
Semantics and Provenance of
Configuration Programming Language

µPuppet

Weili Fu

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy
Laboratory for Foundations of Computer Science

School of Informatics
University of Edinburgh

2019

Abstract

Nowadays computing infrastructures have grown bigger in scale and more com-
plex. Automated configuration management tools have taken the place of tradi-
tional approaches of configuration tasks, such as manual configuration and writing
simple scripts, which become tedious, inefficient and error-prone to human mis-
takes. These tools typically contain their own specific configuration languages. In
general, users write configuration specifications of the system and the tools com-
pile them to configuration files that are deployed on each machine to change its
configuration. Configuration specifications tend to be large and involve thousands
of parameters and the relations between them. However automating configura-
tion management does not prevent configuration errors that might cause system
failures that are costly and time-consuming to remedy. Configuration languages
normally support separation of concerns of different users, but there is limited
work on access control and work flow to guarantee the correctness of the configu-
rations when there are changes in the specifications, or the analysis tools for root
causes for configuration errors. Configuration errors remains one of the dominant
reasons for system failures (Oppenheimer et al., 2003).

In this thesis, we argue that provenance techniques, a dynamic technique of
tracking data history developed in the database field, is a natural solution to pro-
viding configuration management tools with the ability of analysing configuration
errors and identifying their root causes in the configuration specifications. For
this purpose, we first choose a popular configuration management tool Puppet
and present µPuppet which models the operational semantics of a core subset
of Puppet language. In addition, we prototype an interpreter and a parser for
µPuppet and compare their validation results by using more 50 Puppet manifests
against the real Puppet language. Based on the formal semantics of µPuppet, we
formalise where-, expression- and dependency-provenance which track the origi-
nal inputs of an output data value, the primitive operation procedure that derives
an output data value and all the inputs on which a generated output depended
respectively in the process of compiling the configuration specifications. Further
more, we establish the static correctness properties of three forms of provenance.
We prove that where- and expression-provenance satisfy these properties. We
find the limitation of dependency-provenance we define that does not record the
full dependency information for some unusual value-overriding semantics, which

iii

reveals the complexity of the Puppet language. We prove the partial correctness
of dependency-provenance confined to a subset of µPuppet that excludes the
unusual cases and propose possible solutions to deal with these unusual cases.

iv

Acknowledgements
I would like to express my gratitude to both of my supervisors James Cheney
and Paul Anderson. They have been fully supporting and encouraging in the
whole progress of doing my PhD project, while providing their constant help
and understanding. From their guide, I have learned a lot of knowledge, known
gradually what doing research is and how to do research, especially acknowledge
the right attitude of doing research. Their professional attitude towards doing
research has been always enlightening and inspiring for me on the way of doing
my Phd. In spite of their constant supports, I have become more independent
through their guide, for which I feel most grateful.

Moreover, I also want to thank LFCS group, Informatics of UoE where I have
been studying my PhD. All the staffs and colleagues have made a enjoyable, in-
spiring and professional environment to study in. Particularly, they hold regular
seminars, group meetings and workshops with interesting topics, which broaden
my foundational understanding of the knowledge in a larger programming-language
field than my project topic and supply me with precious insights about doing re-
search. I have been enjoying and feeling informed talking with any of them. They
made a great excitement in the period of doing my PhD.

I want to express my gratefulness to my colleagues and friend Simon Fowler
for giving his kind moral support in the difficult time and providing immediate
helps.

Finally, I want to thank to my parents who provide their greatest support and
understanding from far away back in China.

v

Declaration
I declare that this thesis was composed by myself, that the work contained herein
is my own except where explicitly stated otherwise in the text, and that this work
has not been submitted for any other degree or professional qualification except
as specified.

