
Generating Guitar Tablatures
with Neural Networks

Elias Mistler

Master of Science

Data Science

School of Informatics

University of Edinburgh

2017

Abstract
In contemporary guitar music, guitar tablatures represent an efficient way of writing

down playing instructions for a guitarist. Contrary to classical sheet music notation,

tablatures describe one distinct, ideally easy way of playing a melody. This makes tab-

latures an effective and intuitive notation system, but makes transcribing sheet music

to a suitable tablature a tedious task requiring expert knowledge. The project at hand

aims to automate this procedure and predict the optimal tablature for any input melody.

We show two different approaches, both based on Machine Learning:

In our first approach, guitar frettings are directly predicted based on previously

played frettings. This is accomplished by a Long Short-Term Memory Recurrent Neu-

ral Network, enhanced by a notion of intention of the musical outcome.

Our second approach predicts the difficulty of a fretting in terms of a cost func-

tion, rather than predicting the ideal fretting directly. The cost function is based on

conditional probabilities in the training data and estimated by a Feed-forward Neural

Network.

The agreement between our best approach and published tablature is measured at

72.9% median validation accuracy, higher than what we achieve by applying a heuristic

similar to previous approaches. Subjective evaluation shows that all generated tabla-

tures are playable and that in many cases, divergence from the published tablature is

well justified.

i

Acknowledgements
I would like to thank my supervisor Dr. Paul Anderson, who had originally suggested

a project similar to the one at hand and was very open towards my approaches and

ideas. Thanks to my family, love, and friends for supporting me and being patient and

understanding. A big thank you to my fellow musicians who helped me with their

feedback on my ideas and the system. Finally, thank you to Irn Bru - I couldn’t have

done this without you!

ii

Declaration
I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Elias Mistler)

iii

Table of Contents

1 Introduction 1
1.1 Motivation . 1

1.2 Focus of the project . 2

1.3 Structure of the report . 2

2 Background 4
2.1 The Guitar Fretting Problem . 4

2.1.1 Sheet Music Notation . 4

2.1.2 MIDI Notation . 6

2.1.3 Guitar Tablatures . 6

2.1.4 Tablature Transcription from Sheet Music 7

2.2 Machine Learning . 11

2.2.1 Overview . 11

2.2.2 Linear Regression . 12

2.2.3 Logistic Regression . 13

2.2.4 Neural Networks . 14

2.2.5 Recurrent Neural Networks 15

2.2.6 Long Short-Term Memory 16

2.3 Related Research . 17

2.3.1 Explicit Modelling of Guitar Fretting Difficulty 17

2.3.2 Estimating Guitar Tablature and Fingering Quality from Data 20

2.3.3 Other Related Research . 22

3 Methods 24
3.1 Direct Fretting Prediction . 24

3.1.1 Time Line Setting . 24

3.1.2 The Dimensionality of Chords 25

iv

3.1.3 Validation of Frettings . 29

3.1.4 Different Instruments and Tunings 29

3.1.5 Training the Neural Network 29

3.2 Fretting Prediction by Cost Estimation 31

3.2.1 Cost Function . 31

3.2.2 Cost Prediction for Unseen Data 32

3.2.3 Optimisation . 32

3.3 System design . 35

4 Evaluation 37
4.1 Objective Evaluation . 37

4.1.1 Prediction Accuracy . 37

4.1.2 Evaluated Models . 38

4.1.3 Results . 39

4.2 Subjective Evaluation . 44

5 Conclusion 48
5.1 Summary . 48

5.2 Current Limitations . 48

5.3 Future Work . 49

A Technical Documentation 51
A.1 Prerequisites . 51

A.2 Running the system . 52

A.3 The tabgen package . 52

A.3.1 tabgen.definititions . 52

A.3.2 tabgen.preprocessing . 52

A.3.3 tabgen.base . 52

A.3.4 tabgen.modelling . 53

A.3.5 tabgen.evaluation . 54

A.3.6 tabgen.processing . 54

A.4 Executables . 55

Bibliography 56

v

Chapter 1

Introduction

1.1 Motivation

In contemporary guitar music, reading and writing traditional sheet music is uncom-

mon and often seen as unnecessary overhead for both composer and guitarist. In

fact, many renowned composers and guitarists are said to be unable to even read

sheet music, including Jimi Hendrix, Eric Clapton, Stevie Ray Vaughan and Tom

Morello [Barnes, 2014], as well as Eddie Van Halen, The Beatles, Elvis Presley, Slash,

Tommy Emmanuel and many more [Obacom, 2015].

Guitarists argue that sheet music notation is very much targeted to keyboard instru-

ments such as the piano, whereas it is generally of little use for the guitar, especially

when considering the possibility of using different tunings on the guitar and trans-

posing. The tablature notation on the other hand is optimised for stringed and fretted

instruments and are therefore claimed to have a bigger use to guitarists. [Reid, 2016]

While contemporary guitarists seem to prefer tablatures over sheet notation, or are

not even able to read sheet music, a huge amount of music has only ever been written

down in standard sheet music notation. Transcribing a piece from sheet notation to

a suitable tablature however is a tedious process requiring expert knowledge. Conse-

quently, the material is inaccessible to aspiring guitarists who would like to enhance

their repertoire by adding classical pieces or playing melodies which were originally

intended for other instruments.

The project at hand aims to automate the transcription from standard sheet music

to suitable guitar tablatures through the use of Machine Learning. We hope to enable a

wider range of guitarists to extend their repertoire and to be creative with music origi-

nally published in sheet music notation. This could facilitate the creation of interesting

1

Chapter 1. Introduction 2

re-interpretations, similar to Jimi Hendrix’ version of the Star Spangled Banner (48

tablatures online on ultimate-guitar.com) or Canon Rock (100+ tablatures), the

famous rock version of Johann Pachelbel’s Canon in D Major with countless videos

online and tens of millions of views.

1.2 Focus of the project

This project aims to automate the transcription from staff notation to guitar tablatures.

As we will show in chapter 2, there have been approaches to solve the fretting problem,

mainly along with the guitar fingering problem, i.e. which fingers should be used to

play a given fretting. These approaches are largely based on modelling biomechanical

difficulty and explicit finger positions. We will not model these finger settings and

instead focus on learning solutions to the fretting problem, i.e. we will predict the

strings and frets to be used, but no recommendation as to which finger to use. We do

this for two main reasons:

1. In the guitar tablature community, it is highly unusual to annotate tabs with fin-

gering instructions. Musicians are expected to play from tablatures without ac-

tively thinking about which fingers to use. Furthermore, for a single tablature,

there can be different, equally good, fingerings.

2. As it is unusual to annotate tablatures with fingerings, we could only find a

small number of such tablatures. We judged this number to be insufficient for a

Machine Learning approach. For the fretting problem, however, plenty of usable

tablatures are available online.

Contrary to previous approaches, we keep the system implementation as indepen-

dent as possible from specifics of the used instruments, such as the number of strings

and frets or the tuning applied. We hope to enable the system to generate tablatures for

any stringed instrument, such as guitars in different tunings, bass guitars, mandolins

and ukuleles. The system handles polyphonic music and is robust, i.e. always outputs

a valid tablature for a given input piece, given that the piece is playable on the guitar.

1.3 Structure of the report

Chapter 2 will give a detailed description of the guitar fretting problem and the associ-

ated challenges. We will further present important algorithms and give an overview of

ultimate-guitar.com

Chapter 1. Introduction 3

existing approaches to the guitar fretting and fingering problems. In chapter 3, we will

elaborate on our specific approach to the problem and on its software implementation.

Chapter 4 covers the evaluation of our results and chapter 5 summarises the project, its

findings and gives directions for future research.

Chapter 2

Background

In this chapter, we summarise important background knowledge to the proposed ap-

proach. In section 2.1, we explain the guitar fretting problem in detail, highlighting

issues to be addressed in our system. Section 2.2 gives a brief introduction to the un-

derlying Machine Learning algorithms. Section 2.3 is concerned with past papers on

the guitar fretting problem.

2.1 The Guitar Fretting Problem

In this section, we will elaborate on the guitar fretting problem. As we can closely

relate the fretting problem to the difference between standard sheet music notation and

guitar tablatures, we will first give a basic explanation of both notation systems, as well

as the MIDI representation of pitches.

2.1.1 Sheet Music Notation

Sheet music notation, or staff notation, is the most common form of notation across

instruments and genres. It is concerned with describing the musical intention, i.e. a

description of a musical outcome. 2.1 shows a simple example of sheet music notation.

Figure 2.1: The ascending C-major scale in sheet music notation, from middle C,

261.6Hz to tenor C, 523.2Hz)

4

Chapter 2. Background 5

On a five-line grid, pitches are organised vertically. A note can either be located

on a line or between two lines. This is done for reading purposes and has no musical

implications. The vertical dimension is however based on the notion of a C major scale

rather than physical pitch distance.

Importantly, this structure corresponds to the keyboard layout of a piano but has

no direct connection to the way pitches are organised on a guitar fretboard. Figure 2.1

shows how the C major scale fits into the five-line grid with equal distances. Figure

2.2 shows how the C major scale and thus the sheet music notation directly correlate

to the piano keyboard in that the C major scale is represented by the white keys.

Figure 2.2: A piano keyboard with the annotated white keys constituting a C major

scale.

Source: www.playpiano.com

In a major scale, the pitch distance between the third and fourth, as well as seventh

and eighth note is a semitone, all other distances are whole tones, i.e. two semitones.

To account for the semitones in between, the accidentals] and [are used to increment

or decrement a note by a semitone. Figure 2.3 shows the chromatic C scale, consisting

of all available tones within one octave.] and [historically have different musical

implications with respect to key and harmonics in a piece. In the contemporary, equal-

tempered tuning, however, an incremented lower and a decremented higher note (e.g.

F] and G[) correspond to the same physical frequency, the same pitch.

Figure 2.3: The chromatic C scale in sheet music notation. Note that the ascending and

descending parts consist of the same pitches, only notated with different accidentals.

Doubling the physical frequency results in the perception of a higher version of the

same pitch, called the octave. Octaves can be explicitly marked with ascending octave

indices, e.g. C2 and C3.

www.playpiano.com

Chapter 2. Background 6

The time dimension is represented by the horizontal axis. Note lengths are encoded

by the note shape, symbolising a relative note duration with respect to an underlying

beat. Additional annotations can determine time signature, dynamics, tempo, tempo

variations and other musical properties.

2.1.2 MIDI Notation

A straightforward representation of physical pitches is given by simply enumerat-

ing pitches as a series of semitones, starting from C0 = 0 at 8.18Hz. As this ap-

proach is used in the widespread Musical Instrument Digital Interface (MIDI) format

[MIDI, 1996], it is often referred to as MIDI pitch notation. Enumerating the pitches

rids the notation of musical connotations and ambiguities in sheet music. It instead al-

lows for straightforward computation of pitches and pitch distances in semitone space.

Table 2.1 illustrates how the MIDI notation assigns a single, distinct representation to

every note.

name C3 C]3 D3 D]3 E3 F3 F]3 G3 G]3 A3 A]3 B3 C4

alt. D[3 E[3 G[3 A[3 B[3

MIDI 36 37 38 39 40 41 42 43 44 45 46 47 48

Table 2.1: Octave of tones with their sheet music names and the assigned MIDI pitch

The purely semitone-based nature of the MIDI notation corresponds well with the

guitar fretboard, as moving one fret up on the fretboard increases the resulting pitch

by a semitone. Consequently, a MIDI pitch can be calculated from the guitar fretboard

as the sum of the string base pitch and the number of the depressed fret. Playing the

second string in the third fret thus yields: 45(A3)+3 = 48(C4)

2.1.3 Guitar Tablatures

While sheet music notation describes the musical content, it can also be useful to give

direct instructions on how to play a piece. Tablatures capture these instructions and

are especially popular among beginner guitar players, but also have great use for more

experienced guitarists in that they are straightforward and efficient to read and write.

