
Paul Anderson <dcspaul@ed.ac.uk>

Composition and Inheritance in
Declarative Configuration Languages

http://homepages.inf.ed.ac.uk/dcspaul

mailto:dcspaul@ed.ac.uk?subject=
http://homepages.inf.ed.ac.uk/dcspaul

Introduction

Motivation
‣ Powershell/DSC & Azure

‣ A more formal (language) approach to configuration

Overview
‣ Slightly broader than the title might suggest …

‣ Configuration background & a bit of history

‣ A more detailed example of something I’ve been thinking about recently

Configuring a “subsystem”
<Printer infcups_inf_ed_ac_uk>
UUID urn:uuid:ce4a90db-e344-3f51-7500-2bec9245be5f
MakeModel Xerox WC 7535, 3.65.3
DeviceURI ipp://infcups.inf.ed.ac.uk/printers/if132m0
Attribute marker-names Black Print Cartridge HP Q1339A,Maintenance
Kit HP 110V-Q2436A, 220V-Q2437A
</Printer>

<IfM
odul

e mi
me_m

odul
e>

Type

sCon
fig

conf
/mim

e.ty
pes

AddT

ype
appl

icat
ion/

x-co
mpre

ss .
Z

AddT

ype
appl

icat
ion/

x-gz
ip .

gz .
tgz

</If
Modu

le>

R$* $: < $1 > housekeeping <>

R$+ < $* >
 < $2 >

strip excess on left

R< $* > $+
 < $1 > strip excess on right

R<> $@ < @ > MAIL FROM:<> case

R< $+ > $: $1 remove housekeeping <>

nobody:*:-2:-2:Unprivileged User:/var/empty:/usr/bin/false
root:*:0:0:System Administrator:/var/root:/bin/sh
daemon:*:1:1:System Services:/var/root:/usr/bin/false

New-NetFirewallRule -Protocol TCP -LocalPort 22  
 -Direction Inbound -Action Allow -DisplayName SSH

Configuring a host

backups

ssh client browser dns service

database
(mariadb)

application
(owncloud)

web server
(apache)

sshd

firewall
(ufw)

logrotate package
manager

Configuring a cloud application

Load
balancer Application

Server

Database 
ServerDNS

Cache
Server

Load
balancer

Application
Server

Application
Server

Application
Server

Database 
Server

Database 
Server

Database 
Server

Database 
Server

Cache
Server

Cache
Server

Cache
Server

Cache
Server

Virtual
Networks

Virtual
Storage

+

+
+ …

❝ One director told me on Friday they spent 2.5
months setting up a cluster of a few thousand
machines …. largely due to configuration issues.

Dependencies between them, which to tweak, and
what values were relevant for the specific cluster
were some issues cited. ❞

Configuration tools

A more uniform way of managing subsystem configurations
‣ A programmable API ? …
‣ And/or a common format for specifying configuration parameters ? …

Representing/enforcing relationships between subsystems (and hosts)
‣ The firewall permits access to the port being used by the web server application
‣ The client should use the same port number as the server

Sharing of common configurations (with variations)
‣ I want 20 web servers with “the same” configuration
‣ But they have to have different addresses …

Higher-level modelling and policy/reasoning
‣ I want a 3-tier web service the same as X
‣ Do not configure any machines running finance services to be accessible from the public

internet

Two approaches

Imperative (Bash script)

Declarative (Puppet)

if [[0 ne $(getent passed elmo > /dev/null)$?]
then
 user add elms —gid sysadmin -n
fi
GID=`getent passwd elmo |awk -F: {print $4}’`
GROUP=`getent group $GID |awk -F: {print $1}’`
if [$GROUP != $GID] && [$GROUP != sysadmin]
then
 user mod —gid $GROUP $USER
fi

user { ‘elmo’:
 ensure => present,
 gid => ‘sysadmin’,
}

An imperative approach

Evolved from “scripting” the original manual procedures
‣ It is non-trivial to prove that the sequence of actions

produces a final state which meets the requirements
- the “requirements” may not even be explicit

‣ The workflow assumes a fixed (set of) starting state(s)

‣ The ordering implied by the workflow may be over-
constrained

But …
‣ This is still popular because system administrators can use

familiar procedures and imperative scripting languages

figure = hips
add legs under hips
add torso on top of hips
add head to top of torso
add arms to torso
add hair to head
add hands to arms
add bag to hand

A declarative approach (desired state)