(Weili Fu)

vi

Table of Contents

1 Introduction 1

2 Background 7
2.1 System Configurations and Configuration Management Tools . . . 7

2.1.1 Configuration Management Tools 8
2.1.2 Configuration Languages 9
2.1.3 Puppet . 10

2.2 Operational Semantics . 11
2.2.1 Syntax . 12
2.2.2 Semantics . 13

2.3 Provenance . 17
2.3.1 Lineage, Why-provenance and Where provenance 17
2.3.2 How Provenance . 18
2.3.3 Dependency Provenance 19

2.4 Language-based and Information Flow Security 20
2.5 Synthesis-Based System Repair 21

3 Semantics of µPuppet 23
3.1 Introduction . 23
3.2 Puppet . 25

3.2.1 Puppet: key concepts . 25
3.3 µPuppet . 33

3.3.1 Abstract syntax . 33
3.3.2 Operational Semantics . 34

3.4 Metatheory . 46
3.5 Implementation and Evaluation 47

3.5.1 Test cases and results . 48

vii

3.5.2 Unsupported features . 50
3.6 Related work . 53
3.7 Conclusions . 54

4 Where and Expression Provenance 57
4.1 Methodology . 58
4.2 Where-Provenance . 59

4.2.1 Annotated Compact Grammar 60
4.2.2 Propagation of Evaluation in the Evaluation 61
4.2.3 Correctness of Where-provenance 69

4.3 Expression-Provenance . 80
4.3.1 Annotated Compact Grammar 81
4.3.2 Propagation of Annotations in the Evaluation 82
4.3.3 Correctness of Expression-Provenance 87

5 Dependency Provenance 97
5.1 Background . 97
5.2 Annotations and Propagation of Annotations 99

5.2.1 Annotated Compact Grammar 99
5.2.2 Propagation of Annotations in µPuppet Evaluation 102

5.3 Correctness of Dependency-Provenance 113
5.3.1 Limitation of Method . 114
5.3.2 Equivalence Relation . 116
5.3.3 Correctness of Dependency Provenance 120

6 Conclusion 137

Bibliography 141

A Semantics of µPuppet 147
A.1 Glossary . 147
A.2 Features supported . 149
A.3 Operational semantics . 151

A.3.1 Environment operations 151
A.3.2 Expressions (σ,κ,vC, e

α−→ e′) 153
A.3.3 Resources (σ,κ,H α−→H H

′ and σ,κ,e :H α−→R e
′ :H ′) 156

A.3.4 Statements (σ,κ,vC, s
α−→s σ′,κ′,v′C, s

′) 156

viii

A.3.5 Manifests (σ,κ,vC,m
N−→m σ′,κ′,v′C,m

′) 160

B Where Provenance 163
B.1 Propagation of Annotations in the Evaluation 163

B.1.1 Expressions . 163
B.1.2 Resources . 163
B.1.3 Statements . 164
B.1.4 Manifests . 167

B.2 Proofs of the invariant in Expression Evaluation 168
B.3 Proofs of Invariant in Statement Evaluation 170

B.3.1 Proofs of the invariant in Manifest Evaluation 179

C Expression Provenance 183
C.1 Propagation of Annotations in the Evaluation 183

C.1.1 Expressions . 183
C.1.2 Resources . 183
C.1.3 Statements . 184
C.1.4 Manifests . 184

C.2 Proofs for Invariants in Expression Evaluation 184
C.2.1 Proofs for Invariants in Resource Evaluation 188

C.3 Proof of Invariant in Statement Evaluation 189
C.4 Proof of Invariant in Manifest Evaluation 198

D Dependency Provenance 203
D.1 Propagation of Annotations in the Evaluation 203

D.1.1 Expressions . 203
D.1.2 Statements . 204
D.1.3 Manifests . 206

ix

Chapter 1

Introduction

Nowadays computing infrastructures have grown bigger in scale and more com-
plex. These systems constitute many devices and machines of different kinds
spread over different locations. Each of the devices or machines could involve
hundreds to thousands of parameters to configure. Besides, it is common that
there exist relations and dependencies between the internal parameters in a ma-
chine and the external parameters to be taken care of, which is the most dif-
ficult aspect in the configuration task. Due to the complexity of the systems,
traditional configuration approaches, such as manual management and writing
low-level scripts, become infeasible. They are ineffective to configure many ma-
chines that could share lots of common parameters and error-prone due to human
errors. Automated configuration tools becomes prevailing for configuration man-
agement. The popular tools include Puppet (Puppet, 2016), Chef (Chef, 2009),
Ansible (DeHaan, 2012) and Saltstack (Hatch, 2011). Such tools improve the
efficiency and help to avoid human-mistakes to some extent. However, they do
not prevent configuration errors that cause system failures that are costly and
time-consuming to remedy. Configuration errors are one of the main causes of
large scale systems’ failures (Oppenheimer et al., 2003).