Figure 2.4 shows an example of a tablature.

A tablature is made of six horizontal lines symbolising the guitar’s strings, where

the lowest line represents the lowest sounding string. In the following, we will always

Chapter 2. Background 7

Figure 2.4: Beginning of a tablature for Led Zeppelin’s Stairway to Heaven as a text

tablature. Source: ultimate-guitar.com, rendered in MuseScore

enumerate the strings from low to high, i.e. calling the lowest-sounding string first

string.1

As the lines in tablatures represent strings, numbers on these lines represent the

fret on which to play the string. When a string should be picked without depressing a

fret on the fretboard, this is represented by a 0 on the respective line. A tablature may

have additional annotations, mostly either taken over from sheet music or introduc-

ing specific instructions on guitar techniques, such as pinch harmonics, palm muting,

bendings, hammer-ons and pull-offs.

In their simplest form, tablatures can be represented by mono-spaced ASCII char-

acters, as shown in figure 2.5. These simple text tablatures allow for quick notation

and easy sharing of tablatures which we assume to be an important reason for the great

popularity of guitar tablatures.

Figure 2.5: Beginning of a text tablature for Led Zeppelin’s Stairway to Heaven as a

text tablature. Source: ultimate-guitar.com

2.1.4 Tablature Transcription from Sheet Music

On a guitar, there are usually six strings, tuned E3, A3, D4, G4, B4 and E5, or, in MIDI

notation, [40,45,50,55,59,64]. On a guitar with 24 frets, we can therefore play an E5

(pitch 64) on multiple locations, from the 24th fret on the first string to the open sixth

1Note that often, the strings are instead enumerated from high-sounding to low-sounding. For ease of
computation, however, the enumeration from low-sounding to high-sounding makes more sense. Note
further that the name ”lowest string” may lead to confusion, as the lowest-sounding string is in the
highest physical location.

ultimate-guitar.com
ultimate-guitar.com

Chapter 2. Background 8

string. Figure 2.6 shows all these locations on the fretboard, the possible note frettings

of E5.

Figure 2.6: The six different ways of playing a high E on a 24-fret guitar in standard

tuning

Similarly to E5, most other pitches can be played in different locations on the fret-

board. Table 2.2 shows where each pitch can be played on a 24-fret guitar in standard

tuning.

from to #strings E3 A3 D4 G4 B4 E5

E3 G]3 1 +

A3 C]4 2 + +

D4 F]4 3 + + +

G4 A]4 4 + + + +

B4 D]5 5 + + + + +

E5 E5 6 + + + + + +

F5 A5 5 + + + + +

A]5 D6 4 + + + +

D]6 G6 3 + + +

G]6 B6 2 + +

C7 E7 1 +

Table 2.2: Number of fretting possibilities and associated strings per pitch range on a

24-fret guitar in standard tuning

Table 2.3 shows the schematics of MIDI pitches on the guitar fretboard. The high-

lighted frets indicate the crossover point with the respective next string, i.e. where the

resulting pitch is equal to the pitch of the open next string.

Figure 2.7 shows an aggregated distribution view of the number of possible fret-

tings: A single pitch is almost uniformly likely to have any number of possible frettings

between 1 and 5 (figure 2.7(a)). Two simultaneously played pitches have a much wider

Chapter 2. Background 9

string: 6th 64 65 66 67 68 69 70 71 72 ...

5th 59 60 61 62 63 64 65 66 67 ...

4th 55 56 57 58 59 60 61 62 63 ...

3rd 50 51 52 53 54 55 56 57 58 ...

2nd 45 46 47 48 49 50 51 52 53 ...

1st 40 41 42 43 44 45 46 47 48 ...

fret: 0 1 2 3 4 5 6 7 8 ...

Table 2.3: Systematics of a guitar fret board with MIDI pitches

distribution of possible frettings (figure 2.7(b)). We will further consider any collec-

tion of simultaneous pitches a chord and therefore, every combination of note frettings

resulting in the chord a chord fretting.

(a) Single note frettings (b) Two-note chord frettings

Figure 2.7: Distribution of the number of possible frettings

As we can see from figure 2.7(b), there exists a single two-pitch chord with 30 the-

oretically possible frettings. Similarly, three-pitch chords can have up to 120 frettings

and four-pitch chords up to 360.2

The maximum number of possible frettings N can thus be approximated by the

binomial coefficient of the number of strings s and the number of simultaneous pitches

p, as shown in equation 2.1. The number of possible fretting sequences increases

exponentially with the length of the sequence.

N ≈
(

s
p

)
=

s!
p!(s− p)!

(2.1)

2These numbers were retrieved from explicitly running our fretting finder algorithm on all possible
combinations of pitches on a 24 fret guitar in standard tuning.

Chapter 2. Background 10

Figure 2.8 shows the eight different possible frettings of the A5 chord on a guitar

in standard tuning. These frettings are manually sorted by ease of play, where the first

two are very good frettings, the following three are inconvenient and the last three

frettings are completely unfeasible to play as the frets span a much larger range than a

human hand can support.

Figure 2.8: The possible 8 frettings of an A5 ”power chord” on a 24-fret guitar in

standard tuning, sorted manually by ease of play

The task of tablature transcription from sheet music is concerned with finding a

viable fretting sequence from these theoretical possibilities. Importantly, the majority

of frettings is actually unfeasible to play.

Due to the complexity of the fretting space, finding a good guitar fretting is a com-

plex, high-dimensional problem. In section 2.3, we will show that past research on this

field was mainly concerned with manually finding simple rules and heuristics, captur-

ing the difficulty of the possible frettings. The project at hand is however concerned

with inferring viable frettings automatically from data, through the use of Machine

Learning.

Chapter 2. Background 11

2.2 Machine Learning

This section is concerned with the basics of Machine Learning. It loosely follows

the structuring and explanations from ”Pattern Recognition and Machine Learning”

[Bishop, 2006], a popular and well-written introduction to a broad range of Machine

Learning approaches. The book should be consulted to gain a detailed understand-

ing, as we can only give a conceptual introduction of the field in the format of this

dissertation.

2.2.1 Overview

Machine Learning is a discipline in the study of Artificial Intelligence concerned with

algorithms which learn from data. The learning procedure can be understood as infer-

ring patterns, or even rules, from examples. Typical tasks in Machine Learning include

classification of images or music recordings, speech recognition, financial risk assess-

ment, and strategy learning in games or simulations. Typically, Machine Learning

approaches are structured by their learning goal as follows:

1. Supervised Learning: An algorithm is trained to predict a dependent variable

from a number of explanatory variables. Typically, the dependent variable is

known for a set of (historical) data and to be predicted for new, unseen data.

(a) Regression models predict a numerical outcome, e.g. a scoring function or

a credit limit to assign to a customer of a financial institute.

(b) Classification models have distinct outcomes, known as classes. Typical

examples include face recognition in images or musical style recognition

from audio recordings. Classification models can often be built on top of

regression models by redefining regressions in form of a probability distri-

bution.

2. Unsupervised Learning: An algorithm is trained without an explicit target vari-

able. This approach is generally useful for exploratory purposes, e.g. uncovering

internal structures and patterns of the data. Results on unsupervised learning can

also be useful as a preprocessing step, as inferred representations may well cor-

respond to meaningful high-level features of the data.

For example, [Le, 2013] observed how an unsupervised system learned to recog-

nise the presence of a human face in images. Unsupervised learning is often

Chapter 2. Background 12

applied in the form of clustering data points and reducing the dimensionality of

data based on identified clusters or patterns.

3. Reinforcement Learning: An agent is trained to make decisions based on a re-

ward signal from its environment. During the learning procedure, the agent

interacts with the environment and adjusts its own behaviour to maximise the

expected reward.

A typical application example of reinforcement learning is autonomous navi-

gation in robot agents or self-driving cars. For example, [Tamar et al., 2016]

propose a reinforcement learning system for robots which is able to plan ahead

and thus make reusable learning progress.

In the rest of this section, we will focus on supervised learning, which our approach

to the guitar fretting problem is based on.

2.2.2 Linear Regression

Linear regression is a comparatively simple statistical method to relate vectors of d

input variables, ~x, to a dependent target variable, y. y is approximated as a linear

combination ŷ of the input variables xi. Equation 2.2 shows the linear model with a

weight vector ~w. x0 is set to 1 and the corresponding weight w0 is called the bias of

the model.

ŷ =
d

∑
i=0

wixi = ~wT~x (2.2)

We call the error of a single prediction, y− ŷ, residual of the prediction. The error

across a data set is usually referred to as prediction loss and can be calculated as a

function of these residuals, commonly using the mean squared error function over all

n training examples:

O(~w) =
1
n

n

∑
j=1

(y j−~wT~x j)
2 (2.3)

Using the mean squared error as loss function, we can solve for the optimal linear

regression weights algebraically by using the pseudo-inverse of the n×d matrix X of

all training input vectors~xT
i :

~̂w = (XT X)−1XT~y (2.4)

Chapter 2. Background 13

Linear regression will always find the best linear fit to the data. However, inter-

esting dependencies are rarely linear. As a simple solution to making the model more

flexible, the input data can be preprocessed, e.g. by adding polynomials of the original

input as new features (sometimes called Polynomial Regression).

2.2.3 Logistic Regression

For classification tasks, the linear model can be adapted to produce class probabilities

P(c|~x) = σ(~wT~x), where σ is the sigmoid, or logistic squashing function:

σ(x) =
1

1+ e−x (2.5)

Due to the interpretation as probability, the loss function needs to reflect the confi-

dence of the predicted classification. Logistic regression can thus be fit by optimising

for the log likelihood L(~w) given by equation 2.6.

L(~w) =−logP(X ,~y|~w) =−
n

∑
i=1

logP(~xi,yi|~w) (2.6)

Unlike in linear regression, the optimisation in logistic regression cannot be done

explicitly. The error function is however convex and can therefore be optimised with

guaranteed convergence to the global optimum by using a gradient descent algorithm:

Starting from a random point in weight space, the weights are iteratively adjusted to

achieve a movement in direction of smaller errors.

Figure 2.9: The gradient descent algorithm visualised

The algorithm is visualised in figure 2.9: From a random starting point (1), the

weight is adjusted in direction of smaller gradients, following down to (2). At the

Chapter 2. Background 14

step from (2) to (3), the step size is too big and the algorithm leaps over the optimum.

As the loss increases, the direction is inverted and the algorithm moves down to (4).

This procedure is repeated until the gradient of the loss functions is less than a given

threshold.

While the logistic regression model is very similar to linear regression in its sys-

tematics, there is an important difference in that the logistic squashing function results

in the nonlinear mapping~x→ σ(~wT~x).

2.2.4 Neural Networks

An Artificial Neural Network is a graph structure consisting of small computation units

called neurons, vaguely resembling axons in a human brain. Typically, a neuron imple-

ments a logistic regression or a similar, nonlinear mapping with learned weights. The

principle remains the same: A vector of input values is weighted with the neuron’s

weight vector and then squashed using an activation function. Neurons are usually

organised in layers on a directed acyclic graph as displayed in figure 2.10.

Figure 2.10: A simple feed-forward Neural Network layout with 5 input variables, one

hidden layer with 4 hidden units, and a single output variable

Input and output are connected to input layer and output layer, respectively. A

number of hidden layers are added in between and every layer is fully connected to its

successor, i.e. every node in layer l supplies its activation as an input for every node

in layer l +1.

