVjK and introduce the constraint:

constraint c_ fi [j] = old_c_ fi [j]

Where class c contains fields var fi as ref ci
i∈1..n, introduce a declaration for each

field fi:

array [1 ..count(c)] of JciK : old_c_ fi = (as above)

An equivalent translation step is introduced for class-level variables, resulting in the

introduction of old_ prefixed MiniZinc variables. ConfSolve variables nested within

classes are translated using an array containing all instances of a particular field, where

the object index is the index into the array. Variables which declare objects or sets of

objects do not have a translation, because their translation consists of constant object

indexes generated in the static allocation phase, as was the case with the translation of

parameters.

Chapter 7. Extending ConfSolve for Reconfiguration 82

class	
 C	
 {
	
 	
 var	
 x	
 as	
 int;
}

var	
 v1	
 as	
 C;

1..3:	
 v1	
 =	
 1;
1..3:	
 v3	
 =	
 2;
1..3:	
 v2	
 =	
 3;

array	
 [1..3]	
 of	
 int:	
 C_x;
array	
 [1..3]	
 of	
 int:	
 old_C_x	
 =	
 [0,	
 _,	
 0];
constraint	
 C_x[2]	
 =	
 old_C_x[2];

var	
 1..3:	
 r;
1..3:	
 old_r	
 =	
 3;

{
	
 	
 v1:	
 C	
 {
	
 	
 	
 	
 x:	
 0;
	
 	
 },
	
 	
 v2:	
 C	
 {
	
 	
 	
 	
 x:	
 0;
	
 	
 },
	
 	
 r:	
 ref	
 v2;
}

Model Previous Solution

MiniZinc Translation

var	
 v3	
 as	
 C;+	

var	
 v2	
 as	
 C;
var	
 r	
 as	
 ref	
 C;

v3.x

Figure 7.3: The translation of previous values of a class-level variable x, as part of
a migration in which a new object v3 is added to the model.

Chapter 7. Extending ConfSolve for Reconfiguration 83

There is a special provision made for when the CSON value Vi corresponding to

field fi is not present in the previous solution’s CSON AST. This is to support migra-

tions in which variables declaring objects are added and is the only situation in which

this can occur. See Figure 7.3 for an illustration of a migration in which an new object

v3 is added to an existing model for which a previous solution already exists. In order

to translate the declaration of x, we first attempt to find the corresponding CSON value

in the previous solution by traversing its AST. For v1.x and v2.x this is successful,

however for v3.x it is not. Instead we use MiniZinc’s anonymous variable _ as the

translation of v3.x and introduce a constraint that the new and old values of v3.x are

equivalent. This is a symmetry breaking constraint which prevents the solver from

searching for satisfying old values of v3.x. The benefit of this approach over assign-

ing an arbitrary placeholder value for missing values is that the count of differences

between the old_ variables and their counterparts is equal to the number of changes

between the previous solution and the forthcoming solution, which we take advantage

of later.

Translation of expressions JeK:

JvK , (see below)

Je.lK ,

old_classof (e)_l [JeK] if e.l is a sub-expression of some ∼e′

classof (e)_l [JeK] otherwise

J∼eK , (see below)

We define a revised translation of variables JvK below. The previous value ex-

pression ∼e is defined as simply JeK, but the rules for both variable (v) translation and

member expression e.l translation are made context-dependent to make use of previous

values. In the translation of member expressions, there are now two cases. The second

case is the standard translation which is an array access where JeK is the object index.

The first case, however, applies whenever the member expression is a sub-expression of

a previous-value expression, and results in the same translation except that the result-

ing MiniZinc variable receives the old_ prefix. The mechanism for accessing previous

values can now be seen: it is enough to prefix any variable with old_ to access its prior

value which was introduced during the translation of variable declarations.

Chapter 7. Extending ConfSolve for Reconfiguration 84

Translation of variables JvK:

Within the scope of class c, the translation JvK of a variable v is:

when v is a sub-expression of some ∼e, and v is not quantified:

when v is declared in class c′ ∈ c∗

old_c′_v[this]

otherwise

old_v

otherwise

when v is declared in class c′ ∈ c∗

c′_v[this]

otherwise

v

Where c∗ is the set containing c and all its ancestors.

The translation of variables undergoes a similar modification as that of member

expressions. When a variable is a sub-expression of a previous-value expression ∼e

then its standard translation is prefixed with old_. The standard translation has two

cases; the first for class-level variables, and the second for global variables.

We impose an additional restriction on when variables within a previous-value sub-

expression are translated with the old_ prefix. If a variable is quantified, i.e. was

introduced by a Fold expression, such as x in the expression forall (x in e1) (e2), then

it is not translated in this manner. This is because quantified variables are bound to

the expression over which they quantify. Thus it is not meaningful to talk about the

previous value of a quantified variable such as ∼x, instead we must quantify over ∼e1.

This approach has the benefit of not adding any further complexity to the translation

of folds.

7.8 The min-changes heuristic

There is one final translation which we have not yet mentioned, the min-changes

heuristic. This gives us the ability to automatically infer change constraints for a

model, without the user having to specify them. The min-changes heuristic is sim-

ple: for each variable in the model a soft constraint is introduced which is satisfied

if the value of the variable has not changed from the previous solution. Unlike the

Chapter 7. Extending ConfSolve for Reconfiguration 85

other translation steps the min-changes heuristic is implemented as a ConfSolve-to-

ConfSolve transformation; we simply expand variable declarations into variable dec-

larations plus constraints, before continuing with the usual MiniZinc translation.

Expansion of global variable declarations:

For each global declaration var v as T where T = c[n]∨T = c and each global

declaration var v as ref c, introduce a global constraint:

change {

maximize bool2int(v =∼v)

}

For global variables a constraint is introduced which maximises the integer equiv-

alent of an equality constraint between the value of the variable and its previous value.

If the variable has not changed, then the expression evaluates to 1, otherwise 0. The

constraint is placed within a change block as it makes use of the ∼ operator. Con-

straints are not placed over objects or sets of objects as these represent locations, not

values.

Expansion of class-level variable declarations:

For each ClassDecl defining a class c where count(c)> 0, containing fields

var fi as Ti
i∈1..n where Ti 6= c[n]∧Ti 6= c, and fields var f j as ref c j

j∈1..m, introduce a

class-level constraint for each field fx:

change {

maximize bool2int(fx =∼ fx)

}

The same process is repeated for class-level variables (fields), where a constraint is

introduced for each.