These tools bring their own problems due to their inherent characterizations
that will cause misconfigurations. In turn, they make troubleshooting the config-
uration errors difficult. They typically provide their own configuration languages
that can specify the configurations in a high level. These languages can be declar-
ative or imperative. The declarative languages allow users to describe the desired
states of the systems as the configuration specification. The specification is gath-
ered and compiled centrally by the server machine. Then the tool will transfer

1

2 Chapter 1. Introduction

the result to the actions in the individual machine to modify its configuration
accordingly. Configuration tasks normally take a collaborative effort of many
administrators. Each of them takes charge of a part of the system or an aspect of
the configuration. Thus the configuration specification is produced by many users
with different concerns. These languages take into account the separate concerns
of many users by providing language features to support. They share the proper-
ties of the inheritance of classes that gives modularity and the value-overriding of
a chain of users. However, these tools suffer the lack of access control on the users
and work flow techniques to confine the inheritance behaviour. Instead they only
use the access control techniques defined for software management. Then there
is the case that many users can influence one parameter in the configuration.
Due to the configuration under constant changes, when the users change their
specifications on these parameters, its final result may not reflect the desired sta-
tus, which might cause system failures. Anderson and Cheney (2012) illustrated
this situation by an example. I use Puppet language to illustrate and adapt it
in Puppet language. Programs in Puppet language is typically contributed by
multi-users and centred to execute.

1 class a { % class a is defined by Alice

2 ts = ts. reliable .com

3 ...

4 }

5 class b inherit a { % class b is defined by Bob

6 ts = sales. widget .com

7 ...

8 }

9 include b

In this example, Alice is an external upper-level user who defined the class
a and Bob is a local sub-system administrator who defined the class b. Alice
specified some default configuration in the class a including one parameter ts
which is an address for a “timeserver” against which to synchronise the operating
system time. Bob can inherit class a and override the default parameters in it.
He overrode and assign ts with a different address “sales.widget.com”. The class
specifications Alice and Bob wrote might be in different files or modules among
many others, so that the over-riding or shadowing of the parameter ts might
not be easy to notice. At some point, Alice changes ts’s value to another server
“unreliable.com” while Bob remains unchanged as the following. Bob’s overriding
on ts will mask any change made by Alice.

3

1 class a { % class a is defined by Alice

2 ts = ts. unreliable .com

3 ...

4 }

5 class b inherit a { % class b is defined by Bob

6 ts = sales. widget .com

7 ...

8 }

9 include b

Later on, Bob removes his overriding on ts. Then the system Bob takes charge
of will inherit the default values defined by Alice. If it causes system failure, Bob
will be blamed for the misconfiguration.

1 class a { % class a is defined by Alice

2 ts = ts. unreliable .com

3 ...

4 }

5 class b inherit a { % class b is defined by Bob

6 %ts = sales. widget .com

7 ...

8 }

9 include b

Although the changes on the configuration specification are made as users’
desired, the final result may not reflect these changes. They might be masked in
the process of assigning parameters in the configuration languages.

Since there may be thousands of parameters in one machine and hundreds or
thousands of machines in one system, it is hard to identify the responsible party
for a result value in the final configuration. Unfortunately, there is little work on
auditing of configuration changes. Vanbrabant et al. (2009) presented the tool
ACHEL where access control was designed in the tool Puppet to decide whether a
change should be made or not. This was realised by extracting semantic meanings
of configuration changes in the level of configuration specifications. However the
changes it concerns are only the last ones made in the configuration specification.
In the case of the last example, Bob will still be blamed. It does not consider
the changes made before. So it does not help in this case when Alice is the real
cause of the error.