Even though each neuron only performs a simple piece of logic, the combination

of nonlinear mappings and multiple layers enables Neural Networks to describe com-

plex functions. Neural Networks can be arbitrarily wide and deep, where wide refers

Chapter 2. Background 15

to the number of neurons per layer and deep to the number of hidden layers. The term

Deep Learning [Goodfellow et al., 2016] was formed to describe especially deep Neu-

ral Network architectures. A common interpretation suggests that deeper networks

reach a higher abstraction in that the hidden units learn more abstract features as a

function of rather simple inputs.

Like a single logistic regression module, Neural Networks are usually trained with

a variant of the gradient descent algorithm. Unlike in logistic regression, the overall

loss function of a Neural Network is however not convex. There are generally many

local optima in the weight space and therefore, convergence to the global optimum is

not guaranteed - in fact, it is extremely rare. However, Neural Networks do often work

well even with local minima.

There are several variations of the gradient descent algorithm, aiming to achieve a

better, and faster, training. A common variant is the Adam solver [Kingma and Ba, 2014]

which adapts automatically to the steepness of gradients and uses early weight updates

(”Stochastic Gradient Descent”) to accelerate the training procedure.

During training, the overall prediction loss is measured at the output layer and

consequently used to train the neurons of the output layer. The hidden layers are re-

cursively trained on the prediction loss, redistributed by the weights between hidden

layer and output layer, or between output layers for deep architectures. This algorithm,

known as Backpropagation, is the de-facto standard for training Neural Networks.

2.2.5 Recurrent Neural Networks

There exist a number of variations and enhancements of the ”standard” architecture

of Feed-forward Neural Networks, mostly originating from targeted attempts to im-

prove the learning performance with respect to a specific task. An important variation

for time-series based domains, such as natural language and music applications, are

Recurrent Neural Networks (RNN).

Recurrent Neural Networks have cyclic structures, i.e. contrary to the feed-forward

architecture, the output of a neuron can, directly or indirectly, influence its own input.

For the purpose of our project, we will only consider the direct case, where a neuron

at time step t has access to its own activation at time step t−1.

Figure 2.11 shows a single, recurrent neuron: On the left, a loop connection indi-

cates the recurrence. The right image displays an unfolded view of the neuron through

time, showing how every neuron’s output only depends on its previous activation and

Chapter 2. Background 16

Figure 2.11: A single recurrent neuron. Left: static view, right: unfolded in time

the current output. To train a RNN, gradients are propagated back along this unfolded

view. This procedure is often referred to as backpropagation through time.

2.2.6 Long Short-Term Memory

A popular flavour of RNN are Long Short-Term Memory (LSTM) networks. In LSTMs,

a neuron has an incoming connection from its previous value before applying the ac-

tivation function. This value is named memory cell of the LSTM neuron. The error is

propagated through the memory cell time steps as a constant, rather than being redis-

tributed at every time step. This way, problems with vanishing and exploding gradients

are prevented.3

A single LSTM neuron is actually a module consisting of four ”standard” neurons:

A forget gate F and input gate I determine how strongly the new cell value c(xt) is

influenced by the previous cell value c(xt−1) and the current input xt . The cell value

is squashed by activation function a, corresponding to a standard feed-forward neuron.

An output gate O determines how much of the activation is used as the overall output

of the LSTM module. The gates are neurons themselves, with the inputs being xt and

h(xt−1) and the outputs being the control signals to the LSTM module.

LSTMs can be trained much faster and with better outcomes than other Recurrent

Neural Networks. Consequently, they have become very popular in time-series predic-

tion and deliver state-of-the-art results. For more details about LSTMs and their train-

ing procedure, please refer to the original paper, [Hochreiter and Schmidhuber, 1997].

A comprehensive and popular introduction to LSTMs is also given by [Olah, 2015].

3Vanishing gradients describes a problem where repeated weighting with a small weight along a
computation graph leads to very fast decay of the error gradient, i.e. the effective time context in the
RNN would be very limited. Similarly, exploding gradients describe the opposite case, where large
weights cause an exponential growth of the gradient.

Chapter 2. Background 17

Figure 2.12: A single LSTM neuron, consisting of memory cell, activation function,

and the three gates: input, output and forget

2.3 Related Research

In this section, we will give a comprehensive review of past work on the guitar fret-

ting problem and the closely related guitar fingering problem, where not only strings

and frets are predicted, but also detailed instructions on which finger to use for which

note.4 We systematised, to our best knowledge, a complete view of relevant past re-

search papers in table 2.4. The table is structured by the scoring function, i.e. how

the goodness of a fretting or fingering is evaluated, and by its optimisation methods,

i.e. how the best sequence of frettings or fingerings is found. We will elaborate on a

selection of these approaches below.

2.3.1 Explicit Modelling of Guitar Fretting Difficulty

The majority of past approaches to guitar fretting and fingering are based on explic-

itly modelling biomechanical difficulty of the hand positions and movements. This

approach naturally solves both fretting and fingering problem at the same time. It is

however dependent on the expert knowledge used to create the difficulty model and

may thus have a strong bias towards the designer’s musical background and playing

4Some of the past papers use fretting and fingering interchangeably which can lead to confusion as
to which problem is addressed. We made sure to keep to the distinct terms in this report, i.e. fretting
when string and fret are predicted and fingering when the hand and/or finger position are predicted

Chapter 2. Background 18

research paper scoring optimisation

[West, 1993, Kehling et al., 2014] heuristic (chunk-wise) enumeration

[Bygrave, 1996,

Miura et al., 2004,

Fiss and Kwasinski, 2011,

Alcabasa and Marcos, 2012,

Burlet and Fujinaga, 2013,

Yazawa et al., 2013,

Yazawa et al., 2014,

Ramos et al., 2016]

heuristic optimised tree search / dynamic

programming

[Tuohy and Potter, 2005,

Tuohy and Potter, 2006b,

Rutherford, 2009,

Ramos et al., 2016]

heuristic genetic algorithm

[Sayegh and Tenorio, 1988,

Sayegh, 1989,

Radisavljevic and Driessen, 2004,

Barbancho et al., 2012a,

Hori et al., 2013]

learned optimised tree search / dynamic

programming

[Tuohy and Potter, 2006d,

Tuohy and Potter, 2006c]

hybrid genetic algorithm

[Tuohy and Potter, 2006a,

Tuohy and Potter, 2006b]

Neural Network + genetic algorithm

Table 2.4: A systematic overview of past research papers addressing the guitar fretting

and guitar fingering problems

style, or be overly simplified. It is further to be acknowledged that many of the papers

discussed here focus on the transcription of music from audio and only consider the

fingering problem marginally and with comparatively simple methods.

[West, 1993] uses the sum of Manhattan distances between all fingers as an esti-

mate of chord fretting difficulty. Equation 2.7 shows a formula for the resulting cost

function. The cost of moving between two fingerings is similarly calculated as the sum

of Manhattan distances travelled by each finger. The resulting fingerings were reported

to be overall playable and better than randomly generated fingerings.

Chapter 2. Background 19

c(F) =
1
2 ∑

x∈F
∑
y∈F
|x1− y1|+ |x2− y2| (2.7)

[Ramos et al., 2016] consider monophonic music only and base the difficulty on

the Euclidean distance in fret-string-space. Equation 2.8 shows the corresponding

distance measure, with x and y being two consecutive note frettings, defined as vec-

tors of the format (string, f ret). 5 The focus of the paper is, however, on evaluating

different optimisation approaches, rather than finding the optimal cost function. In

the chosen scenario, several optimised genetic algorithms outperform the A* (A-star,

[Hart et al., 1968]) tree search algorithm, which may indicate a useful tendency for

future research.

d(x,y) =
√

(x1− y1)2 +(x2− y2)2 (2.8)

[Bygrave, 1996] uses a similar heuristic, minimising finger spread and travel dis-

tance. Additionally, some unwanted fretting situations are penalised, e.g. string cross-

ings or the use of the little finger. The resulting heuristic is not explicitly stated, but

some generated fingerings are shown and related to the scoring function, prompting

future research to investigate more intricate heuristics.

Similarly, [Burlet and Fujinaga, 2013] define their cost function as a weighted sum

of finger spread, travel distance and a general penalty for playing chords in high fret

positions. Contrary to [West, 1993], the distance between two chords is calculated as

the distance of string and fret means, rather than the sum of all individual distances.

Burlet claims to use the A* search algorithm [Hart et al., 1968] for optimisation. While

the central benefit of A* is that heuristics for the remaining path at any time allow for

a quicker search, the heuristic is actually always set to 0, reducing the algorithm to a

Viterbi tree search. The resulting tablatures are only evaluated with respect to their

estimated cost. As the cost is also used to produce the tablatures, this is effectively an

evaluation of the search algorithm, rather than the actual tablatures.

[Tuohy and Potter, 2005] uses a hand-crafted heuristic together with genetic opti-

misation to generate tablatures. The results are reported to be very close to published

tablature and sometimes even easier to play, and consistently outperforming commer-

cial software. The results are only judged informally. Unfortunately, neither the used

heuristic, nor the achieved accuracy is explicitly given.

5In the original paper, the explanation of the variables is slightly erroneous and thus not very clear.
We adjusted the formula accordingly.

Chapter 2. Background 20

[Yazawa et al., 2013] interweaves the tablature generation and pitch recognition

from audio. The frettings are mainly generated to verify the plausibility of a set of

pitches being played. Playability is checked with two simple constraints: A maximum

of four fingers can be used and the finger spread is limited to four frets. Duplicate

pitches are eliminated and barre chords6 are modelled explicitly to estimate the num-

ber of fingers used correctly. The approach was refined later in order to find the best

fingering. The evaluation of biomechanical difficulty is done similarly to other ap-

proaches we discussed, with the important difference of the wrist being modelled sep-

arately from the hand, thus eliminating the false implicit assumption that fingers move

independently. Furthermore, the different timbre of the different strings is compared

against the timbre in the input audio to get an additional hint of where on the guitar

each note was played. The cost function is formulated as a weighted feature vector,

i.e. as a linear model. These weights are manually set but suggested to be learned in

future research. [Yazawa et al., 2014]

[Kehling et al., 2014] uses a set of constraints related to specific guitar techniques

such as bendings and hammer-ons to describe tablatures from audio. They also limit

the finger spread range to four. Smaller distances to a computed centroid on the fret-

board are preferred, both within a chord and between consecutive chords and notes.

Based on the results shown in the heuristics-based papers mentioned, it is our im-

pression that there have been quite promising results in general, but most approaches

have rather strong limitations to their effective use.

We expect a new, rule-based and carefully tuned approach to be published by

[Stavropoulou, 2017]. The project is running in parallel to our project and will be

used to compare results in chapter 4.

2.3.2 Estimating Guitar Tablature and Fingering Quality from Data

The first approach to estimate the quality of guitar fingerings from data dates back

to 1988. [Sayegh and Tenorio, 1988] / [Sayegh, 1989] describe a procedure of fitting

a search tree to the probability of guitar fingerings, given the intended pitch. The

probabilities are estimated from data by counting the relative occurrences in some

training data. By doing so, Sayegh implicitly models the fingerings with a Hidden

Markov Model.

A Hidden Markov Model (HMM) assumes a sequence of hidden states that generate

6Barre chords are chords where the index finger is used to push down several strings at once

Chapter 2. Background 21

observable outputs. Every output is only dependent on its generating state and every

state is only dependent on its preceding state, as visualised in figure 2.13. In the case

of guitar frettings, the hidden states would be the applied fingering, the outputs would

be the resulting pitch. HMMs can be solved using the Viterbi algorithm which infers

the most probable sequences of hidden states for sets of annotated input data. Once the

HMM is fitted, it can be used to assess the likelihood of different fingering sequences

for the observed pitches.