The min-changes heuristic provides a simple way to automatically generate change

constraints for models. It acts to resist change across all variables, and so can be ex-

pected to be useful only in cases where change is universally undesirable. We examine

the suitability and performance of this heuristic in the next chapter.

Chapter 8

Evaluation of Reconfiguration with

ConfSolve

In this chapter the reconfiguration extensions for ConfSolve are evaluated against sev-

eral system configuration problems. The problems from Chapter 6 are expanded to

cover reconfiguration and the three scenarios of parameter change, migration, and a

combination of the two.

8.1 Reconfiguration strategies

In order to evaluate our implementation of extended ConfSolve we examine both the

quality of solutions and the impact of reconfiguration on performance. Solution quality

is measured by counting the number of unnecessary changes introduced by a reconfig-

uration. We compare three reconfiguration strategies:

none ignores the previous system state

custom uses a model’s custom change expressions, to access previous system state

automatic uses a simple heuristic in place of a model’s change expressions

The automatic heuristic introduces a change constraint for each variable, given by

the following ConfSolve declaration:

maximize bool2int(v =∼v).

This allows us to measure the effectiveness of having custom change constraints as a

language feature, rather than having them determined by the compiler automatically.

86

Chapter 8. Evaluation of Reconfiguration with ConfSolve 87

We examine three reconfiguration scenarios, which represent the three modes in

which ConfSolve can operate: a migration, a parameterised model, and a migration of

a parameterised model.

8.2 Experimental setup

The evaluation was performed on a machine with a 2.5GHz Intel Core 2 Quad proces-

sor and 8GB of RAM, running Ubuntu 12.04. We used the 64-bit MiniZinc to FlatZinc

converter version 1.6.0 with the --no-optimize flag, and the 64-bit Gecode FlatZinc

interpreter version 3.7.3.

8.3 Adding Virtual Machines

VM 2

VM 1

VM 4

VM 3

VM 1

VM 2

VM 3

VM 4

VM 5

VM 6

Figure 8.1: Two virtual machines are added to an existing half-full datacenter.

This evaluation extends an evaluation used in the original ConfSolve paper [Hew-

son, Anderson, and Gordon, 2012] to include reconfiguration via a migration. We use

ConfSolve to generate an assignment of virtual machines to physical machines in an

Infrastructure as a Service (IaaS) configuration, and then add more virtual machines as

a migration. Figure 8.1 illustrates this scenario.

Each physical machine is identical, having 8 CPUs and 16GB or memory. Each

virtual machine has variables representing its requirements on the physical machine

resources. These are declared as follows:

class Machine {
var cpu as int; // 1/2 cores
var memory as int; // MB
var disk as int ; // GB

cpu = 16; // 2x Quad Core (1/2 core units)
memory = 16384; // 16 GB = 4x4GB DIMM

Chapter 8. Evaluation of Reconfiguration with ConfSolve 88

disk = 2048; // 2 TB
}

abstract class VM {
var host as ref Machine;
var disk as int;
var cpu as int;
var memory as int;

}

class StandardVM extends VM {
cpu = 1;
memory = 768;
disk = 20;

}

The infrastructure consists of two racks of 48 physical machines, onto which we

wish to allocate 250 virtual machines:

var rack1 as Machine[48];
var rack2 as Machine[48];

var vms as StandardVM[250];

A bin-packing constraint on virtual machine placement prevents over-provisioning

of host resources, i.e., for each physical machine the sum of required resources must

be less than the amount provided by the machine:

var machines as ref Machine[48];

forall m in machines {
sum r in vms where r.host = m {
r.cpu;

} <= m.cpu
&&
sum r in vms where r.host = m {
r.memory;

} <= m.memory
&&
sum r in vms where r.host = m {
r.disk;

} <= m.disk;
};

Chapter 8. Evaluation of Reconfiguration with ConfSolve 89

Finally, a reconfiguration constraint, stating that each virtual machine should re-

main on its previous host:

change {
forall vm in vms {
vm.host = ~vm.host;

};
}

To perform the evaluation, the size of the virtual machine set VM[250] is incremen-

tally increased by editing the model file. The results of scaling this problem up to 500

virtual machines are shown in Figure 8.2. The custom change expressions outperform

both the automatic and none strategies, with regard to both time and memory. The au-

tomatic approach quickly reaches the solver timeout of 10 seconds before completing

its search, though it is still able to produce sub-optimal results as it progresses.

The quality of the solutions follows a similar trend, with the the custom change
expressions performing a perfect reconfiguration with no reassignments of existing

machines. The automatic strategy quickly tends towards 250 reassignments, the max-

imum possible. The none strategy levels-off at 50 reassignments, which reflects the

default behaviour of the Gecode solver.

The poor performance of the automatic strategy is due to extraneous constraints.

The strategy generates a constraint for each variable in the model, yet most of these

variables are in fact constants, such as cpu = 1. This results in an ineffective branch-

and-bound search by the solver, which allocates a large amount of memory for back-

tracking. Ultimately the search times-out before finding high quality solutions. How-

ever, this behaviour is problem-specific and due to the internal heuristics of the solver.

Redundant constraints do not in general necessarily have a negative impact on perfor-

mance.

We conclude that for this evaluation, the addition of custom change expressions

to ConfSolve results in both an improvement in time and, in particular, memory per-

formance of the solver and successfully prevents unnecessary configuration changes

when compared with the none and automatic strategies.

Chapter 8. Evaluation of Reconfiguration with ConfSolve 90

100 200 300 400 500

0

20

40

60

Extra VMs

Ti
m

e
(s

)

Other
Solver
MiniZinc

(a)

0 200 400
0

5

10

15

Extra VMs
So

lv
e

Ti
m

e
(s

)

Automatic Custom None

(b)

0 100 200 300 400 500

0

1

2

3

Extra VMs

M
em

or
y

(G
B

)

Automatic
Custom
None

(c)

0 100 200 300 400 500

0

100

200

Extra VMs

R
ea

ss
ig

nm
en

ts Automatic
Custom
None

(d)

Figure 8.2: Adding Virtual Machines. a) Total time, including the time for
MiniZinc compilation, which dominates the process. b) Solve time, with time-
out at 10 seconds indicated by the dashed line. The automatic strategy quickly
times-out. c) Solver memory usage, with high memory usage for the automatic
strategy. The unusual shape of this graph is due to some internal aspect of the
Gecode solver. d) Solution quality, with 250 reassignments for the automatic
strategy, and 50 for none.