Specifies the desired state - not the workflow
‣ The specification is independent of the deployment

‣ It is independent of the starting state

‣ There is an explicit specification of the “desired” state
against which we can compare the “actual” state

But …
‣ We do need to compute a workflow between the actual and

desired states to implement the deployment

‣ I don’t plan to talk about deployment issues, but ..
- most production tools do not handle this well
- we have successfully used automated planning

figure: {
 head: {
 face: "male"
 hair: {
 style: "short"
 colour: “brown"
 }  
 hat: none
 }
 clothing: {
 ...
 }
}

Some history (of “desired state” / “declarative” configuration tools)

1993

cfengine

LCFG
Puppet

SmartFrog confsolve nuri

Chef

Microsoft DSC

μPuppet

L3

2015

(constraints) (planning)

(provenance)

(usability)

(imperative “simplicity”)

(classes)

(convergence)

(abstraction)

research

2003 2005 2009 2012 2017

(configuration languages)

Ansible, …

Quattor
(EU DataGrid)

(Powershell)

Architecture … has not changed significantly …

Source

Files

LCFG

Server

XML

Clients

Profile
Client

Components

XML XMLXML

LCFG

client

�

�

� � �

LCFG (1996) Azure Automation DSC (2015)

 https://docs.microsoft.com/en-us/azure/automation/automation-dsc-overview

But there are different approaches to the source specification language
‣ Imperative construction of the desired state (using, for example Powershell)

‣ A more declarative description of the requirements (for example, SmartFrog)

https://httpd.apache.org/docs/2.4/sections.html

An example problem - composition & inheritance

Motivation …
‣ Declarative configuration languages are not programming languages
- they describe configurations, not computations
- they are used by system administrators, not programmers

‣ But this involves more than (for example) JSON
- because we want to support operations such as composition …

‣ We want different people to manage different aspects of the configuration
- these may overlap
- but it should be possible to author and edit them independently
- and the resulting composition should meet everyone’s requirements

Title https://www.flickr.com/photos/foilman/15844421582

https://www.flickr.com/photos/foilman/15844421582

(Instance) inheritance +> (specialisation)

+> +> =

Or …
“I want a Redhat Linux machine running Apache and Wordpress”

This is a typical operation …

The ordering here is not related to any temporal deployment ordering!

An example in SmartFrog

sfConfig extends {
 s1 extends Machine,{
 web extends Service
 }
 s2 extends s1, {
 web:running false;
 }
 pc1 extends Machine;
 pc2 extends Machine,{
 service s1:web;
 }
}

Machine extends {
 dns "ns.foo";
}

Service extends {
 running true;
 port 80;
}

This is instance inheritance, not class/type inheritance

Conflicts

+> +> =

+> +> = A female
firefighter ?

Or a firefighting
female ?

“Hair will not extend beyond the bottom of the earlobe”
(International Association of Women in Fire and Emergency Services)

Apache - “how the sections are merged”
The configuration sections are applied in a very particular order. Since this can have important effects on how
configuration directives are interpreted, it is important to understand how this works. The order of merging is:

 <Directory> (except regular expressions) and .htaccess done simultaneously 
 (with .htaccess, if allowed, overriding <Directory>)
 <DirectoryMatch> (and <Directory "~">)
 <Files> and <FilesMatch> done simultaneously
 <Location> and <LocationMatch> done simultaneously
 <If>

Apart from <Directory>, each group is processed in the order that they appear in the configuration files.
<Directory> (group 1 above) is processed in the order shortest directory component to longest. So for example,
<Directory "/var/web/dir"> will be processed before <Directory "/var/web/dir/subdir">. If multiple <Directory>
sections apply to the same directory they are processed in the configuration file order. Configurations included
via the Include directive will be treated as if they were inside the including file at the location of the Include
directive.
Sections inside <VirtualHost> sections are applied after the corresponding sections outside the virtual host
definition. This allows virtual hosts to override the main server configuration.
When the request is served by mod_proxy, the <Proxy> container takes the place of the <Directory> container
in the processing order.

https://httpd.apache.org/docs/2.4/sections.html

https://httpd.apache.org/docs/2.4/sections.html

Active directory - “GPO inheritance”

A user or a computer in an OU can have multiple GPOs applied to it. For example, Local Group Policy, GPOs
linked to the site, GPOs linked to the domain and GPOs linked to the OU. Also, multiple GPOs can be linked to
any of these containers. The following is the order in which the Group Policy settings take effect.
• Local Group Policy settings are applied first
• GPOs linked at the site level are applied next followed by the GPOs linked at the domain level and OU level.