Figure 2.13: A Hidden Markov Model with a sequence of three states st−2, st−1 and st ,

producing the output sequence [ot−2,ot−1,ot]

While Sayegh only experimented with a small, monophonic toy version of the

problem, a number of other authors have built on top of the suggested approach, e.g.

by first segmenting the piece to transcribe into phrases, thus reducing the complexity

of the search. [Radicioni et al., 2004]

[Radisavljevic and Driessen, 2004] extend the approach by enabling polyphonic

music and modelling the cost function as a weighted combination of features, i.e. a

linear regression model. The evaluation shows that in fact, the system learns useful

information. However, due to lack of data, only 7 songs were used and the accuracy

score was only reported on the training data. Radisavljevic points to multi-layer feed-

forward neural networks as a possible direction for future research.

[Hori et al., 2013] formulate the fretting problem as an Input-Output HMM

[Bengio and Frasconi, 1995], an extension to the standard HMM model which allows

for better modelling of the intended pitches. Due to lack of applicable training data,

however, the cost function is manually modelled by setting the HMM probabilities

based on heuristics, rather than training data. After careful hand-tuning, the system

was able to produce some tablatures which were judged easy to play.

Following up on their previous approaches purely based on heuristics,

[Tuohy and Potter, 2006c] / [Tuohy and Potter, 2006d] implemented a hybrid cost func-

tion which is based on a large set of heuristics. The heuristics are weighted based on

training data, resulting in a linear model similar to [Radisavljevic and Driessen, 2004],

Chapter 2. Background 22

except that it was trained with genetic algorithms, rather than the explicit solution usu-

ally applied in Machine Learning (as described in section 2.2).

The most advanced approach in terms of Machine Learning was presented by

[Tuohy and Potter, 2006a]. In the paper, a feed-forward Neural Network is trained to

predict the fret of a single note depending on previous and later notes. The combina-

tion of string and fret is inferred by selecting the valid fretting closest to the predicted

fret. Chords are not treated separately from single notes. Instead, a chord is effec-

tively treated like an ascending arpeggio, i.e. all its note frettings are individually and

sequentially predicted from low to high.

A genetic algorithm is used to perform feature selection on a set of 64 features

derived from human-written tablatures. The Neural Network itself is trained with gra-

dient descent and can be directly applied to the input chords, using a genetic algorithm

to find the best sequence of frettings. Afterwards, a single pass of post-processing,

based on the previously shown heuristics, is applied to remove obvious errors. The

highest training accuracy, comparing the generated tabs with the human-written ones,

was reported at 94%.

2.3.3 Other Related Research

A small number of alternative approaches to tablature transcription have been pub-

lished. While these approaches do not address the same problem as the project at

hand, they do offer alternative angles which may be of interest to the reader.

[Humphrey and Bello, 2014] recognise chords from audio and match them to pre-

defined chord shapes with a Convolutional Neural Network. The result is a chord

transcription which can be used to support guitar accompaniment. It does however not

detect melodies and guitar riffs, consequently not creating tablatures.

[McVicar et al., 2015] propose a composition system for guitar music. The com-

position is done with a Hidden Markov Model in tablature space and is consequently

based on some of the algorithms discussed above. The outputs are style-specific,

playable guitar tablatures for both rhythm and lead guitar.

There exist several approaches [O’Grady and Rickard, 2009, Barbancho et al., 2012b,

Barbancho et al., 2012a, Yazawa et al., 2013] which aim to recognise the used frettings

from audio recordings of a guitar. As the different strings have different strengths, ma-

terials and tensions, they produce different timbres. The approaches attempt to recog-

nise the timbres and thus infer the string used to generate each pitch.

Chapter 2. Background 23

[Burns and Wanderley, 2006] and [Paleari et al., 2008] extend this approach by using

visual cues collected from video recorded simultaneously with the audio recordings.

Chapter 3

Methods

In this chapter, we present two approaches to finding an optimal tablature for a given

sheet music input. The first approach models and predicts frettings directly. The sec-

ond approach assesses the quality of each possible fretting, rather than trying to directly

predict the optimal fretting.

3.1 Direct Fretting Prediction

Our first approach aims to predict frettings directly. In the following sections, We will

discuss different aspects of the guitar fretting problem and how they are addressed in

the direct prediction approach.

3.1.1 Time Line Setting

A tablature can be understood as a time series of guitar frettings used to realise a

sequence of chords and notes. As discussed in section 2.2.6, LSTM networks are

commonly used to model sequential behaviour and predict new elements in the time

series. This is usually done solely based on previous outputs, not on any additional

input. Consequently, if we run a typical LSTM on a fretting sequence, it may predict

frettings which are easily accessible but do not result in the intended chord.

We therefore propose adding the notion of intention into LSTMs, similarly to the

inputs in Input-Output-HMMs [Bengio and Frasconi, 1995, Hori et al., 2013]. Effec-

tively, every input vector xt is extended by one or more intention features, capturing

the intention, in our approach the intended chord, at time step t +1. Importantly, these

features do not exist in the output vector, i.e. we do not predict the chord at time t +2.

24

Chapter 3. Methods 25

Figure 3.1: Pitch and fretting in a timeline. Shifting pitch features one step into the

past allows the fretting at time step t +1 to be dependent on the intended pitch.

Figure 3.1 depicts our solution for a sequence of single notes to be played: In

the typical setting of time series prediction, the pitch at time step t + 1 would not

be available for the prediction of the fretting yt+1, as predictions are only based on

previous time steps. To model the dependency correctly, we shift the pitch features

into the past by one time step, i.e. the input vector xt at time step t contains the pitch

features for time step t + 1. Consequently, the fretting output at time step t + 1 will

depend both on the previous frettings and the intended pitch.

3.1.2 The Dimensionality of Chords

So far, we have only considered monophonic music, i.e. mapping a pitch to a note

fretting, where a note fretting is defined as a pair of string and fret:

pitch→ (string, f ret) (3.1)

A chord can however consist of up to six pitches on a six-string guitar. We have

investigated different possibilities of modelling chords and chord frettings accordingly.

Figure 3.2 shows the canonical fretting of a full C Major chord, which we will use to

illustrate some of our feature sets.

1. Vector Representation. We can re-interpret the variables in scalar equation 3.1 so

that pitch, string and f ret represent vectors of length nstrings, where nstrings is the

maximum number of strings (i.e. 6 for standard guitars). The binary vector of

strings indicates which strings were struck, the fret vector captures the frets held

on each string. While this representation is meaningful and robust for frettings,

the pitch feature vector turns out to be unsuitable as it may change drastically

for small changes in the meaning.

Chapter 3. Methods 26

Figure 3.2: C Major chord in its most typical shape on a six-string guitar in standard

tuning, in sheet music and tablature notation

If we add an E3 (pitch 40, open low E string) to the C major chord depicted in

figure 3.3, the resulting pitch vector will be [40,48,52,55,60,64], i.e. the value

in every cell of the vector changes. This mismatch in logical and representa-

tive difference can possibly result in very poor training behaviour of a Machine

Learning model. We will therefore use the vectorised representation only for

strings and frets, but not for pitches.

Figure 3.3: C Major chord in vector representation

2. Sparse Encoding. Instead of encoding the pitches as a simple vector of length

nstrings, we can use a sparse vector counting the occurrences of all possible

pitches in a predefined range. Similarly, we can encode the frets in a binary

nstrings × (n f rets + 1) matrix, indicating for every pair (f ret,string) if it was

played or not.1. The sparse encoding is visualised in figure 3.4.

The sparse encoding for pitches has the desired properties, i.e. the amount of

change in meaning is reflected by the amount of change in the representation.

However, its size has to be fixed to the anticipated range of possible pitches.

With standard six-string tuning, pitches between 40 and 88 can be realised.

While the simple, vectorised representation of frets has an explicit ordering of

frets, and thus implicit distances between frets, this notion of proximity is not
1including fret 0 to indicate the open string, thus n f rets +1

Chapter 3. Methods 27

Figure 3.4: C Major chord in sparse representation

captured in the sparse representation. At first, this might seem like a disadvan-

tage, as close frets are more likely to occur in a good chord fretting. Decoupling

the explicit encoding could however have a beneficial effect on the learning pro-

cedure and potentially allow for better handling of open strings, i.e. distances

between fret 0 and other frets are effectively modelled independently of other

inter-fret distances.

The sparse encoding needs a large amount of numeric values and is specific to

the number of strings and frets on an instrument, as well as its total pitch range.

3. Statistical Descriptors: As a simple alternative to the detailed sparse encod-

ings, we introduce a vector of statistical measures which describe the distribu-

tion of strings and frets. These measures include the mean string and fret in a

chord as used by [Burlet and Fujinaga, 2013], capturing where on the fretboard a

chord may be played. Along with the means, we report the standard deviation of

string and fret distribution, effectively capturing the spread over frets and strings,

closely relating to the centroid distances as used by [Kehling et al., 2014]. Addi-

tionally, we include the correlation coefficient to capture the hand orientation on

the fretboard. Figure 3.5 illustrates how chords can have very different shapes

on the fretboard, relating to the guitarist’s hand position.

Figure 3.5: Two chords with different hand orientations. Left: C, with the fingers

closer to the thumb grasping higher strings. Right: B[dim, with the the fingers closer

to the thumb grasping lower strings.

Chapter 3. Methods 28

The descriptor method has a direct graphical interpretation on the guitar fret-

board, as depicted in figure 3.6. Two possible fretting combinations are shown

in blue and green. The orange area visualises the descriptors’ expressivity: a)

shows how the mean captures the position on the fretboard. b) shows how the

variance additionally captures the size, or spread, of the fretting. c) visualises

how the correlation coefficient captures more information about the shape of the

fretting.

Figure 3.6: Two possibilities of playing a D5 chord on a guitar fretboard, and a coarse

fretting prediction (red)

While potentially, more measures can give a more accurate description, we ex-

pect a small number of descriptors to carry sufficient information. Due to the

nature of the coarse approximation, statistical descriptors can however only be

used to identify the best from a list of frettings, not to directly predict a fretting.

Section 3.1.3 will cover our validation approach for fretting predictions.

4. Sequential Interpretation. Instead of explicitly modelling chords, we can treat a

chord as equal to the ascending arpeggio, i.e. sequence, of its pitches, as done

by [Tuohy and Potter, 2006a] and visualised in figure 3.7. While the simplicity

of this approach is appealing, it may fail to capture important patterns in chords

which we assume not to be equivalent to sequential patterns.

Figure 3.7: The sequential interpretation visualised with a C Major chord

All the mentioned features can be either used directly or in delta mode. In delta

mode, not the features themselves are used for training and prediction, but their first

derivation. This captures the movement, rather than static positions. While less infor-

mation is captured, the delta features may generalise better: For example, moving up

Chapter 3. Methods 29

by a pitch distance of seven could in many cases be translated to moving up one string

and two frets, regardless of where the first event was situated.

3.1.3 Validation of Frettings

When directly predicting frettings, there is no guarantee that the predicted fretting will

actually realise the intended chord, especially if there is only a coarse approximation

in the form of a vector of statistical descriptors. To make the prediction robust, we

therefore compare it to all possible frettings associated with the chord and select the

possible fretting closest to the prediction. This way, we guarantee that the generated

tab always realises the intended chords - even if the prediction is far from a reasonable

fretting.