Chapter 8. Evaluation of Reconfiguration with ConfSolve 91

8.4 Parameters: Virtual Server Failure

VM 1 VM 2

VM 3 VM 4

VM 2

VM 1

VM 4

VM 3

Figure 8.3: Two physical machines fail, causing a reassignment of virtual ma-
chines.

This evaluation extends an evaluation used in the original ConfSolve paper [Hew-

son, Anderson, and Gordon, 2012] to include reconfiguration via parameterisation. We

use ConfSolve to generate an assignment of virtual machines to physical machines in

an Infrastructure as a Service (IaaS) configuration, and then fail some of the machines

via a parameter. Figure 8.3 illustrates this scenario.

Each physical machine is identical, having 2 CPUs and 2GB or memory. A param-

eter online indicates whether a machine is online or has failed:

class VM {
var host as ref Machine;

var cpu as int;
var memory as int;
var disk as int;

cpu = 1;
memory = 1024;
disk = 5;

}

Each virtual machine is identical and has variables representing its requirements

on the physical machine resources:

class Machine {
param online as bool;

var cpu as int;
var memory as int;
var disk as int;

cpu = 2;

Chapter 8. Evaluation of Reconfiguration with ConfSolve 92

memory = 2048;
disk = 10;

}

The infrastructure consists of 200 physical machines, onto which we wish to allo-

cate 200 virtual machines, with a 2:1 ratio this means that the physical machines are at

50% capacity:

var machines as Machine[200];
var vms as VM[200];

A bin packing constraint identical to that in section 8.3 is added to the model, which

we do not show here. This ensure that physical machines are not over-provisioned.

Virtual machines are constrained to be hosted only on machines which are online:

forall vm in vms {
vm.host.online = true;

};

We wish to distribute the virtual machines across the infrastructure, leaving head-

room, rather than packing them tightly on to physical machines. As this is a preference

we make use of a soft constraint, to minimise the number of virtual machines with a

common host:

minimize sum vm1 in vms {
count (vm2 in vms where vm1.host = vm2.host);

};

Finally, a reconfiguration constraint, which requires each virtual machine to remain

on its previous host as long as that host was previously online and is so currently.

The intent of this constraint is the same as for the previous example, the additional

complexity comes from the need to take into account machine failure:

change {
forall m in machines where m.online && ~m.online {
forall vm in vms where ~vm.host = m {
vm.host = ~vm.host;

};
};

}

Chapter 8. Evaluation of Reconfiguration with ConfSolve 93

To perform the evaluation, the sizes of both the set of physical machines and the

set of virtual machines are simultaneously increased in size, while maintaining their

ratios. An initial configuration is performed, followed by a reconfiguration in which

50% of the machines have their online parameter set to false.

The results of scaling this problem up to 300 virtual machines are shown in Fig-

ure 8.4. Custom change expressions narrowly outperform the automatic and none

strategies with regard to time, diverge towards significant improvements with regard to

memory from around 150 machines.

The quality of the solutions forms two distinct categories. The custom change ex-

pressions perform a perfect reconfiguration, in which only 50% of the virtual machines

are reassigned. The automatic and none strategies both perform the maximum possible

number of reassignments, 100%.

We conclude that for this evaluation, custom change expressions are a valuable

addition to ConfSolve, resulting in a minimal reconfiguration, where a maximal one

would otherwise have occurred.

8.5 Migration with Parameters:

Cloudbursting

This evaluation combines a migration with parameter changes, in order to show that

both can occur simultaneously. We model a scenario known as cloudbursting in which

excess load from an enterprise datacenter may be run on the cloud. Figure 8.5 illus-

trates this scenario.

We create an abstract class to represent a host, which may be either a physical

machine with 4 CPUs and 4GB of RAM, or a cloud, which has no fixed resources.

Physical machines have an online parameter:

abstract class Host {}

class Machine extends Host {
param online as bool;
var cpu as int = 4;
var memory as int = 4096;

}

class Cloud extends Host {}

Chapter 8. Evaluation of Reconfiguration with ConfSolve 94

50 100 150 200 250

0

200

400

600

VMs

To
ta

lT
im

e
(s

)

Other
Solver
MiniZinc

(a)

0 100 200

0

5

10

VMs
So

lv
e

Ti
m

e
(s

)

Automatic
Custom
None

(b)

0 100 200

0

0.5

1

1.5

VMs

M
em

or
y

(G
B

)

Automatic
Custom
None

(c)

0 100 200

0

100

200

VMs

R
ea

ss
ig

nm
en

ts

Automatic
Custom
None

(d)

Figure 8.4: Virtual Server Failure. a) Total time, including the time for MiniZinc
compilation, which dominates the process. b) Solve time, showing a marginal
advantage to the custom strategy. c) Solver memory usage, with a significant
advantage to the custom strategy. d) Solution quality, showing custom achiving
50% reassignments, the minimum possible.

Chapter 8. Evaluation of Reconfiguration with ConfSolve 95

Service 2

Service 1

Service 4

Service 3

Service 6

Service 5

Service 4

Service 3

Service 6

Service 5

Service 8

Service 7

Service 10

Service 9

Service 12

Service 11

Service 2

Service 1

Figure 8.5: Two enterprise machines fail, at the same time as more services are
added. Services on failed machines are moved onto non-failed machines, or into
the cloud.

