
Constraints, Agents & Planning

in System Configuration

Paul Anderson
<dcspaul@ed.ac.uk>

http://homepages.inf.ed.ac.uk/dcspaul/
publications/pepa-2012.pdf

Friday, 2 March 2012

Text

Speci!cation

Current State

Requirements

Text

Final State

Plan

Deployment
➊

➋

➌

➍

➎

➏

Friday, 2 March 2012

Three Projects

◼ Constraint-based speci!cations
- how do we turn our “common sense” requirements” into a

concrete speci!cation that can be implemented
automatically?

◼ Agent-based con!guration
- how can we decentralise some con!guration decisions, but

retain an overall control of the policy?

◼ Planning for con!guration change
- how do we create a sequence of operations which will

transform “what we have” into “what we want” without
breaking anything in the process?

➊➋➌

Friday, 2 March 2012

Constraint-Based
Specifications

With John Hewson
<john.hewson@ed.ac.uk>

http://homepages.inf.ed.ac.uk/s0968244/

Sponsored by Microsoft Research

➊➋➌

Friday, 2 March 2012

Constraint-Based
Specifications

◼ At some point all the details of the !nal
con!guration need to be worked out

◼ But specifying these all explicitly is not a good idea
- overspeci!cation allows no room for autonomic

adjustment (except by non-declaratiave rules)
- fully-instantiated con!gurations are hard to compose with

other people’s requirements
- it is hard and mistakes are likely

◼ We want to specify the minimum necessary to meet
our requirements
- and leave the system the freedom to !ll in the details

Friday, 2 March 2012

ConfSolve
◼ Confsolve is a declarative con!guration language
- we can specify the structure of the !nal con!guration
- not the procedures necessary to achieve it

◼ ConfSolve allows us specify “loose” con!gurations
- we can specify some constraints on the !nal values

without giving explicit values

◼ ConfSolve uses a standard constraint solver to
generate a concrete con!guration

◼ The output can be transformed into “Puppet” or
some other standard con!guration language for
deployment

Friday, 2 March 2012

Some ConfSolve Classes
class Service {
 var host as ref Machine
}
class Datacenter {
 var machines as Machine[8]
}

class Machine { }

class Web_Srv extends Service { }

class Worker_Srv extends Service { }

class DHCP_Srv extends Service { }

Friday, 2 March 2012

Two Datacentres
Three Services

var cloud as Datacenter
var enterprise as Datacenter

var dhcp as DHCP_Service[2]
var worker as Worker_Service[3]
var web as Web_Service[3]

Friday, 2 March 2012

No Two Services on the Same
Machine

var services as ref Service[7]

where foreach (s1 in services) {
 foreach (s2 in services) {
 if (s1 != s2) {
 s1.host != s2.host
 }
 }
}

Friday, 2 March 2012

Constraint Solution

Enterprise Cloud

DHCP

WebDHCP

WorkWeb

DHCP Work

WorkWeb

Not a good solution!
The constraints are too loose

Friday, 2 March 2012

Favour Placement of Machines
in the Enterprise

var utilisation as int

where utilisation == count (
 s in services
 where s.host in enterprise.machines)

maximize utilisation

Friday, 2 March 2012

Constraint Solution

Enterprise Cloud

DHCP

DHCP

Work WebDHCP

Work WorkWeb Web

A much beer solution

Friday, 2 March 2012

Add Six More Workers

Enterprise Cloud

DHCP

DHCP

Work WebWork

Work DHCPWeb Web

Work Work WorkWork

WorkWork

The new solution results in a different allocation for
the enterprise which causes an unwanted migration

Friday, 2 March 2012

“Minimal Change” Constraints

Enterprise Cloud

DHCP

DHCP

Work Web

WorkWeb Web

Work Work WorkWork

WorkWork

If we add constraints to minimise the “distance”
from the old solution, we introduce some “stability”

DHCP

Work

Friday, 2 March 2012

Some Issues
◼ We would like the optimisation function to take

account of user preferences as well:
- “put these two servers on the same network IF POSSIBLE”

◼ This is easy to do, but:
- how do we weight the priorities for all the different

preferences to always get a sensible outcome?
- is it more important to keep these servers on the same

network, or to maintain the stability?

◼ We can express all of these things, but we want to do
so in a way which makes sense to the user and is not
so complicated as to be unpredictable

Friday, 2 March 2012

➊➋➌

Agent-Based Configuration

Work with Shahriar Bijani
<S.Bijani@sms.ed.ac.uk>

http://homepages.inf.ed.ac.uk/s0880557

Friday, 2 March 2012

Centralised Configuration?
◼ Centralised con!guration
- allows a global view with complete knowledge

◼ But ...
- it is not scalable
- it is not robust against communication failures
- federated environments have no obvious centre
- different security policies may apply to different

subsystems

◼ The challenge ...
- devolve control to an appropriately low level
- but allow high-level policies to determine the behaviour

Friday, 2 March 2012

“OpenKnowledge” & LCC
◼ Agents execute “interaction models”
◼ Wrien in a “lightweight coordination calculus” (LCC)
◼ This provides a very general mechanism for doing

distributed con!guration
◼ Policy is determined by the interaction models

themselves which can be managed and distributed
from a central point of control

◼ The choice of interaction model and the decision to
participate in a particular “role” remains with the
individual peer
- and hence, the management authority