As an additional validation step, we only consider frettings with a maximum fret

range of four, as suggested in [Yazawa et al., 2013]. This pre-filtering makes the sys-

tem more robust against obvious mistakes and improves the computing performance,

as fewer possible frettings have to be generated and evaluated.

3.1.4 Different Instruments and Tunings

Most previous approaches to the guitar fretting and fingering problems only consider

a six-string guitar in standard tuning. As our approach learns from data, it will be able

to learn different tunings if sufficient training data is provided.

Furthermore, some tunings can be understood as transpositions of others. A pop-

ular example is the E[tuning, where all strings are tuned one semitone lower than

in standard tuning. We can easily enable transfer learning between these tunings by

transposing the input chords in opposite direction and then assuming standard tuning.

Similarly, we can model a capo as a higher tuning combined with a decreased number

of available frets.

3.1.5 Training the Neural Network

The training data was acquired from the 100 top-rated Guitar Pro tablatures on Ulti-

mate Guitar2, a popular community platform for guitar tablatures. While Guitar Pro is

a proprietary file format, it is widely used and keeps tablatures in a structured, machine-

readable format. The structured format has two major advantages over text tablatures

2https://www.ultimate-guitar.com/top/?rating&filter=guitar_pro

https://www.ultimate-guitar.com/top/?rating&filter=guitar_pro

Chapter 3. Methods 30

for our purpose:

1. Text tablatures can be difficult to parse, as there are different conventions on how

tunings are represented or how playing techniques are notated. The structured

format of Guitar Pro can be converted to XML formats which are straightforward

to parse.

2. The quality of text tablatures varies wildly and may not even be properly rep-

resented by user ratings, as investigated by [Macrae and Dixon, 2011]. The use

of the structured Guitar Pro format requires a specialised software and thus re-

quires a higher level of commitment, leading to a smaller number, but presum-

ably higher quality of structured tablatures compared to plain text tablatures.

Additionally, most notation software comes with a playback function and other

amenities, thus reducing notation mistakes.

We converted the Guitar Pro tablatures to XML by using the command line inter-

face of MuseScore, a free and flexible notation software supporting guitar tablatures.3

From the XML files, we extracted the different feature sets described in section 3.1.2.

Some of the tablatures were corrupted4 and thus excluded in the data cleansing process.

The remaining 82 tablatures made up for a total of 300,000 chord and note events.

We trained different versions of our fretting prediction model. 74 tablatures were

chosen for the training procedure. We used the Adam solver and a mean squared error

(MSE) loss function with the L2 regularisation term λ|W TW | which penalises large

weights and thus prevents overfitting. λ was set to 0.1. Each network was trained in

10 epochs, i.e. 10 full iterations over the training data, with a batch size of 128. One

tablature was used as a preliminary validation set for the prediction loss. The fully

trained LSTM was then evaluated on the remaining 7 tablatures. These results will be

presented in chapter 4.

mseL2(~̂f , ~f (i)|W) =
1
K

K

∑
k=1

(
f̂k− f (i)k

)2
+λ|W TW | (3.2)

3All sheet music and tablature snippets in this document were created using MuseScore.
4In most cases, an instrument was declared as 24-fret instrument, but higher frets were played in the

actual score.

Chapter 3. Methods 31

3.2 Fretting Prediction by Cost Estimation

Our second approach is based on the estimation of the difficulty of possible frettings,

rather than the direct prediction of an optimal fretting. Similarly to the vast majority

of past research, as summarised in section 2.3 and table 2.4, we estimate the fretting

difficulty in form of a cost function and use an optimisation algorithm to find the fret-

ting sequence with the lowest total cost. The cost function is however learned, rather

than explicitly designed.

3.2.1 Cost Function

Our cost function is based on the conditional probabilities of frettings, given their con-

text. We calculate the conditional probability estimate P(ft | ft−1, pt) of each fretting ft
to occur after the fretting ft−1 and the pitch intention pt as:

P(ft | ft−1, pt) =
count(ft−1, pt , ft)

count(ft−1, pt)
(3.3)

Above equation implies independence of ft from anything before time step t− 1,

i.e. ft−2 has no influence on the probability of ft . We do however assume that ft−2

can carry useful information. For example, ft=2 could be useful to calculate the first

derivative of fret positions, i.e. the hand or finger movement speed in fret direction.

Similarly, alternating patterns can be easily described by ft = ft−2.

We therefore decided to calculate conditional probability estimates for different

context lengths. We get the following, generalised formula for conditional probabilities

with context length T :

P(ft | ft−T , ..., ft−2, ft−1, pt) =
count(ft−T , ..., ft−2, ft−1, pt , ft)

count(ft−T , ..., ft−2, ft−1, pt)
(3.4)

We use the negative log probabilities as costs, as shown in equation 3.5. The log-

arithmic function allows for computation of very small probabilities which could oth-

erwise be lost due to arithmetic underflow. Negating the log probabilities yields a

number which is smaller for better frettings and thus constitutes a viable cost function

to be minimised. We use PT (f) as a shorthand for the conditional probability of f

given its context of length T .

c(f) =− logPT (f) (3.5)

Chapter 3. Methods 32

We define the cost c(s) of a fretting sequence s as the sum of individual fretting

costs c(f).:

c(s) = ∑
f∈s

c(f) (3.6)

For context length T = 1, this effectively returns a log likelihood estimate for s:

c(s) = ∑
f∈s

c(f) = ∑
f∈s
− logPT (f) =− log∏

f∈s
PT (f) (3.7)

With a context length T > 1, the total cost does not represent the likelihood of the

fretting sequence. We do however expect it to yield similar results and thus lead to a

meaningful assessment of candidate frettings.

3.2.2 Cost Prediction for Unseen Data

Due to the complexity of the fretting space, the calculated probabilities and costs only

cover a small fraction of the possible frettings and fretting sequences. To generalise to

unseen data, we train a Feed-forward Neural Network to predict the cost of a fretting,

i.e. learn a mapping from a fretting to its cost:

f → c(f) (3.8)

The Neural Network uses the same features as the direct prediction network in

section 3.1. To assess the cost of a possible fretting at time step t, the input includes

features of that fretting and the intended chord, rather than only including previous

frettings.5 Similar to the direct prediction LSTM, the cost predictor can take inputs of

variable context length T .

3.2.3 Optimisation

We can formulate the search for an optimal tablature as the optimisation problem stated

in equation 3.9, with S being the set of all possible fretting sequences.

min
s∈S

c(s) (3.9)

5The look-ahead mechanism is not needed here, as we evaluate a known, possible fretting, rather
than predicting it. Consequently, the pitch features are time-aligned with the frettings, not shifted.

Chapter 3. Methods 33

Many commonly used search algorithms, like the Viterbi algorithm, A*, and D*,

are based on the assumption that the cost of a node only depends on its predecessor

node. With this assumption, the cost optimisation problem can be reduced to finding

the optimal path in a graph. [Sayegh, 1989]

Due to the variable context length chosen in section 3.2.1 and the resulting depen-

dencies between distant frettings, these assumptions do not apply. Consequently, we

decided to implement the optimisation as a simple tree search.

However, the search space for frettings and fretting sequences is prohibitively large

to perform a full tree search. Consequently, we prune the tree while traversing it. The

pruning is realised on two different levels:

1. Candidate pruning. The cost function c(f) is evaluated for every possible can-

didate fretting f in context. Each candidate fretting is kept for further evaluation

only if its cost is both within γ standard deviations of the best candidate fretting’s

cost and it is among the ρ lowest cost estimates:

C = [c(f) f or f ∈ f retting candidates];

forall f ∈ f retting candidates do
if c(f)> min(C)+ γ std(C) then

C.remove(f);

else if rank(c(f),C)> ρ then
C.remove(f);

end
Algorithm 1: Candidate pruning

2. Sequence pruning. Similarly to candidate pruning, the cost function c(s) is eval-

uated for every considered sequence s. The sequence is kept for further evalua-

tion only if it is both within γ standard deviations of the best-rated sequence and

it is among the top ρ lowest cost estimates.

The parameters γc, γs, ρc and ρs can be tweaked to optimise the search run time

while still receiving good search results.

On top of the pruning, we add a simple rule to the optimisation algorithm: If a fret-

ting ft is equal to its predecessor ft−1, its cost is set to zero. While this does not enforce

taking the same fretting for the repetition of a note or chord, it does express a strong

preference and therefore makes the system more robust. This zero join cost technique is

commonly applied in HMM-based waveform concatenation speech synthesis. There,

Chapter 3. Methods 34

it gives a preference to concatenate speech segments which were recorded together,

thus keeping longer recording fragments intact. [Hunt and Black, 1996]

When the graph is fully traversed, the fretting sequence with the lowest total cost

is selected. Due to the pruning, there is no guarantee that the sequence is globally

optimal, but we still expect even strongly pruned trees to work reasonably well.

Chapter 3. Methods 35

3.3 System design

Figure 3.8 shows the data flow in tabgen, our tablature generation system: A set of

tablatures in the MuseScore XML format is used to extract the training features which

are then used to train a Neural Network. To generate a new tablature for a piece, a

Muse Score file is fed into the system. Chord information is extracted and fed into the

optimisation algorithm. The algorithm performs its pruned tree search, evaluating the

possible frettings at each stage with the trained Neural Network. In the direct predic-

tion case, the tree is pruned to a width of 1, always selecting the fretting corresponding

closest to the prediction.

Figure 3.8: tabgen system design

The best fretting sequence is saved into a copy of the input XML file, preserv-

Chapter 3. Methods 36

ing the general structure of the piece and any additional annotations, such as playing

techniques, which are not in the focus of the project.

We implemented tabgen in Python 3.5, using a combination of the popular Machine

Learning libraries tensorflow and keras for training the Neural Networks. The xml

library was used as basis of our parser, pandas and numpy for data handling and per-

formance optimisation. We designed the system to be object-oriented and modular. It

is therefore rather simple to configure the system, and to implement enhancements, for

example alternative cost functions.

The documentation of tabgen gives a deeper insight into the architecture and design

of the system, without discussing the code in detail. The documentation is attached as

appendix A. Technical details about classes and methods can be found in the form of

inline-comments in the code available from GitHub.6

6https://github.com/gitarreneli/tabgen/

https://github.com/gitarreneli/tabgen/

Chapter 4

Evaluation

In this chapter, we evaluate the proposed system. Section 4.1 is concerned with evalu-

ation in an objective, key figure based manner. Section 4.2 evaluates the system output

subjectively, discussing strengths and shortcomings of the approach.

4.1 Objective Evaluation

This section is concerned with an objective, key figure based evaluation of our two

Machine Learning approaches to the guitar fretting problem. We define an accuracy

measure, introduce a number of variations of our model and then report the accuracies

for the models and variations.

4.1.1 Prediction Accuracy

We define the prediction accuracy on a sequence of frettings as the agreement between

a published fretting sequence s and the predicted fretting sequence ŝ, as formulated in

equation 4.1. u is a binary function returning 1 if the input is~0 and 1 otherwise. ŝt = ~̂f

is the predicted chord fretting at time step t.

accuracy(ŝ,s) =
1
t ∑

t
u(ŝt− st) (4.1)

The prediction accuracy relates the generated tablature to previously published tab-

lature. Importantly, the published tablature may not be optimal, or they may be more

than one optimal tablature. The reported accuracy can therefore only be an indicator

of the system performance, not an absolute measure of output quality.

37

Chapter 4. Evaluation 38

4.1.2 Evaluated Models

We evaluated a number of different variations of our models, along with some simple

baseline heuristics to compare the performance against.

4.1.2.1 Baseline Models

1. Random Tablature. As a first baseline, we create random tablatures: For every

note or chord, we randomly sample a fretting from the list of possible frettings

with a maximum finger spread of four. The performance of this model should be

seen as absolute lower boundary for any other model.