Services are tasks which can be placed on hosts, and have requirements on the

amount of CPU and memory required to run them:

abstract class Service {
var host as ref Host;
var cpu as int;
var memory as int;

}

We define three specific types of task: web, worker, and database, with differing

CPU and memory requirements:

class Web extends Service {
cpu = 2;
memory = 2048;

}

class Worker extends Service {
cpu = 2;
memory = 2048;

}

class Database extends Service {
cpu = 4;
memory = 4096;

}

Chapter 8. Evaluation of Reconfiguration with ConfSolve 96

The infrastructure consists of 300 physical machines within the enterprise, and a

single cloud provider:

var enterprise as Machine[300];
var cloud as Cloud;

We create web, worker, and database services in the ratio 2:2:1.

var webs as Web[200];
var workers as Worker[200];
var databases as Database[100];

So that we may more easily quantify over all services, a set of service references

is created, which the solver will automatically resolve to the declarations above:

var services as ref Service[500];

A bin-packing constraint for the services hosted in the enterprise should be familiar

from the previous examples:

forall m in enterprise {
sum s in services where s.host = m {
s.cpu;

} <= m.cpu
&&
sum s in services where s.host = m {
s.memory;

} <= m.memory;
};

We do not wish to host services in the cloud if there is available capacity within

the enterprise. The constraint below states that if the number of services hosted in the

cloud is greater than zero, then the number of services hosted in the enterprise is equal

to the number of enterprise machines which are online. ConfSolve uses the -> operator

for logical implication:

count (s in services where s.host = cloud) > 0 ->
count (s in services where s.host in enterprise) =
count (m in enterprise where m.online);

Chapter 8. Evaluation of Reconfiguration with ConfSolve 97

We constrain services to be placed only on machines which are online:

forall s in services {
s.host.online = true;

};

Finally, a reconfiguration constraint, similar to that from section 8.4, which requires

each service to remain on its previous host as long as that host was previously online

and is so currently. This applies only to machines within the enterprise, not the cloud:

change {
forall m in enterprise where m.online && ~m.online {
forall s in services where ~s.host = m {
vm.host = ~s.host;

};
};

}

To perform the evaluation, an initial configuration is performed, after which the

number of Worker services is doubled by manually editing the model, as a migration.

Additionally, 50% of the machines have their online parameter set to false.

The results of scaling the problem up to 300 machines are shown in Figure 8.6.

With regard to time, custom change expressions narrowly outperform the none strat-

egy, while the automatic strategy tends rapidly towards a solver timeout at 60 seconds.

In terms of memory performance, custom change expressions significantly outperform

both of the other strategies, showing much better scaling.

The quality of the solutions follow a new pattern. Both the custom and automatic

strategies achieve a perfect reconfiguration, in which only 50% of the services are

reassigned. However, the automatic strategy yields worse results after it starts to time-

out at 250 machines. The none strategy remains poor, performing 100% reassignments.

As before, the performance of the automatic strategy is due to extraneous con-

straints. Most variables are in fact constants, such as cpu = 2, yet a constraint is

generated to optimise towards keeping the value from changing. The resulting search

performed by the solver is ineffective, resulting in long solve times and eventually

timeout. However, the behaviour of the solver in such cases is problem specific, extra-

neous constraints not necessarily have a negative impact on performance in general.

We conclude that for this evaluation, custom change expressions show their value

in terms of performance, even though the automatic strategy is able to provide results

Chapter 8. Evaluation of Reconfiguration with ConfSolve 98

50 100 150 200 250 300

0

100

200

300

Enterprise Machines

To
ta

lT
im

e
(s

)

Other
Solver
MiniZinc

(a)

0 100 200 300

0

20

40

60

80

Enterprise Machiness

So
lv

e
Ti

m
e

(s
)

Automatic
Custom
None

(b)

0 100 200 300

0

2

4

6

Enterprise Machines

M
em

or
y

(G
B

)

Automatic
Custom
None

(c)

0 100 200 300

0

100

200

300

Enterprise Machines

R
ea

ss
ig

nm
en

ts

Automatic
Custom
None

(d)

Figure 8.6: Cloudbursting. a) Total time, including the time for MiniZinc compila-
tion, which dominates the process. b) Solve time, showing the automatic strategy
timing-out at 60 seconds. c) Solver memory usage, with a significant advantage to
the custom strategy. d) Solution quality, showing custom and automatic achieving
50% reassignments, the minimum possible, until automatic times-out at around
225 machines.

of the same quality. In practice, this problem is most likely to be memory-bound, thus

the custom strategy offers desirable benefits.

8.6 Summary

The purpose of this evaluation has been to quantify the benefit of incorporating re-

configuration into the ConfSolve language. We have compared a ConfSolve model

which takes advantage of a custom reconfiguration goal with two simpler alternatives:

a “from-scratch” reconfiguration which ignores prior state, and a naive heuristic which

Chapter 8. Evaluation of Reconfiguration with ConfSolve 99

takes into account prior state without user interaction.

We compare these strategies across a several virtual machine allocation tasks, which

are extensions of the problem used in Section 6.2 to evaluate the basic ConfSolve lan-

guage. These extensions represent the three reconfiguration scenarios applicable to

extended ConfSolve: migration, parameter change, and a combination of the two.

We found that making use of ConfSolve’s custom reconfiguration primitives re-

sulted in better performance in terms of memory, time, and solution quality, depending

on the task. Though there may well be examples where this is not the case.

Chapter 9

Conclusions

This thesis provides an approach to using constraint-based methods to automate system

configuration tasks. We can confirm that constraint programming is indeed a viable

approach to large-scale configuration management, at least at the scale seen in the

average enterprise. We have shown that complex constraints can be integrated into

a familiar configuration language without exposing the system administrator to the

underling complexity of constraint programming. Finally, we provide a novel approach

to capturing state within a configuration language, so that automated configuration is

not just a one-off task, but can be performed repeatedly, with minimal impact. This

was perhaps the last significant barrier to the adoption of such tools.

The main contributions are divided into two sections, a division corresponding to

the existing literature and the limitations of previous work. Firstly, we define a con-

figuration language, ConfSolve, in which declarative configuration tasks are expressed

as an object-oriented model with logical, arithmetic, and set theoretic constraints. Fur-

thermore, soft constraints may be described in terms of maximisation or minimisation

of constraint expressions. We then evaluate this language against existing configura-

tion problems from the literature, and against larger virtual infrastructure problems.

Secondly, we extend the ConfSolve language to reconfiguration tasks, in which the

current system state is taken into account. This is achieved by modelling reconfigu-

ration as a constraint optimisation problem and exposing language primitives to the

user in order to allow him to customise the decision-making process. We evaluate the

extended language features against a set of configuration problems and find that the

user-customised reconfiguration process outperforms a naive “minimise all changes”

heuristic, as well as a from-scratch reconfiguration.

100

Chapter 9. Conclusions 101

9.1 Answers to research questions

Each of the research questions from Chapter 1 has been answered somewhere in this

thesis. Explicit answers to the questions are given below, as a summary of the contri-

butions made in this thesis:

1. Identify where constraint-based approaches to system configuration may be ad-

vantageous.