Attariyan and Flinn (2008, 2010) presented a tool ConfAid which can pinpoint
the root cause of a configuration problem. This tool uses dynamic information
analysis to monitor the causal dependencies introduced by control and data flow.
Their analysis is performed in the processes of deploying the configurations in a
bottom-up matter, by rebuilding the error on a reference computer and obtain-

4 Chapter 1. Introduction

ing the causal dependencies of the test case execution to detect the similarity
between a configuration state on a sick computer and the reference computer.
However this dependency analysis method does not rely on the execution process
of the configuration specifications and track the error back to the configuration
specifications. Thus it cannot reason about the root cause of a problem in the
configuration specification.

Our research hypothesis is that formal semantics and provenance tracking can
provide a principled foundation for understanding configuration errors. Due to
the lack of information on a configuration error, we want to target the place in the
configuration specification where a configuration error came from and know how
it has been generated in the specification. We propose to build on provenance
that has been developed in the database field. Provenance is a technique to record
the historical origin of data in databases. Since the databases grow larger in scale
and undertakes changes constantly, it is hard to analyse the source of an error in
the query results. Provenance has been designed in terms of the semantics of the
query languages so that it is realised along the execution of the queries. It collects
the relevant inputs of a query result and its computational process dynamically
along the execution. The application of provenance in databases is comparable
to it in the configuration languages since the query errors can be related to the
configuration errors and the query languages are related to the configuration
languages. There have been several forms of provenance presented that provide
different aspect of history information about a query result. Where-provenance
(Cheney et al., 2009) provides the original input data of an output in query
result; why- and how-provenance (Cheney et al., 2009) explains how an output
has been generated from the inputs; dependency-provenance (Cheney et al., 2007)
records all the inputs that could influence the generation of an output. We will
adapt them for the information in the configuration specifications to explain the
configuration errors.

To realise this goal, we will continue to use the method of establishing prove-
nance in databases that is to annotate the inputs and modify the semantics of
configuration languages so as to propagate the labels on the inputs and compute
the desired provenance. We choose a popular configuration management tool
Puppet and build provenance on the semantics of its language Puppet language.
Puppet language is a mostly declarative configuration language built in an ad-
hoc style. It is undertaking frequent addition and changes. The lack of a formal

5

semantics is an obstacle to formalise the analysis on the language. Thus as the
first step toward defining provenance, we will formalise Puppet language. We first
identify a core subset of this language and formalise its syntax and the semantics
using operational semantics (Plotkin, 2004) in Chapter 3. We call this formalised
language µPuppet. We also build an interpreter and a parser for µPuppet based
on its formalisation. We then will evaluate them by more than 50 examples that
cover all the features of µPuppet and compare the results against that of the real
Puppet language. Then we establish where- and expression-provenance in Chap-
ter 4. Where-provenance locates the input data value of an output value back in
the µPuppet specification. Expression-provenance further records the primitive
computations in the execution of the specifications that derive an output data
value. We also define the static characterisation of the correctness of where- and
expression-provenance and prove they are correct according to this characterisa-
tion. Then we formalise dependency-provenance in Chapter 5 that is to collect
all the data values in the specification that could influence an output in the con-
figuration file. To do it, the conditional constructs in µPuppet are taken into
account for computing provenance, besides the primitive operators. We again
define the static correctness characterization of dependency-provenance. How-
ever, due to the complexity of µPuppet language, dependency-provenance does
not track the full dependency information of the unusual cases introduced by the
value overriding. We prove that it satisfies the correctness with the limitation
of excluding the unusual semantics from µPuppet. We believe there are several
possible solutions of this problem that can be achieved. One is to modify the
annotation propagation in the semantics of µPuppet by including more relevant
labels and adjusting the correctness characterization accordingly. However this
will enlarge the size of dependency-information and the overhead of computing it.
The increased information will make it more difficult for users to understand. We
need to find a balance between the usefulness of the provenance and the cost. The
other possibility is to constrain µPuppet specifications to eliminate the unusual
cases in a formal way. We leave it for further work.