2. Distance Heuristic - Sequential Mode. This heuristic follows the sequential in-

terpretation of chords, as described in section 3.1.2. It simply measures the

distance between individual note frettings, as used in other approaches before.

3. Distance Heuristic - Chord Mode. A heuristic based on the notion of fretboard

distance, both within a chord fretting and between chord frettings. Equation 4.2

shows the heuristic as a weighted sum of the sum of distances within a fretting,

dsteady, the mean distance to the previous fretting, d(~f (t), ~f (t−1)), the number

of skipped strings within the chord, and the fret mean. The weights were set

manually, based on the subjective quality of tablatures generated from a small

subset of the training data.

c(~f (t)) = 0.2dsteady(~f (t))+0.7d(~f (t), ~f (t−1))+3.0 f (t)strings skipped +0.01 f (t)f ret mean

(4.2)

4. Probability Lookup. As a baseline for our cost prediction model, we imple-

mented a lookup mechanism, using the pre-calculated probabilities from the

training data. If the sequence is not present in the training data, a low proba-

bility value (λ = 0.001) will be used, as described in algorithm 2.

if (ft−1, ft) ∈ training data then
P(ft | ft−1) = Ptrain(ft | ft−1);

else
P(ft | ft−1) = λ;

c(ft) =−logP(ft | ft−1);
Algorithm 2: Probability Lookup Baseline

Chapter 4. Evaluation 39

4.1.2.2 Machine Learning Models

We trained different variants of the prediction models, using the different feature sets

introduced in section 3.1.2. The following list summarises the features used for the

direct prediction model. The cost model was trained on the same features, with an

adjusted temporal structure for the input as discussed in section 3.2.2.

1. Descriptors. Using descriptors for the intended pitch, we predict a set of descrip-

tors for strings and frets. This yields a rather coarse model with comparatively

few features.

2. Vectorised. This approach predicts the vectorised features for strings and frets.

As previously explained, the vectorised representation of pitches is not consid-

ered suitable for a Machine Learning approach. The sparse pitch representation

is used instead.

3. Full Sparse. This approach uses the detailed, sparse representation for both the

pitches and the frettings.

4. Sequential. Following the sequential model, a string and fretting are directly

predicted from the intended pitch.

5. Sequential Sparse. We interpret the chords as sequential, but still use sparse

representations of features.

The models were also trained and tested in delta mode and with variable context

length. We generally used two hidden layers, with the first hidden layer containing

1024 hidden units and 512 hidden units in the second layer. In case of the direct

prediction model, the first layer consisted of 1024 LSTM cells. All other units were

modelled as standard, feed-forward neurons with a tanh activation function.

4.1.3 Results

In the following, we show our results with the different models and baselines defined

above. For visualisation of the results, we use violin plots. Violin plot shows the

median and interquartile range, similar to boxplots. Additionally, they give a kernel

density estimate, visualising how the data is distributed.1

1http://seaborn.pydata.org/generated/seaborn.violinplot.html

http://seaborn.pydata.org/generated/seaborn.violinplot.html

Chapter 4. Evaluation 40

4.1.3.1 Baseline

Figure 4.1 shows the results achieved with the baseline heuristics. The hand-crafted

distance metric performs very well, with a median accuracy of 68.9% and a rather

narrow distribution. In a sequential scenario, the distance heuristic performs worse,

presumably because too much contextual information about the chord fretting shape

and the individual note fretting distances is lost. The probability lookup yields an even

lower accuracy which can be linked to the sparsity of training data: For over 66% of

the evaluated frettings, no probability estimate was available from the training data.

As expected, the random baseline generates tablatures which agree with the published

tablature significantly less than the other baselines.

Figure 4.1: Accuracy of the baseline heuristics

4.1.3.2 Direct prediction

Figure 4.2 shows the result using different versions of the direct prediction model,

trained with a context length of 1. Out of the direct prediction approaches, the sequen-

tial model performed best at 72.9%, closely followed by the descriptor model at 69.1%.

The accuracy distribution of both approaches is very similar to the distance baseline.

This may suggest that the models learn a similar distance function which seems likely,

given the integer representation of string and fret position and shape.

The sparse and vectorised models perform at lower median accuracies of 59.0%

and 50.8%, respectively. The sparse encoding does not capture the intrinsic distance

between frets, which may explain its lower accuracy. For the vectorised model, we

represented the pitches in a sparse representation. Consequently, input and output

format are quite different, which may have a negative impact on the learning procedure.

Chapter 4. Evaluation 41

Figure 4.2: Accuracy of the direct prediction model with context length 1

Experiments with the delta mode consistently yielded lower accuracy by more than

10%. Consequently, we will not consider the delta scenario further for the direct model.

Figure 4.3 shows how changing the context length to 2 resulted in a lower median

accuracy, but with a narrower distribution. Doubling the number of training epochs

for context length 2 brought the accuracy up to a similar level as with context length

1. After more than 20 epochs, the accuracy started going down, presumably due to

overfitting. Similarly, the accuracy for context length 1 decreased after more than 10

training epochs.

Figure 4.3: Accuracy of the direct prediction model with varying context length and

number of epochs

We conclude that, in the direct setting and with the given, small amount of training

data, the simpler models, descriptor model and sequential model, with a context length

of 1 perform best. The lower performance of longer context lengths and the sparse

Chapter 4. Evaluation 42

model representations can be linked to sparsity in the training data and may outperform

the other approaches given enough training data.

[Tuohy and Potter, 2006a] reported an agreement with published tablature of up

to 94%, using a combination of Neural Network and a genetic algorithm. While the

accuracy is considerably higher than ours, it is to be acknowledged that Tuohy used

a set of tablatures retrieved from classtab.org, a website for classical music tabla-

tures. Our training data consists of the 100 most popular guitar tablatures published on

ultimate-guitar.com, thus spanning a much wider range of musical genres, start-

ing from pop and singer-songwriter music to rock and heavy metal. As the different

musical styles typically come with different playing styles and fretboard patterns, we

assume there is a limit to cross-genre learning of tablatures.

A melody line may, for example, be played on low frets and open strings in a

classical setting, where the guitarist can let the strings ring and create a fuller sound. A

rock guitarist, on the other hand, may prefer to play melodies on higher frets, where the

notes will cut through the mix. In our experience, higher frets are more comfortable to

play on an electric guitar due to the lower distance between strings and fretboard, as

well as typically more available frets overall. We will discuss this further, with respect

to our system’s outputs, in section 4.2.

4.1.3.3 Cost prediction

Experiments with the cost prediction model showed considerably lower results than

with the direct model. Figure 4.4 shows the results for the cost prediction model,

trained with a context length of 1. All the results were obtained with aggressive pruning

settings of ρc = 2 and ρs = 3.

While the cost model accuracy is considerably lower than the direct prediction ac-

curacy, we can observe that it is in most cases higher than the probability lookup base-

line. This implies that our Neural Network is able to generalise probabilities from the

seen examples. However, most probabilities in the training data were rather high, while

we would expect low probabilities for most theoretically possible fretting sequences.

Naturally, frettings with low probabilities are less likely to occur in the training data,

making it difficult to make predictions about low probabilities.

The lack of low-probability examples in the training data leads to probabilities of

unseen combinations being estimated as too high, and consequently, a poor overall

performance. We expect that the performance could strongly benefit from a larger and

more diverse set of training data. Additionally, adding small amounts of intentionally

classtab.org
ultimate-guitar.com

Chapter 4. Evaluation 43

Figure 4.4: Accuracy of the cost prediction model with context length 1

bad tablature into the training data could help to estimate the difference between good

and bad frettings.

Chapter 4. Evaluation 44

4.2 Subjective Evaluation

In this section, we give some examples of our system’s output and compare it to pub-

lished tablature, discussing some key differences. Our first example will also be com-

pared to a new, rule-based approach about to be published.

Figure 4.5 shows two short passages of Alec Templeton’s Bach Goes To Town, as

transcribed by a human expert. The transcription is easy to play, as it makes appropriate

use of the relation between frets and strings. The last note of each phrase is played on

an open string, producing a long-ringing sound.

Figure 4.5: Two passages from Alec Templeton’s Bach Goes to town, as transcribed

by a human expert

[Stavropoulou, 2017] proposes an approach using more than 15 manually weighted

rules to determine the ideal fretting positions. Most importantly, low fret positions and

open strings are preferred, hand position changes avoided. The approach generates

both fretboard positions and fingering instructions. Rules and weightings are mainly

influenced by guitarists’ fingering decisions for classical guitar pieces.

Figure 4.6: Two passages from Alec Templeton’s Bach Goes to town, as transcribed

by the rule-based system proposed in [Stavropoulou, 2017]

Figure 4.6 shows the tablature as generated by this rule-based approach, including

the associated fingerings. The strong preference of open strings works out very well

in the first passage, making the melody very easy to play and, due to the ringing open

Chapter 4. Evaluation 45

strings, produces a full sound on an acoustic guitar. The second passage is easy to play

as well, but will lead to a quite different sound than the first passage, as no suitable

open string is available.

Figure 4.7 shows our system’s output for the same excerpts. The most noticeable

difference to the other approaches is that it is played in noticeably higher frets and with

no open strings. This may be preferred on an electric guitar, in order to have the guitar

stand out more against the accompaniment and to keep the sound crisp and clear. As

a considerable part of our training data consists of contemporary, band-centric guitar

music, this behaviour is easily justified and may be desired for similar settings.

Figure 4.7: Two passages from Alec Templeton’s Bach Goes to town, as transcribed

by our fretting prediction approach

In our opinion, none of the three shown tablature excerpts can be seen as the cor-

rect or best way to play the given melody. The choice of a good tablature certainly

is based on both the playing difficulty and the achieved sound. The difficulty itself is

partially dependent on the choice of instrument. The intended sound can be depen-

dent on several factors, including the instrument, style, accompaniment and personal

preference.

Consequently, for generating a tablature which can be genuinely deemed optimal,

the style intention and instrumentation choice of the guitarist should be considered.

Another example for the style dependency can be illustrated by the generated tab-

lature for Isaac Albéniz’ Asturias, as displayed in figure 4.8. In the original playing

instructions (left), the open string is used alternating with the lower melody line. In the

generated tablature (right), the notes are played in a compact region on the fretboard.

While this does not capture the original sound intention of the piece, it may describe a

viable way of re-interpreting the piece in a contemporary context.

The system does however still make some obvious mistakes. Figure 4.9 shows a

short piece of generated tablature for the rhythm guitar in Chuck Berry’s Johnny B.

Goode. We would generally expect the chord 5th and 6th, which are typical in Blues

Chapter 4. Evaluation 46

Figure 4.8: Beginning of Isaac Albéniz’ Asturias. Left: original notation. Right:

generated tablature

and Rock’n’Roll music, to be played on the same string. While this works fine in the

first measure, the 6th in the second measure is played on the B-string. The decision

to play there can potentially be explained by the smaller distance between G and B

string. It does however result in an untypical ringing of the sixth on the B string and is

comparatively uncomfortable to play when using a guitar plectrum.

Figure 4.9: A generated rhythm guitar tablature excerpt from Chuck Berry’s Johnny B.

Goode

The excerpt of generated tablature Green Day’s American Idiot displayed in fig-

ure 4.10 is almost identical with published tablature. Only the last chord is arguably

notated oddly. In the original piece, the three high strings are struck open, in order to

generate noise, rather than to play a chord of harmonic meaning. Of course, this inten-

tion cannot simply be inferred from the sheet music notation. However, the fretting is

also unfortunate to reach from the previous fretting, as it becomes necessary to cross

over fingers while moving to different strings.