Virtualised infrastructure is a natural source of configuration problems which

may be automated. This is in part because software infrastructure is easier to au-

tomate than its hardware equivalent, but also because virtual machines act as an

atomic unit of configuration, to be located wherever is convenient. Furthermore,

virtual infrastructure is not a one-off task, lends itself well to reconfiguration

problems both in terms of scaling up and responding to failure.

2. Investigate the suitability of existing constraint-based techniques for solving

configuration problems.

We have found constraint programming to be a capable approach to solving con-

figuration problems. The Gecode constraint solver performs well with prob-

lems of up to 1000 machines. The MiniZinc language, although it has scope

for performance improvement, is expressive and convenient as an intermediate

language for modeling constraint programming problems.

3. Propose a method which can apply the identified constraint-based techniques to

the identified configuration problems.

We define a constraint-based object-oriented configuration language, ConfSolve

and a translation of the language to a constraint satisfaction problem encoded in

MiniZinc. This serves as an executable semantics of the ConfSolve language,

and provides a level of formalism beyond that published in previous work. Fur-

thermore, we define an extension to the ConfSolve language which incorporates

reconfiguration via state-aware constraints.

4. Design and implement a demonstration tool based on the proposed methods.

We developed the ConfSolve compiler which translates a high-level object ori-

ented specification expressed in the ConfSolve language into a lower-level con-

straint satisfaction problem expressed in MiniZinc. The ConfSolve compiler is

Chapter 9. Conclusions 102

implemented in approximately 2000 lines of OCaml, and its functional imple-

mentation closely represents the formalised description of the translation pro-

cess.

5. Evaluate the tool against the identified configuration problems.

Evaluation of ConfSolve is performed against several virtual infrastructure prob-

lems, and a suite of problems used in previous work. We show that ConfSolve

models can scale to problems of a useful size, and that can model problems from

previous work with high performance. ConfSolve reconfiguration primitives can

offer a performance benefit over a from-scratch configuration and a naive recon-

figuration heuristic.

This thesis also tackles the open questions from Chapter 1, with the following

contributions:

6. Soft constraints, which need not be fully satisfied, need to be able to be modelled

and solved.

ConfSolve models configuration tasks as a constraint optimisation problem which

naturally handles soft constraints as maximisation or minimisation of an objec-

tive function. This capability goes beyond previous work and is fundamental to

support for reconfiguration.

7. Small changes to the configuration problem should result in small changes to the

resulting solution.

We define an extension to the ConfSolve language which incorporates reconfig-

uration via state-aware constraints. A translation process is described for these

extensions, which encodes the reconfiguration process as a constraint optimisa-

tion problem. The optimisation goal is to produce a new configuration as close

as possible to the current system state. The user may customise this goal using

novel language primitives.

8. The configuration interface needs to be appropriate for the intended users. Thus

novel features need to introduce a minimal amount of complexity.

The ConfSolve language follows an object-oriented approach seen in existing

configuration languages. Representing soft constraints as minimisation and max-

imisation is natural, and should be familiar to system administrators who have

Chapter 9. Conclusions 103

a knowledge of database query languages. ConfSolve’s reconfiguration primi-

tives introduce state into the configuration process in a minimal and customisable

manner.

9.2 Further Work

There are several aspects of this research which lead to new questions and potential for

future work. The first is to investigate the performance of ConfSolve using constraint

solvers other than Gecode. Gecode has an excellent reputation and we found no other

solvers with fully compliant FlatZinc implementations which were even within an or-

der of magnitude of Gecode’s performance. However, solvers are evolving constantly,

and so there is scope for benchmarking against other solvers.

The performance of the MiniZinc compiler leaves much to be desired, and we see

no fundamental reason why it cannot scale significantly better, though this is a task

for that compiler’s authors. Another direction is to modify the translation process so

that ConfSolve targets another constraint language beyond MiniZinc. Indeed we have

recently collaborated with an MSc student who has hand-written a number of virtual

machine configuration problems using Answer Set Programming (ASP) in order to

explore the approach’s expressiveness and performance [Xu, 2012]. The results were

positive. There are yet other approaches to constraint solving: an interesting case is

very large scale problems, for which a complete search is infeasible. Such problems

can be solved by local search algorithms, such as simulated annealing. Local search

is typically specified in an imperative manner, specifying the specifics of the search

strategy. There is an opportunity for research into creating a declarative interface to lo-

cal search solvers, with some promising research already underway [Benoist, Estellon,

Gardi, Megel, and Nouioua, 2011].

The ConfSolve compiler does not perform any optimisations beyond the represen-

tation it uses for flattened object-oriented models. One powerful technique available in

constraint programming is the global constraint. A global constraint involves several

variables, the classic example being the all_different constraint. Global constraints are

implemented by custom propagators inside the solver, which result in more efficient

search. ConfSolve could provide higher-level operators which map to such constraints.

Alternatively, the compiler could attempt to detect that a given expression is a decom-

position of a given global constraint, though the complexity of such an analysis may

well be prohibitive.

Chapter 9. Conclusions 104

A practical concern regarding the use of constraint-based configuration in a real-

world setting is that constraint solvers return either a solution or the message unsatis-

fiable. The process of debugging an incorrect model is therefore somewhat difficult.

The user must remember which parts of the model they changed since the last solution

attempt, and deduce what is wrong with them. SAT solvers, however, are able to ex-

tract minimal unsatisfiable cores which identify problematic terms. Similar methods

now exist for CSP, but have yet to be implemented by a popular solver [Shah, 2011].

One relatively straightforward feature which is missing from ConfSolve is a float-

ing point type. Floating point variables are in fact part of the MiniZinc language,

however they were not implemented in Gecode until March 2013. It would be use-

ful to have floating point variables to model rates or other derivatives of configuration

parameters.

A natural addition to ConfSolve is a first-class IP address type and corresponding

bitwise operators, namely AND and OR. It is common to apply bitwise masks to IP

addresses, for example to identify a subnet to which routing rules apply. MiniZinc does

not have any bitwise operators, nor a bit vector type. One solution would be to translate

an IP address to an int which is an index into an array in which all IP addresses values

are allocated. The values themselves would be sets of 1..32 for IPv4 and 1..64 for IPv6.

Bitwise AND would then be implemented using MiniZinc’s set intersection operator

and bitwise OR using set union.

It is possible to translate ConfSolve into other solver input languages such as SMT.

The semantics of ConfSolve, defined in terms of MiniZinc, could be generalised to

finite-domain CSP with first-order constraints in order to decouple the two languages.