Our main contributions in this thesis are an operational semantics of µPuppet,
establishing where-, expression- and dependency-provenance on the top of this
semantics to track different forms of information about output data values in
the inputs, and characterising their correctness and proving they are correct or
partially correct. The formal semantics of µPuppet is an important step for in-

6 Chapter 1. Introduction

troducing analysis in the Puppet language. Beside building provenance, it might
be useful for other analysis purposes. The limitation of dependency-provenance
exposes the complexity of the Puppet language, and gives evidence for program-
ming designers to improve the language.

Chapter 2

Background

2.1 System Configurations and Configuration Man-
agement Tools

Computing infrastructures consist of hardware and software, which have many
parameters that need to be configured in order to perform in conformance to each
other and the desired requirements. The infrastructures are typically subject to
changes due to updating the hardware or software in them or the changed require-
ments on them. The term configuration has been used in many contexts with
different meanings, such as hardware configuration, software configuration man-
agement, network configuration management and distributed application config-
uration. However there is no generally accepted definition for the term system
configuration. System configuration is a task to configure the whole infrastruc-
ture including the hardware and software to make the system perform the desired
functionalities. Moreover, when the requirements on the infrastructures change or
the environment changes happen such as hardware or software updates, system
configuration should be maintained to conform with these changes in order to
keep the system performing the desired functionality. Configuration specification
is the description how the entire system should be configured. The specification
could be in different detail levels. For example, it could specify the common
setting of all the machines in the system and leave the differences among them
to further configuration procedure, or could describe in detail how every machine
should be configured.

System configuration faces many difficulties. First of all, the hardware of an

7

8 Chapter 2. Background

infrastructure could include diverse kinds of machines, from laptops to database
servers. Their configurations have different requirements. Secondly, as we have
mentioned, an infrastructure undertakes constant changes. These changes could
be due to critical hardware or software system failure, the new functionality from
upgraded software, configuration refactoring and new or upgraded hardware and
so on (Anderson, 2006). Thirdly, configuring a system is not only to configure
the individual machines but also to take care of the corresponding relationships
between the configurations in machines. Such relationships could exist either be-
tween different machines or between different components in one machine. For
example, a Web service needs to configure the web server. The entire DNS
(domain name space) should be configured with the information about the web
server, as well as the firewall and so on. Fourthly, a configuration specification
of a large infrastructure could involve many people. Each of them manges the
configuration of a part of an infrastructure. Or the configuration of some aspect
of the system, such as the mail system, the network and the security function-
alities, can be assigned to a specialist. These people may have different aspects
of knowledge and may not have sufficient contacts between them. Finally, large
systems are typically distributed. They share all the difficulties of distributed
programming, such as communication, failure recovery and latency (Anderson,
2006).

2.1.1 Configuration Management Tools

Automating system configuration or configuration management becomes more
and more appealing when the infrastructures become larger and more complex.
System configuration was traditionally dealt with manually. However, when an
infrastructure becomes larger, manual configuration is less efficient and error-
prone. Then automated techniques have taken into part of system configuration
gradually from the low level of automation techniques such as cloning, scripting
programming to the high level one, i.e. programming languages. Many automated
configuration tools have arisen in these years, which are based on some model for
structuring configurations in the high level. Such models work as standards of
interoperability between devices in an automatic way. Simple approaches for
configurations such as basic scripting do not involve any underlying model, while
the configuration management tools based on models include their own language

2.1. System Configurations and Configuration Management Tools 9

for configuration specifications.
LCFG and Puppet are configuration management tools based on some inter-

mediate models. These models provide the frameworks of the components that
are used to describe the configuration in a declarative way. Then these compo-
nents are composed and instantiated for different machines.

There have been little academic works on presenting system configurations
that are widely accepted so we do not refer any of them here to avoid misunder-
standing for people with different background.

2.1.2 Configuration Languages

All the configuration frameworks lie somewhere on the spectrum between “im-
perative” and “declarative”. At the imperative end, developers use conventional
scripting languages to automate common tasks. It is left to the developer to
make sure that steps are performed in the right order, and that any unnecessary
tasks are not (potentially harmfully) executed anyway. At the declarative end of
the spectrum, the desired system configuration is specified in some higher-level
way and it is up to the configuration framework to determine how to realise the
specification: that is, how to generate a compliant configuration, or adapt an
already-configured system to match a new desired specification.

