
Paul Anderson 
dcspaul@ed.ac.uk

http://homepages.inf.ed.ac.uk/dcspaul

Some thoughts on  
Composition & References 

in declarative configurations

mailto:dcspaul@ed.ac.uk
http://homepages.inf.ed.ac.uk/dcspaul

web server
(apache)

database
(mariadb)

application
(owncloud)

ssh

logrotate firewall
(ufw)

package
manager

backups

ssh client browser dns service

accounts
tables  
etc …

directories
permissions  

etc …

ports packages

logfiles
files

ssh certificates ssl certificates

https://www.flickr.com/photos/foilman/15844421582

https://www.flickr.com/photos/foilman/15844421582

Declarative configuration

figure: {
 head: {
 face: "male"
 hair: {
 style: "short"
 colour: “brown"
 }  
 hat: none
 }
 clothing: {
 ...
 }
}

Composition

X is a workman like Y
but he works for the
same company as Z

X

Y

Z

Specialisation (instance inheritance)

+> +> =

Or …

“I want a Redhat Linux machine running Apache and Wordpress”

This works fine if the “aspects” are disjoint

This is a typical operation …

Conflicts

+> +> =

+> +> = A female
firefighter ?

Or a firefighting
female ?

“Hair will not extend beyond the bottom of the earlobe”
International Association of Women in Fire and Emergency Services 
http://bit.ly/1Jt0Mz5

http://bit.ly/1Jt0Mz5

Commutative composition

<+> = <+> = ??

The user needs a commutative composition operation
‣ And the authors of the components need to specify how they

should be composed

The “user” is forced to make this decision
‣ But they don’t usually have the information to do this
‣ And neither order may be correct if there are multiple conflicts!

Resolving conflicts

What do we mean when we specify a value for a resource ?

‣ “The value really must be 42”.

‣ “I don't really care what the value is, but I can't leave it empty, so
I'll give it the value 0”.

‣ “36 would be a good value, but I don't care if someone else would
rather have something different”.

‣ “I think it should be 46, but if Jane thinks it should be different,
then believe her”.

‣ “The value must be between 100-200, but I can't specify a range,
so I'll say 150”.

Tags & constraints

a: { colour: "red" #aliceSays }
b: { colour: "blue" #bobSays }

c: ($a <+> $b) #aliceSays >> #bobSays
d: ($a <+> $b) #aliceSays << #bobSays

In “L3”, we can tag resource values …

And we can specify precedence between the tags

This supports requirements such as …
“I think it should be 46, but if Jane thinks it should be different,
then believe her”.
“Parameters specified at a departmental level should override
those set at a corporate level”.

figure: {
 head: {
 face: "male"
 hair: {
 style: "short"
 colour: "brown"
 }
 }
 clothing: {
 top: "bluetop"
 bottom: "bluebottom"
 }
} #default

female: $figure <+> {
 head: {
 face: "female" #final
 hair: {
 style: "long"
 }
 }
}

Composition example
fireperson: $figure <+> {
 head: {
 hair: {
 style: "short"
 }
 }
 hat: {
 style: "fireHat"
 colour: "red"
 }
 clothing: {
 top: "firetop"
 bottom: "redbottom"
 }
} #final

alice: $female
bob: $fireperson
carol: $female <+> ^fireperson
eve: $fireperson <+> ^female

Alice Bob Carol Eve

Specialisation

+>

=

fireperson:
$figure +> {
 head: {
 hat: "firehat"
 }
 }  
 clothing: {
 top: "firetop"
 bottom: "redbottom"
 }
}

(X +> Y) ≡ (X #tag1 <+> Y #tag2) #tag1 << #tag2
This can now be defined in terms of composition …

References

A must have the
same colour
helmet as B

A

B

References
Some motivations for references …
‣ “Cloning” prototypes (usually to be specialised)
‣ Ensuring consistency between related resources

Absolute references are unambiguous
‣ But there are different possible semantics for relative references
‣ The interaction with composition is “interesting”

bob: $fireperson
carol: $female <+> $fireperson
eve: $fireperson <+> $female

service: { port: 45; … }
server: { port: $service.port; … }
client: { port: $service.port; … }

Relative references
In this example, neither a purely “late” binding of the references,
nor a purely “early” binding yields the “obviously” expected result:

service: {
 port: 25 #default
 client: { port: ^^port, ... }
 server: { port: ^^port, ... }
}

myservice: ^service +> { port: 26 }

machineA: ^myservice.client +> { ... }
machineB: ^myservice.server +> { ... }

Disambiguating references
We could provide multiple types of reference
‣ LCFG has “early” and “late” references with different notations
‣ This is error-prone and very difficult for the user to get right

Humans are used to disambiguating references
"Divorcee and former air hostess Zsuzsi Starkloff talks on camera
for the first time about her relationship with Prince William of
Gloucester, the Queen's cousin and pageboy at her wedding”
(The Independent newspaper, Thursday 27th August 2015)

L3 currently has an experimental semantics
‣ Using composition to disambiguate multiple possible reference

interpretations …

References in L3
service: {
 port: 25 #default
 client: { port: ^^port, ... }
 server: { port: ^^port, ... }
}

myservice: ^service +> { port: 26 }

machineA: ^myservice.client +> { ... }
machineB: ^myservice.server +> { ... }

We compose all of the possible interpretations …
machineA.port = (25 #default) <+> 26 <+> null

That’s it …

No coherent language proposal (yet)
‣ Just thinking about these kind of features, and …

Issues …
‣ Basic semantics

- e.g. tag & constraint inheritance
‣ Usability

- do we get unexpected results?
- how easy is it to express existing configurations?
- simplicity vs expressiveness

‣ Additional features
- block parameters
- lists, composition, ordering, map, filter, etc ..

‣ Implementation
- Evaluation & efficiency

