
Using the Lightweight
Coordination Calculus

Paul Anderson <dcspaul@ed.ac.uk>
 Shahriar Bijani <S.Bijani@sms.ed.ac.uk>

Alexandros Vichos

Multi-Agent Negotiation of
Virtual Machine Migration

KES AMSTA 2012

Friday, 22 June 2012

Text

Speci!cation

Current State

Requirements

Text

Final State

Plan

Deployment

Friday, 22 June 2012

Centralised Configuration?
◼ Centralised con!guration
- allows a global view with complete knowledge

◼ But ...
- it is not scalable
- it is not robust against communication failures
- federated environments have no obvious centre
- different security policies may apply to different

subsystems

◼ The challenge ...
- devolve control to an appropriately low level
- but allow high-level policies to determine the behaviour

Friday, 22 June 2012

◼ Distributed con!guration with centralised policy
◼ Subsystem-speci!c mechanisms

GPrint (2003)
PRINT CONTROLLER

Print
Manager

Print
Monitor

SmartFrog
Daemon

SLP printer
announcements

GLOBUS
SERVER

Gprint OGSA
Portal

PRINT
SERVER

SmartFrog
Daemon

LCFG lpd
component

Print
Server

Printer

Heartbeat

SLP print queue
announcements

LCFG

LCFG

LCFG

Friday, 22 June 2012

“OpenKnowledge” & LCC
◼ Agents execute “interaction models”
◼ Wrien in a “lightweight coordination calculus” (LCC)
◼ This provides a very general mechanism for doing

distributed con!guration
◼ Policy is determined by the interaction models

themselves which can be managed and distributed
from a central point of control

◼ The choice of interaction model and the decision to
participate in a particular “role” remains with the
individual peer
- and hence, the management authority

Friday, 22 June 2012

A Simple LCC Example
a(buyer, B) ::
 ask(X) => a(shopkeeper, S) then
 price(X,P) <= a(shopkeeper, S) then
 buy(X,P) => a(shopkeeper, S)
 ← afford(X, P) then
 sold(X,P) <= a(shopkeeper, S)

a(shopkeeper, S) ::
 ask(X) <= a(buyer, B) then
 price(X, P) => a(buyer, B)
 ← in_stock(X, P)then
 buy(X,P) <= a(buyer, B) then
 sold(X, P) => a(buyer, B)

Friday, 22 June 2012

An Example: VM Allocation

◼ Policy 1 - power saving
- pack VMs onto the minimum number of physical machines

◼ Policy 2 - agility
- maintain an even loading across the physical machines

overloadedunderloaded

migrate

Friday, 22 June 2012

A Prototype

Virtual Machines

OK peer

Physical machine

libvirt

OS

Distributed Discovery Service

Interaction
models

Components

Peer
matching

Virtual Machines

OK peer

Physical machine

libvirt

OS

Friday, 22 June 2012

An Idle Host

a(idle, ID1) ::
 null
 ← overloaded(Status)
 then
 a(overload(Status), ID1)
) or (
 null
 ← underloaded(Status)
 then
 a(underload(Status), ID1)
) or (
 a(idle, ID1)
)

Friday, 22 June 2012

An Overloaded Host
a(overloaded(Need), ID2) ::
 readyToMigrate(Need)
 => a(underloaded, ID3)
 then
 migration(OK)
 <= a(underloaded, ID3)
 then
 null
 ← migration(ID2, ID3)
 then
 a(idle, ID2)

Friday, 22 June 2012

An Underloaded Host
a(underloaded(Capacity), ID3) ::
 readyToMigrate(Need)
 <= a(overloaded, ID2)
 then
 migration(OK)
 => a(overloaded, ID2)
 ← canMigrate(Capacity, Need)
 then
 null ← waitForMigration()
 then
 a(idle, ID3)

Friday, 22 June 2012

Migration Example

1

2

3

4

5

6

7

8

9

3

4

5

2

6

7

1

8

9

PM1 PM2 PM3 PM4 PM1 PM2 PM3 PM4

Friday, 22 June 2012

Simulation

0 5000 10000 15000 20000

Time (ms)

0

50

100

150

200

Ph
ys

ic
al

 M
ac

hi
ne

 Lo
ad

 A
ve

ra
ge

 (%
)

120% average load

80% average load

Friday, 22 June 2012

Protocol Issues
◼ The simple protocols described here are very naive
- But the $exibility of the framework is the real contribution
- LCC can easily be used to implement more sophisticated

protocols - such as “auctions” which are ideal for many
con!guration scenarios

◼ The protocols so far rely rather heavily on the
“discovery service”
- This seems against the spirit of peer negotiation
- We are investigating other protocols which (for example)

search for suitable exchange candidates by passing
requests to a local peer group who will then forward them if
they cannot satisfy them

Friday, 22 June 2012

Measurement Issues

◼ Unpredictability of virtual machine performance is a
signi!cant problem
- Latency is high for machine migrations
- We are looking at machine learning techniques to identify

(for example) “stable” and “unstable” machines

◼ In practice, machine “load” is multi-dimensional
- We may want to consider cpu usage, memory usage and

network (for example)
- we are looking at ways of incorporating different factors

Friday, 22 June 2012

General Issues

◼ We would like to evaluate the approach in a more
production environment, but ...
- Handling errors and timeouts in an unreliable distributed

system is hard
- We have been using a research implementation of lcc which

is not very robust

◼ Some things are hard to do without global knowledge
- balance the system so that all the machines have exactly

the same load?

Friday, 22 June 2012

Using the Lightweight
Coordination Calculus

Paul Anderson <dcspaul@ed.ac.uk>
 Shahriar Bijani <S.Bijani@sms.ed.ac.uk>

Alexandros Vichos

Multi-Agent Negotiation of
Virtual Machine Migration

KES AMSTA 2012

Friday, 22 June 2012