Most existing frameworks have both imperative and declarative aspects, such
as Chef (Marschall, 2013), CFEngine (Zamboni, 2012). Chef, CFEngine, and
Ansible (Geerling, 2015) are imperative in relation to dependency management;
the order in which tasks are run must be specified. Chef and CFEngine are
declarative in that a configuration is specified as a desired target state, and only
the actions necessary to end up in a compliant state are executed. (This is called
convergence in configuration management speak.) The Puppet framework Turn-
bull (2008) lies more towards the declarative end, in that the order in which
configuration tasks are carried out is also left mostly to the framework. Puppet
also provides a self-contained configuration language in which specifications are
written, in contrast to some other systems. (Chef specifications are written in
Ruby, for example, whereas Ansible is YAML-based.)

Configuration languages often have features in common with general-purpose
programming languages, such as variables, expressions, assignment, and condi-
tionals. One aim of configuration languages is to model different kind of services

10 Chapter 2. Background

in the configuration tasks in a high level. Some, including Puppet, also include
“object-oriented” features such as classes and inheritance. However, (declarative)
configuration languages differ from regular programming or scripting languages
in that they mainly provide mechanisms for specifying, rather than realising, con-
figurations. While some “imperative” features that can directly mutate system
state are available in Puppet, their use is generally discouraged.

2.1.3 Puppet

Puppet is one of the most popular open source configuration management tools
used by a big community. According to the company, Puppet has been chosen
and used by 40,000 organizations.

Puppet uses several terms – especially compile, declare, and class – in ways
that differ from standard usage in programming languages and semantics. We
introduce these terms with their Puppet meanings in this section, and use those
meanings for the rest of the chapter. To aid the reader, we include a glossary of
Puppet terms as Appendix A.1.

The basic workflow for configuring a single machine (node) using Puppet is
shown in Figure 2.1. A Puppet agent running on the node to be configured
contacts the Puppet master running on a server, and sends a check-in request
containing local information, technically called facts, such as the name of the
operating system running on the client node. Using this information, along with
a centrally maintained configuration specification called the manifest, the Puppet
master compiles a catalog specific to that node. The manifest is written in a
high-level language, the Puppet programming language (often referred to simply
as Puppet), and consists of declarations of resources, along with other program
constructs used to define resources and specify how they are assigned to nodes. A
resource is simply a collection of key-value pairs, along with a title, of a particular
resource type; “declaring” a resource means specifying that a resource of that type
exists in the target configuration. The catalog resulting from compilation is the
set of resources computed for the target node, along with other metadata such as
ordering information among resources. The agent receives the compiled catalog
and applies it to reconfigure the client machine, ideally producing a compliant
state. Finally, it sends a status report back to the master indicating success or
failure.

2.2. Operational Semantics 11

Server (Puppet Master)

manifest

 catalog

compile

Node (Puppet Agent)

 catalog

compliant
 state

apply

facts

catalog

status report

Figure 2.1: Puppet overview

Figure 2.1 depicts the interaction between a single agent and master. In a
large-scale system, there may be hundreds or thousands of nodes configured by
a single master. The manifest can describe how to configure all of the machines
in the system, and parameters that need to be coordinated among machines can
be specified in one place. A given run of the Puppet manifest compiler considers
only a single node at a time.

2.2 Operational Semantics

Any programming language has two linguistic aspects, its syntax and semantics.
The syntax in general consists of a set of classes representing different phrases in
the language. The semantic meaning of this syntax describes how they behave
so to reach the final result of a program in this language.

Three kinds of semantics for programming languages have been established.
They are operational semantics, denotational semantics and axiomatic seman-
tics. We use operational semantics in this thesis, so we focus on introducing
it as background. Operational means that the semantics or the behaviour of a
programming language are defined in terms of the syntactic transformations of
programs and simple operations on discrete data (Plotkin, 2004).

There have been some machines proposed to interpret a programming lan-
guage, such as Plotkin’s 〈S,M,C〉 machine. It gives a flavour of operational
semantics but is still not direct. Such machines are based on transition systems.

