
Paul Anderson 
dcspaul@ed.ac.uk

http://homepages.inf.ed.ac.uk/dcspaul

http://homepages.inf.ed.ac.uk/dcspaul/publications/paris-2014.pdf

Declarative System
Configurations with

Constraints

http://homepages.inf.ed.ac.uk/dcspaul/publications/paris-2014.pdf

Overview

System configuration	

‣ imperative approaches	

‣ a more declarative approach	

Specifications with constraints	

‣ aspect composition	

‣ autonomics & error-recovery	

Confsolve	

‣ a constraint-based specification language

System Configuration

“Programming the infrastructure”	

‣ corporate IT infrastructure, “grid”, “datacentre”, “cloud service”, 
distributed application, …	

‣ virtual machines & networks mean that everything is now “soft”

Requirements

Specification

Plan

Deployment

Imperative Approaches

The traditional approach is to use “imperative” scripts	

‣ these are created by a human to implement a workflow which they
have designed to achieve the desired state	

‣ workflows may run in response to “events” (eg. a failure)	

But ..	

‣ there is no often explicit specification of the desired state	

- even if there is, it is not easy to prove that the workflow achieves it	

‣ a new workflow is needed for every new initial state	

- and/or the workflow includes complex hand-coded conditionals	

- for use in autonomic recovery, the number of possible states is large	

A Declarative Approach

We advocate a more “declarative” approach	

‣ the human specifies the desired state	

‣ a monitoring system determines the current state	

‣ a planner automatically creates a workflow	

‣ a deployment engine executes this and validates the result	

So ..	

‣ the user provides (only) a specification of the final, desired state	

- and possibly some declarative constraints on the intermediate states	

- this is clearly separated from the actions required to achieve it	

‣ the system can achieve this state from any starting point	

- if this is possible	

‣ we can prove properties of the final (and intermediate) state

Configuration Languages

Imperative configuration uses conventional scripting languages	

‣ or a DSL with a roughly equivalent power	

- they describe the process (computation) of changing the configuration	

Declarative configuration languages are quite different	

‣ they describe the desired state - not a computation	

- in theory, they should have a simpler semantics	

- and be easier to reason about	

‣ they describe the requirements at a higher level	

- these are translated into explicit, detailed configuration parameters	

‣ they compose the requirements from many independent people	

- the declarative nature allows us to do this composition …	

‣ the deployment of the configuration is a separate problem

Aspects & Composition

A good configuration language can compose requirements	

‣ this has no real equivalent in most programming languages

service	

provider

sysadmin

security specialist

vendor

Aspect Composition

Many different people are responsible for different “aspects”	

‣ one of our goals for a configuration language is to help people
collaborate & compose their requirements without unnecessary
conflict	

‣ A configuration tool composes the independent “aspects” 
to form a consistent specification	

Different tools support different languages and approaches	

‣ “prototypes” and “instance inheritance” are common	

‣ simple order precedence	

‣ explicit composition functions	

PORT=46

PORT=200

People’s real requirements are often quite loose:	

‣ “configure one machine as a web server” (but I don’t care which)	

‣ but most systems force the user to specify an arbitrary value

PORT<100

PORT<300	

PORT!=50

42

With a declarative approach, we can specify loose constraints ..	

‣ this allows us to compose aspects without conflict or unnecessary
negotiation	

I want at least two DHCP servers
on each network segment

I want my two database servers to
be on separate networks if possible
for robustness

I need at least one database machine that
students can log in to

I don’t want any core services running
on any machines that students are
authorised to log in to

Autonomics

Systems need the ability to reconfigure in response to failures and
other external events	