Since GPOs linked to the OU are processed last, they have the highest precedence
• In case of nested OUs, GPOs linked to the parent OUs are applied first followed by the GPOs linked to the child

OU
• If multiple GPOs are linked to a container, then the GPO with the lowest link order will have the highest

precedence
• To view the list of GPOs applied to a container, double-click the container and select the Group Policy

inheritance tab in the right pane. A list of GPOs with link order, location and status will be displayed
The final configuration of policy settings applied to a user or computer is a combination of all the policy settings
defined in each GPO. In case of any conflicts, the policy settings configured for the GPO with a higher
precedence override the GPO with lower precedence. However, this behavior can be altered using the block
inheritance option.
To block inheritance and apply only the policy settings configured in GPOs linked to a particular OU, right-click
the OU and select Block Inheritance. This will block all the policy settings from GPOs linked at the domain level,
site level and parent OUs.

http://www.windows-active-directory.com/windows-gpo-inheritance.html

http://www.windows-active-directory.com/windows-gpo-inheritance.html

User interpretation of inheritance

Box {  
 show-balance = true,
}
Player {  
 tracks = 573,
 genres = 11,
 show-balance = false
}
MusicBox
 inherit Box
 inherit Player {
 genres = 9
}

What is the value of MusicBox.showbalance ?

57

Player {
 tracks = 573,
 genres = 11,
 show-balance = false,
}

Music-box inherit Box inherit Player {
 genres = 9,
}

And asked about value of the variable Player.show-balance, suddenly participants

agreed with each other (see Figure 13).

There seem to be significant correlation between consistency towards inheritance

model and confidence (p = 0.000728).

Multilevel inheritance was interpreted in more than two ways by the participants. The

most popular approach was to follow the pattern of regular inheritance. In this way, if

A inherits from B and B inherits from C, the B values would override the values

inherited from C, and A would override values inherited by B. However, it was

followed by less than half of the participants. The second most common approach was

to assume that the last prototype in the chain (most to the left) would override the

values on the right. In this case, if A inherits from B and B inherits from C, the A would

receive values from C only, and those might override the values within A as well.

When asked what is the value of variable music-box.show-balance in the code

[example 3] presented previously, participants did not agree:

 15. How confident you are with your answers to the questions abve?

16. How easy was it to choose answers to the questions above?

Not at all confident

Slightly confident

Somewhat confident

Moderately confident

Extremely confident

14 (3.6%)

44 (11.5%)

112 (29.2%)

155 (40.4%)

59 (15.4%)

Very difficult

Difficult

Neutral

Easy

Very easy

4 (1%)

56 (14.6%)

117 (30.5%)

157 (40.9%)

50 (13%)

Summary | Survey “Configuration Languages” | Analyse https://admin.onlinesurveys.ac.uk/account/edinburgh/analyse/211027/

12 of 51 09/09/2016, 07:24

Some comments on inheritance

❝ Inheritance is useful when used in high level programming languages. 
Inheritance in a CfgMgmt System often leads to complexity and should therefore
be avoided. ❞

❝ Multiple inheritance was a mistake. ❞

❝ it is strange that _instances_ can _inherit_. I would totally grok 'extends'.
'inherit' is more for classes. ❞

❝ The inheritance question was not difficult at all, probably because I have been
educated and trained in object-oriented design and programming. ❞

X

Y

Z

X is a workman like Y
but he works for the
same company as Z

Composition

Commutative composition <+>

<+> = <+> = ??

The “user” is forced to make a decision about inheritance order
‣ But they don’t usually have the information to do this

‣ And neither order may be correct if there are multiple conflicts!