Definition 2.2.1. (Transition System) A Transition System is a structure 〈Γ,→〉
where Γ is a set of elements, γ, called configurations and →⊆ Γ×Γ is a binary
relation, called the transition relation. Read γ→γ′ as saying that there is a
transition from the configuration γ to the configuration γ′. (Plotkin, 2004)

12 Chapter 2. Background

〈boolean〉 ::= true | false

〈value〉 ::= Integer | 〈boolean〉

〈binary oper〉 ::= + | − | . . .

Figure 2.2: Concrete Syntax of Values in L

〈value exp〉 ::= true | false

| 〈value exp〉 〈binary oper〉 〈value exp〉

Figure 2.3: Concrete Syntax of Value Expressions in L

The 〈S,M,C〉 machine works as transitions based on the expressions or com-
mands C on the top of the control stacks. It is not defined in the intuition for
operational semantics since the transitions are not syntax-directed. For exam-
ple, the transitions for a sequence of command c;c′ cannot be defined by the
transitions for each c and c′ respectively.

2.2.1 Syntax

We use an example to illustrate operational semantics. For the consistency of
content, we choose a subset of our µPuppet, called L, as our initial language.
The syntax of a language is first written as concrete syntax which is usually
defined using a context-free grammar. It represents how the language is written.
The concrete syntax of values and value expressions is shown in Figure 2.2 and
2.3. Abstract Syntax is abstracted from the concrete syntax of a language and
represents the real structure of a language. The process is accomplished by a
parser.

The abstract syntax for arithmetic expressions is shown in Figure 2.4.
As we mentioned there are different syntactic classes in a language. They

can be differentiated again by basic syntactic sets and derived syntactic sets.
Basic syntactic sets include all the basic data of different types and variables. In

2.2. Operational Semantics 13

e ::= i | e1 + e2 | e1− e2

Figure 2.4: Abstract Syntax of Arithmetic Expressions in L

e ::= i | true | false | v

| e1 + e2 | e1− e2 | e1 ∗ e2 | e1/e2

| e1 = e2 | e1 and e2 | e1 or e2 | !e

Figure 2.5: Arithmetic Expressions and Boolean Expressions

our example, these data are truth values, natural numbers and variables. In our
language L we take truth values true as truth and false as false, natural numbers
as i and variables represented as v. Derived syntactic sets cover expressions
and commands in a language. In L we include arithmetic expressions, boolean
expressions and commands as shown in Figure 2.5 and 2.6.

2.2.2 Semantics

2.2.2.1 Semantics of Expressions

As in 〈S,M,C〉 machine, an expression is transformed into its final result in
steps or transitions. If we skip some uncrucial transitions which put the elements
from control stack to S, the steps left here are the addition steps. For example,
(1 + (2 + 3)) + (4 + 5) would be computed as the following transitions. (Plotkin,
2004)

(1 + (2 + 3)) + (4 + 5)→ (1 + 5) + (4 + 5)→ 6 + (4 + 5)→ 6 + 9→ 15

s ::= e | s1 s2 | x= e | if e {s} else {s}

Figure 2.6: Commands

14 Chapter 2. Background

These transition sequences of expressions are called reduction sequences or
derivations. They constitute the procedure of expression evaluation. This pro-
cedure processes the expression from left to right and can be summarised by a
specification as the following:

2.2.2.1.1 To evaluate the expression e1 + e2

Constants: if e1 or e2 are constants, do not do anything.

Sum:

(1) If e1 is not a constant, evaluate it to a number i1 as result.

(2) If e2 is not a constant, evaluate it to a number i2 as result.

(3) Add i1 to i2, get the finally result i1 +N i2 = i3.

This specification is syntax-directed since it works for any expression e1 + e2.
From this specification, a formal set of rules for sum expressions is formalised on
which the transitions of evaluating the expressions are based. The procedure of
the evaluation makes the derivation of the form

e= e1→ e2→ . . .→ en−1→ en = i

If we look at the first step of the specification above, we get the following

(1) If e1 is not a constant, then evaluate it to a new expression e′1 as result.