‣ traditionally, these involves “event-condition-action” (ECA) rules	

‣ but we can use constraints to avoid these imperative specifications

Autonomic recovery …	

‣ we may have a declarative specification	

‣ which requires an imperative ECA rule to handle autonomic
reconfiguration

Server A

Server B

if Server A fails, then …. 
 do some imperative stuff 
to change the configuration so that we use Server B instead

use Server A

Using declarative constraints …	

Server A

Server B

- use Server A or B	

- don’t use a failed Server	

- prefer Server A

Confsolve

A constraint-based language for system configuration	

‣ by John Hewson

Constraints

Using constraint solvers for configuration problems is not new	

‣ Alloy for network configuration	

‣ Cauldron (HP)	

‣ VM allocation (Google challenge)	

But we have a different motivation which changes the emphasis	

‣ we want to integrate the constraints with a (usable) configuration
language to support a separation of concerns	

‣ the constraint problems are often comparatively simple to solve, but
they are embedded in large volumes of “constant” configuration data	

‣ some specific properties are important (see later) ...	

- preferences (soft constraints)	

- stability

Modelling

The most popular practical configuration languages ..	

‣ are very good at reliably deploying large numbers of configuration
parameters to large numbers of machines	

‣ but they are not good at modelling higher-level abstractions	

‣ they have “evolved” gradually without a clear semantics	

‣ and they have implementations which are not amenable to
experimental extensions	

Confsolve is an experimental constraint-based configuration
language	

‣ supports the necessary modelling	

‣ generates an intermediate language which can be transformed fairly
easily into an existing configuration language

Confsolve

An experimental constraint-based configuration language	

‣ by John Hewson<john.hewson@ed.ac.uk>  
http://homepages.inf.ed.ac.uk/s0968244/  
(Sponsored by Microsoft Research)	

‣ a general-purpose configuration language	

- no domain-specific knowledge	

- output can easily be transformed into some other language (eg. Puppet)	

‣ the data model is an object-oriented hierarchy	

- constraints are possible at all levels 	

‣ compiles down to a standard constraint solver (MiniZinc)	

‣ supports soft constraints and optimisation	

‣ has a formal semantics for the translation	

‣ supports “change minimisation”

Some Confsolve Classes

class Service {  
 var host as ref Machine  
 ...  
}  
class Datacenter {  
 var machines as Machine[8]  
  
}"
class Machine { }"
class Web_Srv extends Service { }"
class Worker_Srv extends Service { }"
class DHCP_Srv extends Service { }

Two Datacenters & Three Services

var cloud as Datacenter  
var enterprise as Datacenter  
 
var dhcp as DHCP_Service[2]  
var worker as Worker_Service[3]  
var web as Web_Service[3]"
!
!

A Constraint

No two services on the same machine:	

‣ this generates a correct configuration	

- no explicit assignment at all	

- not just validation	

‣ this can be independently authored	

- no collaboration with the service authors, or system managers is required

var services as ref Service[7]"
 
where foreach (s1 in services) {  
 foreach (s2 in services) {  
 if (s1 != s2) {  
 s1.host != s2.host  
 }  
 }  
}

Web

DHCP

Work Web

Enterprise

Web DHCP

Work

Work

Cloud

Not a good solution!	

Constraints are too loose

An Optimisation Constraint

“Favour placement of machines in the enterprise”	

‣ this policy can be defined completely independently 

 
var utilisation as int"
 
where utilisation == count ( 
 s in services  
 where s.host in enterprise.machines) "
 
maximize utilisation

Web

DHCP

Work

Web

Web DHCP

Work

Work

Enterprise Cloud

A much better solution

Add Six More Workers

var cloud as Datacenter  
var enterprise as Datacenter  
 
var dhcp as DHCP_Service[2]  
var worker as Worker_Service[3]  
var worker as Worker_Service[9]  
var web as Web_Service[3]"
!
!