A translation from ConfSolve to SMT would depend on the feature set of the solver.

Solvers which can handle nested records do not have to perform flattening. SMT is typ-

ically more expressive than MiniZinc, providing richer constructs such uninterpreted

functions, which could be used to represent object properties.

The type system of ConfSolve is an interesting area for further work. We can see

the potential for user-defined primitive (i.e., non-object) types which are a combination

of an underlying type and a predicate, for example the type {x ∈Z+ | x mod 256 = 0}
would be useful for modelling memory size. This is an example of a refinement type.

Finally, as is often the case in functional programming languages, it may be convenient

to infer types from their values where possible, using Hindley-Milner unification. This

would avoid the need to provide types for constants, thus var x = 1 would result in x

being declared as an integer.

Bibliography

Ozgur Akgun, Ian Miguel, Chris Jefferson, Alan M Frisch, and Brahim Hnich. Exten-

sible automated constraint modelling. In AAAI Conference on AI, 2011.

Kyriakos Anastasakis, Behzad Bordbar, Geri Georg, and Indrakshi Ray. Uml2alloy:

A challenging model transformation. Model Driven Engineering Languages and

Systems, pages 436–450, 2007.

P. Anderson. Programming the Datacentre. The Rise and Rise of the Declarative

Datacentre, Microsoft Technical Report MSR-TR-2008-61, page 4, 2008.

P. Anderson and A. Scobie. Large scale Linux configuration with LCFG. In Proceed-

ings of the Atlanta Linux Showcase, pages 363–372. USENIX, 2000.

Paul Anderson, Patrick Goldsack, and Jim Paterson. SmartFrog meets LCFG: Au-

tonomous reconfiguration with central policy control. In Proceedings of the 17th

conference on Large Installation System Administration Conference, pages 219–

228, 2003.

N. Arshad, D. Heimbigner, and A.L. Wolf. Deployment and dynamic reconfiguration

planning for distributed software systems. In Tools with Artificial Intelligence, 2003.

Proceedings. 15th IEEE International Conference on, pages 39–46, 2003. doi: 10.

1109/TAI.2003.1250168.

T. Benoist, B. Estellon, F. Gardi, R. Megel, and K. Nouioua. Localsolver 1. x: a

black-box local-search solver for 0-1 programming. 4OR: A Quarterly Journal of

Operations Research, pages 1–18, 2011.

M.E. Brasher and K. Schopmeyer. CIMPLE: An Embeddable CIM Provider Engine.

2006. URL http://simplewbem.org/whitepaper.pdf.

M. Burgess et al. CFEngine: a site configuration engine. USENIX Computing systems,

8(3):309–402, 1995.

105

http://simplewbem.org/whitepaper.pdf

Bibliography 106

Jordi Cabot, Robert Clarisó, and Daniel Riera. Verification of UML/OCL class dia-

grams using constraint programming. In Software Testing Verification and Valida-

tion Workshop, 2008. ICSTW’08. IEEE International Conference on, pages 73–80.

IEEE, 2008.

Marco Castaldi, Stefania Costantini, Stefano Gentile, and Arianna Tocchio. A

logic-based infrastructure for reconfiguring applications. In Joäo Leite, Andrea

Omicini, Leon Sterling, and Paolo Torroni, editors, Declarative Agent Languages

and Technologies, volume 2990 of Lecture Notes in Computer Science, pages 17–

36. Springer, 2004.

CFEngine AS. CFEngine 3 tutorial, 2008. URL http://cfengine.com/manuals/

cf3-tutorial/.

Manuel Clavel, Marina Egea, and Miguel Angel García de Dios. Checking unsatisfia-

bility for ocl constraints. Electronic Communications of the EASST, 24, 2010.

Hewlett-Packard Development Company. The smartfrog constraint extensions, 2005.

URL http://www.hpl.hp.com/research/smartfrog/releasedocs/

smartfrogdoc/csfExtensions.pdf.

A. Couch and M. Gilfix. It’s elementary, dear Watson: applying logic programming to

convergent system management processes. In Proc. LISA ’99. USENIX, 1999.

N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The Ponder policy specification

language. Policies for Distributed Systems and Networks, pages 18–38, 2001.

T. Delaet and W. Joosen. PoDIM: A language for high-level configuration manage-

ment. In Proceedings of LISA ’07. USENIX, 2007.

Thomas Delaet, Paul Anderson, and Wouter Joosen. Managing real-world system con-

figurations with constraints. In Networking, 2008. ICN 2008. Seventh International

Conference on, pages 594–601. IEEE, 2008.

Distributed Management Task Force. Cim tutorial, 1999. URL http:

//www2.informatik.hu-berlin.de/~xing/Lib/cim-tutorial/extend/

spec.html.

Distributed Management Task Force. Common information model (CIM) standards,

2010a. URL http://www.dmtf.org/standards/cim/. Available from http:

//www.dmtf.org/standards/cim/.

http://cfengine.com/manuals/cf3-tutorial/
http://cfengine.com/manuals/cf3-tutorial/
http://www.hpl.hp.com/research/smartfrog/releasedocs/smartfrogdoc/csfExtensions.pdf
http://www.hpl.hp.com/research/smartfrog/releasedocs/smartfrogdoc/csfExtensions.pdf
http://www2.informatik.hu-berlin.de/~xing/Lib/cim-tutorial/extend/spec.html
http://www2.informatik.hu-berlin.de/~xing/Lib/cim-tutorial/extend/spec.html
http://www2.informatik.hu-berlin.de/~xing/Lib/cim-tutorial/extend/spec.html
http://www.dmtf.org/standards/cim/
http://www.dmtf.org/standards/cim/
http://www.dmtf.org/standards/cim/

Bibliography 107

Distributed Management Task Force. Web services for management, 2010b. URL

http://www.dmtf.org/standards/wsman/.

Distributed Management Task Force. Web-based enterprise management (wbem),

2010c. URL http://www.dmtf.org/standards/wbem.

Jeffrey Fischer, Rupak Majumdar, and Shahram Esmaeilsabzali. Engage: a deploy-

ment management system. In Proceedings of the 33rd ACM SIGPLAN conference

on Programming Language Design and Implementation, PLDI ’12, pages 263–274,

New York, NY, USA, 2012. ACM.