The user needs a commutative composition operation
‣ And the authors of the components need to specify how they should be composed

Resolving conflicts

What do we mean when we specify a value for a resource ?
❝ The value really must be 42. ❞

❝ I don't really care what the value is, but I can't leave it empty, so I'll put 0. ❞

❝ 36 would be a good value, but I don't care if someone else would rather have
something different. ❞

❝ I think it should be 46, but if Jane thinks it should be different, then believe her. ❞

❝ The value must be between 100-200, but I can't specify a range, so I'll say 150 ❞

Conventional configuration languages are not rich enough to capture this

Constraints & Confsolve

ConfSolve was developed as part of a previous Microsoft-sponsored Phd
‣ A configuration language which supports very expressive constraints …

‣ “I want 4 machines configured as database peers, which can be any machines except
themselves”:

These compose well (commutative)
‣ They support all of the previous examples & much more

‣ But, it requires a lot of thought to specify values which are not under- or over-constrained

‣ Understanding the consequences of these very general constraints is too difficult in most
practical cases & the results can be unpredictable

constraint
 forall (this in 1..4) (
 DatabaseServer_peer[this] != this
);

L3

An experimental configuration language
‣ A small language with a clear, declarative semantics

‣ Configurable semantics for experimenting with usability

‣ Features specifically designed to support operations such as composition

‣ A balance between usability & expressiveness

‣ Not a programming language!

‣ Output in JSON-like format which can easily be converted for deployment by other tools

A work-in-progress …

Tags & constraints in L3

In “L3”, we can tag resource values …
a: { colour: "red" #aliceSays }
b: { colour: "blue" #bobSays }

c: ($a <+> $b) #aliceSays >> #bobSays
d: ($a <+> $b) #aliceSays << #bobSays

And we can specify precedence between the tags

This supports requirements such as …
• “I think it should be 46, but if Jane thinks it should be different, then believe her”.
• “Parameters specified at a departmental level should override those set at a corporate level”.

v #final  
 v >> x ∀ x ≠ v

v #default
 v << x ∀ x ≠ v
 : ¬(x #default)

Two special tags …

Composition example
figure: {
 head: {
 face: "male"
 hair: {
 style: "short }
 }
 clothing: {
 top: "bluetop"
 bottom: "bluebottom"
 }
} #default

fireperson: $figure <+> {
 head: {
 hair: {
 style: "short"
 }
 }
 hat: {
 style: "fireHat"
 colour: "red"
 }
 clothing: {
 top: "firetop"
 bottom: "redbottom"
 }
} #final

female: $figure <+> {
 head: {
 face: "female" #final
 hair: {
 style: "long"
 }
 }
}alice: $female

bob: $fireperson
carol: $female <+> $fireperson
eve: $fireperson <+> $female

Alice Bob Carol Eve

Specialisation (instance inheritance)

This can now be defined in terms of composition …

+>

=

fireperson:
$figure +> {
 head: {
 hat: "firehat"
 }
 }  
 clothing: {
 top: "firetop"
 bottom: "redbottom"
 }
}

(X +> Y) ≡ (X #tag1 <+> Y #tag2) #tag1 << #tag2

Usability & semantics

Some questions …
‣ Are the tags and constraints confusing?

‣ How should they propagate?
- is the example on the right confusing?
- what are the alternatives?

‣ Are they sufficient for some “real” problems ?

‣ What kind of real problems can they not
address ?

‣ How can we tell whether new approaches are
genuinely bad/difficult, or just require users
to adjust to an unfamiliar paradigm?

a: { port: 42 #alice, … }
b: { port: 37 #bob, … }
c: $a <+> $b // (42 or 37)

server: {
 …
 myport: $c.port // (42)
 …
} #alice >> #bob

client: {
 …
 myport1: $c.port // (37)
 myport2: $server.port // (err)
 …
} #bob >> #alice

Some concluding thoughts …
Less complexity - not more!
‣ the current complexity is driving users back to “simpler” approaches
‣ tools and languages with fewer, more carefully considered features
‣ less expressivity - configuration is not programming

Clean separation of concerns
‣ the admin should not have to “program”
‣ the dns expert should not need to understand the mail configuration

Declarative specifications of higher-level intent
‣ not imperative construction
‣ declarative states with automated change planning

More formalisation
‣ to improve reliability and security
‣ to inform the design of clearer tools & languages

dave: $figure +> {
 name: "dave",
 head.hair.colour: “black"
} #final

bob: ...

team: {
 team_colour: "blue" #default
 player = $figure +> {
 clothing: {
 top: "shirt"
 colour: $team_colour
 }
 }
 leftWinger: $player <+> $dave
 centreForward: $player <+> $bob
 ...
}

awayTeam: $team +> { team_colour: "red" }

Paul Anderson 
<dcspaul@ed.ac.uk>

http://homepages.inf.ed.ac.uk/dcspaul

(publications, talks etc …)

mailto:dcspaul@ed.ac.uk?subject=
http://homepages.inf.ed.ac.uk/dcspaul