Friday, 2 March 2012

A Simple LCC Example
a(buyer, B) ::
 ask(X) => a(shopkeeper, S) then
 price(X,P) <= a(shopkeeper, S) then
 buy(X,P) => a(shopkeeper, S)
 ← afford(X, P) then
 sold(X,P) <= a(shopkeeper, S)

a(shopkeeper, S) ::
 ask(X) <= a(buyer, B) then
 price(X, P) => a(buyer, B)
 ← in_stock(X, P)then
 buy(X,P) <= a(buyer, B) then
 sold(X, P) => a(buyer, B)

Friday, 2 March 2012

An Example: VM Allocation

◼ Policy 1 - power saving
- pack VMs onto the minimum number of physical machines

◼ Policy 2 - agility
- maintain an even loading across the physical machines

role:
overloaded

role:
underloaded

migrate

Discovery service

IMIMIMIM

Friday, 2 March 2012

An Idle Host

a(idle, ID1) ::
 null
 ← overloaded(Status)
 then
 a(overload(Status), ID1)
) or (
 null
 ← underloaded(Status)
 then
 a(underload(Status), ID1)
) or (
 a(idle, ID1)
)

Friday, 2 March 2012

An Overloaded Host
a(overloaded(Need), ID2) ::
 readyToMigrate(Need)
 => a(underloaded, ID3)
 then
 migration(OK)
 <= a(underloaded, ID3)
 then
 null
 ← migration(ID2, ID3)
 then
 a(idle, ID2)

Friday, 2 March 2012

An Underloaded Host
a(underloaded(Capacity), ID3) ::
 readyToMigrate(Need)
 <= a(overloaded, ID2)
 then
 migration(OK)
 => a(overloaded, ID2)
 ← canMigrate(Capacity, Need)
 then
 null ← waitForMigration()
 then
 a(idle, ID3)

Friday, 2 March 2012

A Simulation

0 5000 10000 15000 20000

Time (ms)

0

50

100

150

200

Ph
ys

ic
al

 M
ac

hi
ne

 Lo
ad

 A
ve

ra
ge

 (%
)

120% average load

80% average load

Friday, 2 March 2012

Some Issues
◼ LCC can be used to implement more sophisticated

protocols - such as “auctions” which are ideal for
many con!guration scenarios

◼ But some things are hard to do without global
knowledge
- balance the system so that all the machines have exactly

the same load?

◼ Handling errors and timeouts in an unreliable
distributed system is hard

Friday, 2 March 2012

Planning for Configuration
Change

Work with Herry
<H.Herry@sms.ed.ac.uk>

http://homepages.inf.ed.ac.uk/s0978621

Sponsored by HP Research

➊➋➌

Friday, 2 March 2012

An Example Reconfiguration
A

(up)
B

(down)
A

(down)
B

(up)

“current” state “goal” state

C C

constraint: C is always aached to a server which is “up”

Friday, 2 March 2012

Possible Plans

1. A down, B up, C.server=B ✘

2. A down, C.server=B, B up ✘

3. B up, A down, C.server=B ✘

4. B up, C.server=B, A down ✔

5. C.server=B, A down, B up ✘

6. C.server=B, B up, A down ✘

Friday, 2 March 2012

“Cloudburst”

!rewall closed !rewall open

• Perhaps we need to change the DNS for the server ...
• Maybe the server needs to access internal services ...

Friday, 2 March 2012

Automated Planning
◼ Fixed plans (“work$ows”) cannot cover every

eventuality
◼ We need to prove that any manual plans
- always reach the desired goal state
- preserve the necessary constraints during the work$ow

◼ The environment is a constant state of $ux
- how can we be sure that the stored plans remain correct

when the environment has changed?

◼ Automated planning solves these problems

Friday, 2 March 2012

A Prototype

◼ Current state and goal state input to planner
together with a database of possible actions

◼ Planner (LPG) creates work$ow
◼ Plan implemented with “Controltier” & “Puppet”

Friday, 2 March 2012

Behavioural Signatures

◼ Blue transitions are only enabled when the
connected component is in the appropriate state
- simple plans execute autonomously

◼ The plan executes in a distributed way
◼ The components are currently connected manually
- and the behaviour needs to be proven correct in all cases

run

stop

Database

run

stop

Logic

run

stop

Presentation

Friday, 2 March 2012

Planning with BSigs
(Herry’s current Phd work)

◼ If we have ...
- a set of components whose behaviour is described by

behavioural signatures
- a “current” and a “goal” state

◼ We can use an automated planner to generate a
network of components to execute a plan which will
transition between the required states

◼ Some interesting possibilities
- perhaps we can use LCC agents instead of the BSigs
- this provides more “intelligence” in the components

Friday, 2 March 2012

Constraints, Agents & Planning

in System Configuration

Paul Anderson
<dcspaul@ed.ac.uk>

http://homepages.inf.ed.ac.uk/dcspaul/
publications/pepa-2012.pdf

Friday, 2 March 2012

