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Centralised Configuration?
◼ Centralised con!guration 
- allows a global view with complete knowledge

◼ But ...
- it is not scalable
- it is not robust against communication failures
- federated environments have no obvious centre
- different security policies may apply to different 

subsystems

◼ The challenge ...
- devolve control to an appropriately low level
- but allow high-level policies to determine the behaviour

Friday, 22 June 2012



◼ Distributed con!guration with centralised policy
◼ Subsystem-speci!c mechanisms
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“OpenKnowledge” & LCC
◼ Agents execute “interaction models”
◼ Wrien in a “lightweight coordination calculus” (LCC)
◼ This provides a very general mechanism for doing 

distributed con!guration
◼ Policy is determined by the interaction models 

themselves which can be managed and distributed 
from a central point of control

◼ The choice of interaction model and the decision to 
participate in a particular “role” remains with the 
individual peer
- and hence, the management authority
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A Simple LCC Example
a(buyer, B) ::
 ask(X) => a(shopkeeper, S) then
 price(X,P) <= a(shopkeeper, S) then
 buy(X,P) => a(shopkeeper, S)
             ← afford(X, P) then
 sold(X,P) <= a(shopkeeper, S)

a(shopkeeper, S) ::
  ask(X) <= a(buyer, B) then
  price(X, P) => a(buyer, B)
                 ← in_stock(X, P)then
  buy(X,P) <= a(buyer, B) then
  sold(X, P) => a(buyer, B)
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An Example: VM Allocation

◼ Policy 1 - power saving
- pack VMs onto the minimum number of physical machines

◼ Policy 2 - agility
- maintain an even loading across the physical machines

overloadedunderloaded

migrate
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A Prototype
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An Idle Host

a(idle, ID1) ::
      null
      ← overloaded(Status)
    then
      a(overload(Status), ID1)
  ) or (
      null
      ← underloaded(Status)
    then
      a(underload(Status), ID1)
  ) or (
    a(idle, ID1)
  )
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An Overloaded Host
a(overloaded(Need), ID2) ::
    readyToMigrate(Need)
    => a(underloaded, ID3)
  then
    migration(OK)
    <= a(underloaded, ID3)
  then
    null
    ← migration(ID2, ID3)
  then
    a(idle, ID2)
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An Underloaded Host
a(underloaded(Capacity), ID3) ::
    readyToMigrate(Need)
    <= a(overloaded, ID2)
  then
    migration(OK)
    => a(overloaded, ID2)
    ← canMigrate(Capacity, Need)
  then
    null ← waitForMigration()
  then
    a(idle, ID3)
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Migration Example
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Simulation
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Protocol Issues
◼ The simple protocols described here are very naive
- But the $exibility of the framework is the real contribution
- LCC can easily be used to implement more sophisticated 

protocols - such as “auctions” which are ideal for many 
con!guration scenarios

◼ The protocols so far rely rather heavily on the 
“discovery service”
- This seems against the spirit of peer negotiation
- We are investigating other protocols which (for example)

search for suitable exchange candidates  by passing 
requests to a local peer group who will then forward them if 
they cannot satisfy them
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Measurement Issues

◼ Unpredictability of virtual machine performance is a 
signi!cant problem
- Latency is high for machine migrations
- We are looking at machine learning techniques to identify 

(for example) “stable” and “unstable” machines

◼ In practice, machine “load” is multi-dimensional
-  We may want to consider cpu usage, memory usage and 

network (for example)
- we are looking at ways of incorporating different factors

Friday, 22 June 2012



General Issues

◼ We would like to evaluate the approach in a more 
production environment, but ...
- Handling errors and timeouts in an unreliable distributed 

system is hard
- We have been using a research implementation of lcc which 

is not very robust

◼ Some things are hard to do without global knowledge
- balance the system so that all the machines have exactly 

the same load?
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