A.M. Frisch, M. Grum, C. Jefferson, B.M. Hernández, and I. Miguel. The design of

essence: A constraint language for specifying combinatorial problems. In Proc.,

Twentieth International Joint Conference on Artificial Intelligence (IJCAI), 2007.

Haris Gavranović, Mirsad Buljubašić, and Emir Demirović. Variable neighborhood

search for google machine reassignment problem. Electronic Notes in Discrete

Mathematics, 39:209–216, 2012.

Gecode Team. Gecode: Genetic constraint development environment, 2006. Available

from http://www.gecode.org.

Alfonso Gerevini and Ivan Serina. Lpg: A planner based on local search for plan-

ning graphs with action costs. In Proc. of the Sixth Int. Conf. on AI Planning and

Scheduling, pages 12–22, 2002.

Carmen Gervet. Interval propagation to reason about sets: Definition and implemen-

tation of a practical language. Constraints, 1(3):191–244, 1997.

F. Hermenier, S. Demassey, and X. Lorca. Bin repacking scheduling in virtualized

datacenters. In Principles and Practice of Constraint Programming – CP 2011.

Springer, 2011.

Fabien Hermenier, Xavier Lorca, Jean-Marc Menaud, Gilles Muller, and Julia Lawall.

Entropy: a consolidation manager for clusters. In Proceedings of the 2009 ACM

SIGPLAN/SIGOPS international conference on Virtual execution environments,

pages 41–50. ACM, 2009.

J.A. Hewson and P. Anderson. Modelling system administration problems with CSPs.

In Proceedings of the 10th International Workshop on Constraint Modelling and

Reformulation (ModRef’11), pages 73–82, 2011.

http://www.dmtf.org/standards/wsman/
http://www.dmtf.org/standards/wbem
http://www.gecode.org

Bibliography 108

J.A. Hewson, P. Anderson, and A.D. Gordon. A declarative approach to auto-

mated configuration. In 26th Large Installation System Administration Conference

(LISA’12), 2012.

Michael Hicks and Scott Nettles. Dynamic software updating. ACM Trans. Program.

Lang. Syst., 27(6):1049–1096, November 2005.

T. Hinrich, N. Love, C. Petrie, L. Ramshaw, A. Sahai, and S. Singhal. Using object-

oriented constraint satisfaction for automated configuration generation. Lecture

notes in computer science, pages 159–170, 2004.

D. Jackson. Alloy: a lightweight object modelling notation. ACM Transactions on

Software Engineering and Methodology (TOSEM), 11(2):256–290, 2002.

D Jackson. Software abstractions: Logic, language and analysis, revised edn, 2012.

Narendra Jussien, Guillaume Rochart, Xavier Lorca, et al. Choco: an open source java

constraint programming library. In CPAIOR’08 Workshop on Open-Source Software

for Integer and Contraint Programming (OSSICP’08), pages 1–10, 2008.

L. Kanies. ISconf: Theory, practice, and beyond. In Proceedings of LISA XVII, pages

115–123, 2003.

Leonidas Lymberopoulos, Emil Lupu, and Morris Sloman. Ponder policy implemen-

tation and validation in a cim and differentiated services framework. In Network

Operations and Management Symposium, 2004. NOMS 2004. IEEE/IFIP, volume 1,

pages 31–44. IEEE, 2004.

Kim Marriott, Nicholas Nethercote, Reza Rafeh, Peter J Stuckey, Maria Garcia

De La Banda, and Mark Wallace. The design of the Zinc modelling language. Con-

straints, 13(3):229–267, 2008.

Microsoft Corporation. Windows management instrumentation (windows), 2010. URL

http://msdn.microsoft.com/en-us/library/aa394582.aspx.

S. Mittal and B. Falkenhainer. Dynamic constraint satisfaction problems. In Pro-

ceedings of the Eighth National Conference on Artificial Intelligence, pages 25–32,

1990.

http://msdn.microsoft.com/en-us/library/aa394582.aspx

Bibliography 109

S. Mittal and F. Frayman. Towards a generic model of configuration tasks. In Pro-

ceedings of the Eleventh International Joint Conference on Artificial Intelligence,

volume 2, pages 1395–1401. IJCAI, 1989.

S. Narain. Network configuration management via model finding. In Proceedings

of the 19th conference on Large Installation System Administration Conference,

page 15. USENIX Association, 2005.

S. Narain, T. Cheng, B. Coan, V. Kaul, K. Parmeswaran, and W. Stephens. Building

autonomic systems via configuration. In Proceedings of IEEE Autonomic Comput-

ing Workshop, 2003.

S. Narain, G. Levin, S. Malik, and V. Kaul. Declarative infrastructure configuration

synthesis and debugging. Journal of Network and Systems Management, 16(3):235–

258, 2008.

Timothy Nelson, Christopher Barratt, Daniel J Dougherty, Kathi Fisler, and Shriram

Krishnamurthi. The margrave tool for firewall analysis. In Proceedings of the 24th

Large Installation System Administration Conference, pages 1–8. USENIX Associ-

ation, 2010.

N Nethercote. Converting MiniZinc to FlatZinc, 2012. URL http://www.

minizinc.org/downloads/doc-1.5/mzn2fzn.pdf.

N. Nethercote, P. Stuckey, R. Becket, S. Brand, G. Duck, and G. Tack. MiniZinc:

Towards a standard CP modelling language. Principles and Practice of Constraint

Programming (CP 2007), pages 529–543, 2007.

Object Management Group. Object constraint language specification 2.0, 2006. URL

http://www.omg.org/spec/OCL/2.0/PDF.

Puppet Labs. Puppet, 2008. Available from http://www.puppetlabs.com/

puppet/.

Puppet Labs. Learning — modules and classes, 2011. URL http://docs.

puppetlabs.com/learning/modules1.html.

L. Ramshaw, A. Sahai, J. Saxe, and S. Singhal. Cauldron: A policy-based design

tool. In 7th IEEE International Workshop on Policies for Distributed Systems and

Networks (POLICY 2006), pages 113–122, 2006.

http://www.minizinc.org/downloads/doc-1.5/mzn2fzn.pdf
http://www.minizinc.org/downloads/doc-1.5/mzn2fzn.pdf
http://www.omg.org/spec/OCL/2.0/PDF
http://www.puppetlabs.com/puppet/
http://www.puppetlabs.com/puppet/
http://docs.puppetlabs.com/learning/modules1.html
http://docs.puppetlabs.com/learning/modules1.html

Bibliography 110

Mark Richters and Martin Gogolla. On formalizing the uml object constraint language

ocl. In Conceptual Modeling (ER’98), pages 449–464. Springer, 1998.