Similar to this example, we found that many disagreements with published tab-

lature could easily be justified by lacking information about the musical intentions.

Another shortcoming was found to be that the system does not recognise potential

repeating string patterns independently of the frets. Figure 4.11 shows how for Aero-

smith’s Dream On, the alternating pattern between the two highest strings and the G

Chapter 4. Evaluation 47

Figure 4.10: A generated tablature excerpt from Green Day’s American Idiot

string is first predicted correctly, and then suddenly interrupted. Again, the musical

intention was not captured in the sheet music and consequently. The sound will be

different from the original, but the tablature is valid and playable.

Figure 4.11: A generated tablature excerpt from Aerosmith’s Dream On

We judged all generated tablatures to be playable and thus useful to quickly and

easily learn a piece which was written in sheet music notation.

Chapter 5

Conclusion

5.1 Summary

We have shown two approaches to Neural Network based tablature generation from

sheet music, one based on predicting a cost function, one based on the direct prediction

of frettings. Past research was used as a starting point for a comprehensive system

addressing all major aspects of the guitar fretting problem: The system can handle

instruments with nearly arbitrary numbers of strings and frets, as well as all possible,

strictly ascending tunings, and capos.

The generated tablatures agree with published tablature by 72.9%, measured for

our best approach across a range of musical styles. Where the outputs disagree with

published tablature, in many cases a musical intention was not expressible in the sheet

music notation, or the system output simply suggested playing in a different fretboard

location overall, but with similar shapes and patterns. While there were some unfor-

tunate frettings, all tablatures were considered playable. Consequently, the proposed

approach and the developed system can fulfil the purpose of generating tablature for

sheet music input, allowing guitarists of different backgrounds to benefit from a wide

range of written music.

5.2 Current Limitations

Our approach transcribes tablatures exactly from the pitches used in sheet music. De-

pending on which instrument the sheet music was written for, there may not be a good

way of playing the piece on a single guitar. There is currently no mechanism in place

which can separate the input from one line of sheet music to tablatures for multiple

48

Chapter 5. Conclusion 49

guitars.

Another important limitation is the amount of used training data. The providers

of ultimate-guitar.com had promised to supply a set of 10,000 GuitarPro tabla-

tures for the project, which was never delivered. The terms and conditions of the

website prohibit the automatic, large-scale download of tablatures (scraping), which

would otherwise have been a viable option. Consequently, a small set of tablatures

was downloaded and used for the project. We suspect that with more training data, the

approach will perform noticeably better.

One potential shortcoming of the approach itself is the detachment of the Neural

Networks’ prediction loss from the tablature prediction accuracy. Due to the complex-

ity of the fretting problem, however, we assume it is unfeasible to train a Machine

Learning approach which fully implements the fretting problem and needs no further

validation, i.e. a system like tabgen is necessary to validate and optimise the fretting

sequences. Using the system accuracy to train the Neural Network would however

make the training procedure prohibitively slow.

5.3 Future Work

Our approach, as well as the software system tabgen, can be used as the basis for a

variety of possible future work:

A future approach could incorporate specific guitar technique annotations, like

bendings and hammer-ons, into the tablature generation. As these annotations have

no direct equivalent in sheet music notation, predicting their adequate may turn out as

an interesting, but difficult project.

As our approach can deal with different tunings, a straightforward extension could

suggest the most suitable tuning for a given musical piece.

The training of the cost prediction model could potentially be improved by max-

imising the difference between best rated fretting and second best rated fretting, rather

than fitting directly to the probability. A larger set of training data would help im-

proving the cost estimator, as less likely frettings will occur and serve as ”negative

examples” with low conditional probabilities. The current, tree-based optimisation

method could potentially be enhanced, or replaced with a more powerful optimisation

algorithm.

Potentially, our approaches can benefit from adding heuristic measures as addi-

tional input features. Ideally, this may combine the benefits of the Machine Learning

ultimate-guitar.com

Chapter 5. Conclusion 50

approach and previous, heuristic-based approaches. Alternatively, it may be beneficial

to group frettings together by shape, as in many cases, a fretting shape is applicable on

different locations of the fretboard. A special handling for empty strings may turn out

useful as well. Furthermore, advanced Machine Learning techniques like Adversarial

Neural Networks could be applied to use the training data more effectively.

Another angle towards improving the tablature generation could be capturing more

high-level information about a piece, such as the overall melody shape, structure and

repetitions, which could give valuable cues for an ideal tablature.

The accuracy evaluation may be improved by comparing a generated tablature

against multiple published versions of the same song, as in many cases, there are

several viable tablatures for a single musical piece. Furthermore, the system could

be trained and evaluated on several musical genres separately, as it can learn genre-

specific patterns which may not transfer well between genres.

Appendix A

Technical Documentation

This technical documentation is to accompany the tabgen tablature generation system.

The full source code is available on GitHub1. Additional comments and interface

documentations can be found as inline comments in the code.

A.1 Prerequisites

In order to fully run tabgen, you need to install the following software (recommended

versions in brackets):

• Python2 3 (3.5), including the libraries:

– tensorflow3 (1.2), ideally as tensorflow-gpu4 on top of CUDA5

– keras6 (2.0.5)

– scikit-learn7 (0.18.1)

– numpy8 (1.13.0)

– pandas9 (0.20.2)

– tqdm10 (4.14.0)

• MuseScore11 (2.0.3)
1<https://github.com/gitarreneli/tabgen>
2<https://www.python.org/>
3<https://www.tensorflow.org/>
4<https://pypi.python.org/pypi/tensorflow-gpu/>
5<https://developer.nvidia.com/cuda-downloads>
6<https://keras.io/>
7<http://scikit-learn.org/stable/>
8<http://www.numpy.org/>
9<http://pandas.pydata.org/>

10<https://pypi.python.org/pypi/tqdm>
11<https://musescore.org>

51

https://github.com/gitarreneli/tabgen
https://www.python.org/
https://www.tensorflow.org/
https://pypi.python.org/pypi/tensorflow-gpu/
https://developer.nvidia.com/cuda-downloads
https://keras.io/
http://scikit-learn.org/stable/
http://www.numpy.org/
http://pandas.pydata.org/
https://pypi.python.org/pypi/tqdm
https://musescore.org

Appendix A. Technical Documentation 52

A.2 Running the system

To run the system, . . .

• Make sure your tablature files are split into the folders training input and evalu-

ation input.

• Edit the enumeration class tabgen.definitions.FeatureConfig to support the de-

sired instrument and features.

• Make sure that tabgen.definitions.Path.MSCORE points to a working installation

of MuseScore or MuseScore portable.

• Run the do preprocessing script.

• Run the estimate accuracy script. You may alternatively want to use run sample

or make a copy of it and adjust the settings.

A.3 The tabgen package

The tabgen package consist of the following six modules:

A.3.1 tabgen.definititions

This is the basic configuration file, containing global settings.

The enumeration class Path contains file paths as strings. Path.MSCORE has to

point to an executable binary file of MuseScore in order for the system to work with

input files other than *.mscx.

The enumeration class FeatureConfig contains the configuration of features to ex-

tract from training data and to use during evaluation time. A short info is given inline.

For detailed information on the features, please refer to the project report.

A.3.2 tabgen.preprocessing

The preprocessing module defines functions for batch-processing of tablatures, turning

them into usable training data. Simply run this module using the do preprocessing

executable.

A.3.3 tabgen.base

A collection of base classes:

Appendix A. Technical Documentation 53

• ChordFrettingEvaluatorBase: The abstract base class for any evaluator. If you

wish to add a new evaluator, e.g. a hand-tuned heuristic, inherit from this class

and implement the evaluate(fretting) method.

• StringConfigBase: An abstract class for StringConfig, to decouple dependencies

• PruningConfig: A configuration object for pruning in the tree search.

A.3.4 tabgen.modelling

This is the core package, modelling the nature of the guitar fretting problem. We

conceptually divide classes into pitch view, capturing the musical intention or output,

and fretting view, capturing the mechanics of the fretboard.

Pitch view and fretting view are connected by the StringConfig class, which de-

fines the strings and frets of an instrument. Conceptually, an object from the fretting

view can be applied to a StringConfig, yielding an object in Pitch view. Similarly, the

StringConfig can be used to generate possible fretting view objects from a pitch view

object. The implementation of StringConfig pre-defines some typical instruments, e.g.

StringConfig.STANDARD 24 FRETS for a six-string guitar with 24 frets in standard

tuning.

The following pitch view classes are implemented:

• Pitch: represents a single pitch. The pitch class is based on the MIDI integer rep-

resentation, but can generate note names with the method get note name(). It can

further produce viable NoteFrettings with the method get note frettings(string config).

• Chord: A chord is implemented as a collection of Pitches with a duration. It can

produce viable ChordFrettings with the method get note frettings(string config,

. . .).

The following fretting view classes are implemented:

• NoteFretting: Captures a single note fretting, defined by a combination of string

and fret. The corresponding Pitch object can be generated by calling get pitch(string config).

• ChordFretting: Captures a fretting of a Chord. ChordFretting can be understood

as the main class in tabgen.modelling.

– The features are extracted in this class and are available through the prop-

erty ChordFretting.features.

– The property ChordFretting.cost captures the cost of the fretting, depend-

ing on the evaluator (class ChordFrettingEvaluatorBase) the ChordFretting

was initialised with.

Appendix A. Technical Documentation 54

– The property next pitches implements the pitch lookahead feature for LSTM

predictions.

– The property previous can be used to traverse backwards in a tree of Chord-

Frettings.

– The method get chord(string config) yields the associated chord.

• ChordFrettingSequence: A sequence of ChordFrettings, i.e. a potential tabla-

ture. Offers a simple text tablature printout with to ascii tab() and implements

the model-based aspects of the tree search implemented by tabgen.processing.Solver.

A.3.5 tabgen.evaluation

The evaluation module is a collection of evaluation classes, i.e. subclasses of tab-

gen.base.ChordFrettingEvaluatorBase which return a cost function tabgen will opti-

mise for. The following implementations are available:

• RandomChordFrettingEvaluator: Returns a random number, resulting in a ran-

dom tablature. Use as a lowest baseline for your experiments.

• BaselineChordFrettingEvaluator: A generic class for heuristics, implemented

as a hand-tuned linear model. Use the weights dictionary to assign weights to

features. If you set tabgen.definitions.FeatureConfig.heuristics = True, you will

have access to a predefined set of heuristics, available as features ’heuristics *’.

For example, use dict(heuristic distance move=1.0) to generate frettings based

on the distance travelled between consecutive frettings.

• ProbabilityLookupEvaluator: Looks up probabilities from preprocessing. Falls

back to a low probability for unseen data.

• RegressionChordFrettingEvaluator: Estimates the cost function as a predicted

negative log probability. Refer to the project report for details.

• LSTMChordFrettingEvaluator: Predicts a new fretting based on previous fret-

tings. As this does not clearly identify a ”second best” match, you may want to

set your PruningConfig to (0,1,0,1). This effectively disables the tree search and

selects the best fit at every time step.

A.3.6 tabgen.processing

This module implements two classes tying the whole system together:

• Parser: Parse MuseScore XML files to an internal class construct with parse(file path)

or write a previously parsed class construct back to an XML file with save(file path).

Appendix A. Technical Documentation 55

Note that save does not generate a new file, but copy the existing structure and

change only the tablature to the generated one. The parser is tested with XML

files converted from Guitar Pro with MuseScore 2.0.3, but may not fully work

with other input formats.