Work

Work

Cloud

Add six more workers	

➜ An unnecessary migration

Work

WorkWork

WorkWeb

Web

Web DHCP

Work

Work

Enterprise

DHCP

Work

Minimising Changes

“Don’t move machines once they have been allocated”	

‣ “change” block is only valid when we have a previous configuration	

‣ ~s is the “previous” value	

‣ this is a “hard constraint”	

- it could also have been a maximise/minimise constraint 

change {"
 forall s in services {"
 s.host = ~s.host;"
 };"
}

Work

Work

Cloud

with “change minimisation”	

no unnecessary migration

Work

WorkWork

WorkWeb

Web

Web DHCP

Work

Work

Enterprise

Work

DHCP

Reassignments

0 50 100 150 200

1.5

2

2.5

3

3.5

Extra VMs

S
o
l
v
e
T
i
m
e
(
s
)

Custom

Normal

0 50 100 150 200

200

400

600

800

Extra VMs

M
e
m
o
r
y
(
M
B
)

Custom

Normal

0 50 100 150 200

0

20

40

Extra VMs

R
e
a
s
s
i
g
n
m
e
n
t
s

Custom

Normal

1

Time

0 50 100 150 200

1.5

2

2.5

3

3.5

Extra VMs

S
o
l
v
e
T
i
m
e
(
s
)

Custom

Normal

0 50 100 150 200

200

400

600

800

Extra VMs

M
e
m
o
r
y
(
M
B
)

Custom

Normal

0 50 100 150 200

0

20

40

Extra VMs

R
e
a
s
s
i
g
n
m
e
n
t
s

Custom

Normal

1

Memory0 50 100 150 200

1.5

2

2.5

3

3.5

Extra VMs

S
o
l
v
e
T
i
m
e
(
s
)

Custom

Normal

0 50 100 150 200

200

400

600

800

Extra VMs

M
e
m
o
r
y
(
M
B
)

Custom

Normal

0 50 100 150 200

0

20

40

Extra VMs

R
e
a
s
s
i
g
n
m
e
n
t
s

Custom

Normal

1

What’s Good ?

Users can specify and change their own requirements completely
independently	

‣ and the resulting configurations are guaranteed to match the
requirements	

If some constraint changes, the system can automatically generate
a new valid configuration (if one exists)	

‣ things may change because of requirement changes	

‣ or, for example, failures	

‣ the deployment of the new configuration can be scheduled with
automated planning tools	

When the system reconfigures, it can do so with the minimum
disruption necessary to meet the final requirements

What’s Not So Good ?

It is very hard to specify comparative “costs” 	

‣ I could leave one service unnecessarily in the cloud, or I could move
it back into the datacenter, but I would need to shuffle ten other
servers to do so - which is best?	

It is quite hard to avoid over-specifying or under-specifying
constraints	

‣ we either miss good solutions, or deploy bad ones	

It can be hard for humans to predict the effects	

‣ sysadmins are very nervous with this degree of automation	

Sometimes there may be no solution	

‣ and it is difficult to understand why	

Performance can be unpredictable	

‣ it is not always obvious what is computationally expensive

Some Conclusions

Constraint-based (declarative) configuration languages seem
promising	

‣ they are capable of supporting the automatic composition of
intersecting aspects	

‣ but a fully-general constraint-solver is probably not appropriate for
production use	

‣ some human-factors research would be very useful to determine
typical usage patterns which could be incorporated into a production
language in a more usable way	

We need better configuration languages & implementations	

‣ which support higher-level modelling	

‣ and have clearer semantics	

‣ and extensible implementations

Current Work

Some things I am interested in …	

‣ configuration specification languages and semantics	

- making it clearer (and less error prone) for users to specify their

requirements	

‣ “provenance” and security	

- who is responsible for what?	

‣ automated planning and deployment	

- distributed planning and agent-based negotiation of

configurations

Paul Anderson 
dcspaul@ed.ac.uk

http://homepages.inf.ed.ac.uk/dcspaul

http://homepages.inf.ed.ac.uk/dcspaul/publications/paris-2014.pdf

Declarative System
Configurations with

Constraints

http://homepages.inf.ed.ac.uk/dcspaul/publications/paris-2014.pdf