ROADEF. Google ROADEF/EURO challenge 2011-2012: Machine reassign-

ment, 2011. URL http://challenge.roadef.org/2012/files/problem_

definition_v1.pdf.

F Rossi, P van Beek, and T Walsh. Constraint logic programming. In Handbook of

constraint programming, chapter 12. Elsevier Science Ltd, 2006.

D. Sabin and E.C. Freuder. Configuration as composite constraint satisfaction. In Pro-

ceedings of the Artificial Intelligence and Manufacturing Research Planning Work-

shop, pages 153–161, 1996.

A. Sahai, S. Singhal, R. Joshi, and V. Machiraju. Automated generation of resource

configurations through policies. In IEEE Policy, 2004a.

A. Sahai, S. Singhal, R. Joshi, and V. Machiraju. Automated policy-based resource

construction in utility computing environments. In the Proceedings of the 2004

IEEE/IFIP Network Operations & Management Symposium (NOMS 2004), pages

19–24, 2004b.

I. Shah. A hybrid algorithm for finding minimal unsatisfiable subsets in over-

constrained CSPs. International Journal of Intelligent Systems, 26(11):1023–1048,

2011.

Parag Singla and Pedro Domingos. Memory-efficient inference in relational domains.

In Proceedings of the 21st national conference on Artificial intelligence, volume 1

of AAAI’06, pages 488–493. AAAI Press, 2006.

Peter J Stuckey, Maria Garcia de la Banda, Michael Maher, Kim Marriott, John Slaney,

Zoltan Somogyi, Mark Wallace, and Toby Walsh. The G12 project: Mapping solver

independent models to efficient solutions. In Principles and Practice of Constraint

Programming-CP 2005, pages 13–16. Springer, 2005.

M. Stumptner and A. Haselböck. A generative constraint formalism for configuration

problems. Advances in Artificial Intelligence, pages 302–313, 1993.

M. Stumptner, G.E. Friedrich, and A. Haselböck. Generative constraint-based config-

uration of large technical systems. AI EDAM, 12(04):307–320, 1998.

http://challenge.roadef.org/2012/files/problem_definition_v1.pdf
http://challenge.roadef.org/2012/files/problem_definition_v1.pdf

Bibliography 111

E. Torlak and D. Jackson. Kodkod: A relational model finder. Lecture Notes in Com-

puter Science, 4424:632, 2007.

William Vambenepe. Microsoft ditches SML, returns to SDM?, 2008. URL http:

//stage.vambenepe.com/archives/163.

W3C Members. Service modeling language, version 1.0, 2007. URL http://www.

w3.org/Submission/2007/SUBM-sml-20070321/.

Christoph Walther and Stephan Schweitzer. About VeriFun. In Franz Baader, edi-

tor, Automated Deduction - CADE-19, volume 2741 of Lecture Notes in Computer

Science, pages 322–327. Springer Berlin / Heidelberg, 2003.

Michel Wermelinger, Antónia Lopes, and José Luiz Fiadeiro. A graph based archi-

tectural (re)configuration language. In Proceedings of the 8th European software

engineering conference, ESEC/FSE-9, pages 21–32, New York, NY, USA, 2001.

ACM.

S.R. White, J.E. Hanson, I. Whalley, D.M. Chess, and J.O. Kephart. An architectural

approach to autonomic computing. In Proceedings of the International Conference

on Autonomic Computing, pages 2–9, 2004.

Yang Xu. Modelling cloud infrastructure configuration with answer set programming.

Master’s thesis, University of Edinburgh, 2012. URL http://www.inf.ed.ac.

uk/publications/thesis/offline/IM121189.pdf.

Q. Yin, J. Cappos, A. Baumann, and T. Roscoe. Dependable self-hosting distributed

systems using constraints. In Proceedings of the Fourth conference on Hot topics in

system dependability, pages 11–11. USENIX Association, 2008.

http://stage.vambenepe.com/archives/163
http://stage.vambenepe.com/archives/163
http://www.w3.org/Submission/2007/SUBM-sml-20070321/
http://www.w3.org/Submission/2007/SUBM-sml-20070321/
http://www.inf.ed.ac.uk/publications/thesis/offline/IM121189.pdf
http://www.inf.ed.ac.uk/publications/thesis/offline/IM121189.pdf

	Introduction
	Research Questions
	Contributions
	Configuration
	Reconfiguration

	Thesis structure

	Background
	Configuration management
	Common Information Model (CIM)
	Declarative configuration
	Declarative tools and languages

	Constraint satisfaction
	Constraint programming
	Constraint solving: Gecode
	Constraint modelling: MiniZinc

	Related Work
	Automated configuration
	Event-driven approaches
	Logic programming
	Boolean satisfiability (SAT)
	Satisfiability modulo theories (SMT)
	Generative CSP
	PoDIM

	Automated reconfiguration
	Event-driven approaches
	Logic programming
	Constraint programming (CP)
	A.I. planning
	Local search
	SmartFrog & LCFG
	Dynamic software updating

	Constraint modeling languages

	ConfSolve by Example
	Language Features
	Variables and Classes
	Inheritance
	References
	Constraints
	Sets and quantifiers
	Optimisation
	Output
	Reconfiguration

	The Syntax and Semantics of ConfSolve
	Core syntax of ConfSolve
	Derived syntax

	Type system
	ConfSolve and MiniZinc
	Translation to MiniZinc
	An example translation
	Quantifiers
	Correctness
	Static allocation
	Translation
	Solutions

	Evaluation of Configuration with ConfSolve
	Experimental setup
	Virtual Machine assignment
	Cauldron Test Suite
	Cauldron VM Allocation
	Summary

	Extending ConfSolve for Reconfiguration
	Background
	Extended ConfSolve
	Parameter changes and migrations
	An example translation
	Core Syntax extensions
	Architecture
	Translation to MiniZinc
	Parameters
	Previous values and change expressions

	The min-changes heuristic

	Evaluation of Reconfiguration with ConfSolve
	Reconfiguration strategies
	Experimental setup
	Adding Virtual Machines
	Parameters: Virtual Server Failure
	Migration with Parameters: Cloudbursting
	Summary

	Conclusions
	Answers to research questions
	Further Work

	Bibliography