• Solver: The Solver implements the tree search used to find the best fretting se-

quence for a chord sequence input. Call Solver.solve(chord sequence, string config)

to create a new tablature from a list of Chords, or use Solver.solve multi(. . .) to

process a batch of input files with the tablature generator.

A.4 Executables

• do preprocessing: Scans files in Path.TRAINING INPUT and generates a train-

ing data file Path.FEATURE FILE

• estimate accuracy: trains models on Path.FEATURE FILE and evaluates them.

Change the evaluators dictionary to select or define the models to train. Note that

only one cost neural network and one direct prediction network can be trained at

the same time. You may however backup the weight files.

• run sample: Use this file as a skeleton for running tabgen with your own settings.

Bibliography

[Alcabasa and Marcos, 2012] Alcabasa, L. and Marcos, N. (2012). Automatic guitar

music transcription. In Advanced Computer Science Applications and Technologies

(ACSAT), 2012 International Conference on, pages 197–202. IEEE.

[Barbancho et al., 2012a] Barbancho, A. M., Klapuri, A., Tardón, L. J., and Barban-

cho, I. (2012a). Automatic transcription of guitar chords and fingering from audio.

IEEE Transactions on Audio, Speech, and Language Processing, 20(3):915–921.

[Barbancho et al., 2012b] Barbancho, I., Tardon, L. J., Sammartino, S., and Barban-

cho, A. M. (2012b). Inharmonicity-based method for the automatic generation of

guitar tablature. IEEE transactions on audio, speech, and language processing,

20(6):1857–1868.

[Barnes, 2014] Barnes, T. (2014). Why not being able to read music means noth-

ing about your musical ability. https://mic.com/articles/101250. Accessed:

2017-07-26.

[Bengio and Frasconi, 1995] Bengio, Y. and Frasconi, P. (1995). An input output hmm

architecture. In Advances in neural information processing systems, pages 427–434.

[Bishop, 2006] Bishop, C. M. (2006). Pattern recognition and machine learning.

springer.

[Burlet and Fujinaga, 2013] Burlet, G. and Fujinaga, I. (2013). Robotaba guitar tabla-

ture transcription framework. In ISMIR, pages 517–522.

[Burns and Wanderley, 2006] Burns, A.-M. and Wanderley, M. M. (2006). Visual

methods for the retrieval of guitarist fingering. In Proceedings of the 2006 con-

ference on New interfaces for musical expression, pages 196–199. IRCAMCentre

Pompidou.

56

https://mic.com/articles/101250

Bibliography 57

[Bygrave, 1996] Bygrave, G. (1996). Fingering for stringed instruments. BSc Hon-

ours Year Dissertation.

[Fiss and Kwasinski, 2011] Fiss, X. and Kwasinski, A. (2011). Automatic real-time

electric guitar audio transcription. In Acoustics, Speech and Signal Processing

(ICASSP), 2011 IEEE International Conference on, pages 373–376. IEEE.

[Goodfellow et al., 2016] Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep

Learning. MIT Press. http://www.deeplearningbook.org.

[Hart et al., 1968] Hart, P. E., Nilsson, N. J., and Raphael, B. (1968). A formal ba-

sis for the heuristic determination of minimum cost paths. IEEE transactions on

Systems Science and Cybernetics, 4(2):100–107.

[Hochreiter and Schmidhuber, 1997] Hochreiter, S. and Schmidhuber, J. (1997). Long

short-term memory. Neural computation, 9(8):1735–1780.

[Hori et al., 2013] Hori, G., Kameoka, H., and Sagayama, S. (2013). Input-output

hmm applied to automatic arrangement for guitars. Information and Media Tech-

nologies, 8(2):477–484.

[Humphrey and Bello, 2014] Humphrey, E. J. and Bello, J. P. (2014). From music

audio to chord tablature: Teaching deep convolutional networks to play guitar. In

Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Con-

ference on, pages 6974–6978. IEEE.

[Hunt and Black, 1996] Hunt, A. J. and Black, A. W. (1996). Unit selection in a con-

catenative speech synthesis system using a large speech database. In Acoustics,

Speech, and Signal Processing, 1996. ICASSP-96. Conference Proceedings., 1996

IEEE International Conference on, volume 1, pages 373–376. IEEE.

[Kehling et al., 2014] Kehling, C., Abeßer, J., Dittmar, C., and Schuller, G. (2014).

Automatic tablature transcription of electric guitar recordings by estimation of

score-and instrument-related parameters. In DAFx, pages 219–226.

[Kingma and Ba, 2014] Kingma, D. P. and Ba, J. (2014). Adam: A method for

stochastic optimization. CoRR, abs/1412.6980.

[Le, 2013] Le, Q. V. (2013). Building high-level features using large scale unsuper-

vised learning. In Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE

International Conference on, pages 8595–8598. IEEE.

http://www.deeplearningbook.org

Bibliography 58

[Macrae and Dixon, 2011] Macrae, R. and Dixon, S. (2011). Guitar tab mining, anal-

ysis and ranking. In ISMIR, pages 453–458.

[McVicar et al., 2015] McVicar, M., Fukayama, S., and Goto, M. (2015). Autogui-

tartab: computer-aided composition of rhythm and lead guitar parts in the tabla-

ture space. IEEE/ACM Transactions on Audio, Speech and Language Processing

(TASLP), 23(7):1105–1117.

[MIDI, 1996] MIDI, M. A. (1996). The complete midi 1.0 detailed specification. Los

Angeles, CA, The MIDI Manufacturers Association.

[Miura et al., 2004] Miura, M., Hirota, I., Hama, N., and Yanagida, M. (2004). Con-

structing a system for finger-position determination and tablature generation for

playing melodies on guitars. Systems and Computers in Japan, 35(6):10–19.

[Obacom, 2015] Obacom, A. (2015). 10 legendary musicians who never learned how

to read music. http://www.nairaland.com/2408051. Accessed: 2017-07-26.

[O’Grady and Rickard, 2009] O’Grady, P. D. and Rickard, S. T. (2009). Automatic

hexaphonic guitar transcription using non-negative constraints.

[Olah, 2015] Olah, C. (2015). Understanding lstm networks. http://colah.

github.io/posts/2015-08-Understanding-LSTMs/. Accessed: 2017-08-07.

[Paleari et al., 2008] Paleari, M., Huet, B., Schutz, A., and Slock, D. (2008). A mul-

timodal approach to music transcription. In Image Processing, 2008. ICIP 2008.

15th IEEE International Conference on, pages 93–96. IEEE.

[Radicioni et al., 2004] Radicioni, D., Anselma, L., and Lombardo, V. (2004). A

segmentation-based prototype to compute string instruments fingering. In Proceed-

ings of the Conference on Interdisciplinary Musicology, volume 17, page 97.

[Radisavljevic and Driessen, 2004] Radisavljevic, A. and Driessen, P. F. (2004). Path

difference learning for guitar fingering problem. In ICMC, volume 28.

[Ramos et al., 2016] Ramos, J. V., Ramos, A. S., Silla, C. N., and Sanches, D. S.

(2016). An evaluation of different evolutionary approaches applied in the process

of automatic transcription of music scores into tablatures. In Tools with Artificial

Intelligence (ICTAI), 2016 IEEE 28th International Conference on, pages 663–669.

IEEE.

http://www.nairaland.com/2408051
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Bibliography 59

[Reid, 2016] Reid, H. (2016). Why aren’t guitar players better at reading music?

http://www.woodpecker.com/blogs/reading_music.html. Accessed: 2017-

07-26.

[Rutherford, 2009] Rutherford, N. (2009). Fingar, a genetic algorithm approach to

producing playable guitar tablature with fingering instructions. Undergraduate

project dissertation, Dept. of Computer Sci., Univ. of Sheffield, 15.

[Sayegh, 1989] Sayegh, S. I. (1989). Fingering for string instruments with the opti-

mum path paradigm. Computer Music Journal, 13(3):76–84.

[Sayegh and Tenorio, 1988] Sayegh, S. I. and Tenorio, M. F. (1988). Inverse viterbi

algorithm as learning procedure and application to optimization in the string instru-

ment fingering problem.

[Stavropoulou, 2017] Stavropoulou, N. (2017). Computing guitar fingerings. MSc

Dissertation. School of Informatics, University of Edinburgh.

[Tamar et al., 2016] Tamar, A., Wu, Y., Thomas, G., Levine, S., and Abbeel, P. (2016).

Value iteration networks. In Advances in Neural Information Processing Systems,

pages 2154–2162.

[Tuohy and Potter, 2005] Tuohy, D. R. and Potter, W. D. (2005). A genetic algorithm

for the automatic generation of playable guitar tablature. In ICMC, pages 499–502.

[Tuohy and Potter, 2006a] Tuohy, D. R. and Potter, W. D. (2006a). An evolved neural

network/hc hybrid for tablature creation in ga-based guitar arranging. In ICMC.

[Tuohy and Potter, 2006b] Tuohy, D. R. and Potter, W. D. (2006b). Ga-based mu-

sic arranging for guitar. In Evolutionary Computation, 2006. CEC 2006. IEEE

Congress on, pages 1065–1070. IEEE.

[Tuohy and Potter, 2006c] Tuohy, D. R. and Potter, W. D. (2006c). Generating guitar

tablature with lhf notation via dga and ann. Advances in applied artificial intelli-

gence, pages 244–253.

[Tuohy and Potter, 2006d] Tuohy, D. R. and Potter, W. D. (2006d). Guitar tablature

creation with neural networks and distributed genetic search. In Proc. of the 19th

International Conference on Industrial and Engineering Applications of Artificial

Intelligence and Expert Systems, IEA-AIE06, Annecy, France.

http://www.woodpecker.com/blogs/reading_music.html

Bibliography 60

[West, 1993] West, A. (1993). Determining playable guitar fingerings from sheet mu-

sic. Project Report.

[Yazawa et al., 2014] Yazawa, K., Itoyama, K., and Okuno, H. G. (2014). Automatic

transcription of guitar tablature from audio signals in accordance with player’s pro-

ficiency. In Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE Inter-

national Conference on, pages 3122–3126. IEEE.

[Yazawa et al., 2013] Yazawa, K., Sakaue, D., Nagira, K., Itoyama, K., and Okuno,

H. G. (2013). Audio-based guitar tablature transcription using multipitch analysis

and playability constraints. In Acoustics, Speech and Signal Processing (ICASSP),

2013 IEEE International Conference on, pages 196–200. IEEE.

	Introduction
	Motivation
	Focus of the project
	Structure of the report

	Background
	The Guitar Fretting Problem
	Sheet Music Notation
	MIDI Notation
	Guitar Tablatures
	Tablature Transcription from Sheet Music

	Machine Learning
	Overview
	Linear Regression
	Logistic Regression
	Neural Networks
	Recurrent Neural Networks
	Long Short-Term Memory

	Related Research
	Explicit Modelling of Guitar Fretting Difficulty
	Estimating Guitar Tablature and Fingering Quality from Data
	Other Related Research

	Methods
	Direct Fretting Prediction
	Time Line Setting
	The Dimensionality of Chords
	Validation of Frettings
	Different Instruments and Tunings
	Training the Neural Network

	Fretting Prediction by Cost Estimation
	Cost Function
	Cost Prediction for Unseen Data
	Optimisation

	System design

	Evaluation
	Objective Evaluation
	Prediction Accuracy
	Evaluated Models
	Results

	Subjective Evaluation

	Conclusion
	Summary
	Current Limitations
	Future Work

	Technical Documentation
	Prerequisites
	Running the system
	The tabgen package
	tabgen.definititions
	tabgen.preprocessing
	tabgen.base
	tabgen.modelling
	tabgen.evaluation
	tabgen.processing

	Executables

	Bibliography