(2) If e1 is a constant and e2 is not, then evaluate e2 to a new expression e′2.

(3) If both e1 and e2 are constants, then add i1 to i2 to give a number.

This specification can be summarised as the following rules

e1→ e′1

e1 + e2→ e′1 + e2
(1)

e2→ e′2

i+ e2→ i+ e′2
(2)

i1 + i2→ i1 +N i2
(3)

These rules state the specification above in the sense that in rule (1) if e1 is
not a constant and evaluated to e′1, then evaluating e1 + e2 to e′1 + e2 is the first
step. Rule (2) describes the second option in the specification is the similar way.
Rule (3) is the same as the third option in the specification.

2.2. Operational Semantics 15

To extend these rules for dealing with variables, we need an extra construct
memory as in 〈S,M,C〉 machine. We name memory as σ. Then the configuration
of the transition for the evaluation of the full set of expressions becomes the
combination of an expression e and the current memory σ the evaluation is based
on. The transition relation becomes

σ,e→ e′

The transition of evaluating a variable v involves accessing the memory for
the value of this variable. It is written as

σ,v→ σ(v)

where σ(v) can be seen as a function σ : V ariable→Natural. The original rules
can be extended as follows under the new relations of transitions

σ,e1→ e′1

σ,e1 + e2→ e1 + e2

σ,e2→ e′2

σ,i+ e2→ i+ e2 σ,i1 + i2→ i1 +N i2

2.2.2.2 Semantics of Commands

As we discussed for critical transitions for expressions, we also consider the im-
portant transitions for executing commands in 〈S,M,C〉 machines. We take the
transition steps that change system memory M but ignore the steps that move
symbols in control C to the stack S. As for expressions, we define the configura-
tion for our transitions for commands as σ,c. Let us see an example for the crucial
transition we are concerned with. We take the commands as a sequence of com-
mands of assignments z := x;x := y;y := z and the store σ as {x := a,y := b,z := c}.
The transitions for a sequence of commands of assignments z := x;x := y;y := z

are as the following

{x := a,y := b,z := c}, z := x;x := y;y := z

→ {x := a,y := b,z := a},x := y;y := z

→ {x := b,y := b,z := a},y := z

→ {x := b,y := a,z := a}, ε

Then the transitions for commands can be seen to according to the following
specifications

16 Chapter 2. Background

2.2.2.2.1 To evaluate a command c in a store σ

Empty command If c is empty, then the transition leads to the current
store σ.

Assignment If c is an assignment x := e, then evaluate e in store σ. If the
result is i, then change the store σ so that σ(x) = i.

Composition If c is the sequence of commands c1;c2, then

(1) evaluate the command c1 in the store σ and get the new store σ1

(2) evaluate the command c2 in the store σ1 and get the new store σ2

This specification for transition is syntax-directed again. Considering the
termination of execution for commands, we take the configurations as σ,c∪ σ
where σ is the termination configuration. The transitions for executing commands
are in the form σ,c→ σ′, c′. The transitions for the configuration σ,c is the
following

σ,c→ σ1, c1→ σ2, c2→ . . .σn−1, cn−1→ σn

It describes that to execute c, first execute c in store σ and derive c1 and σ1.
The rest of the execution of c starts from executing c1 in store σ1. Then consider
the first transition of executing command c, we get the following rules for the
transitions

σ,ε→ σ
(Empty)

σ,e→ e′

σ,x := e→ σ,x := e′
AssI

σ,x := i→ σ[i/x]
AssII

σ,c1→ σ′, c′1

σ,c1;c2→ σ′, c′1;c2
CompI

σ,c1→ σ′

σ,c1;c2→ σ′, c2
CompII

We extend the specification to deal with the conditional command if b c1 else c2.

2.2.2.2.2 To evaluate a conditional command if b c1 else c2.in a store σ

Evaluate the boolean expression b in store σ.

(1) If the result is true, then evaluate c1 in store σ.

(2) If the result is false, then evaluate c2 in store σ.

2.3. Provenance 17

The rules for the first step of transitions for conditional commands are

σ,b→ σ,b′

σ,if b c1 else c2→ σ,if b′ c1 else c2
CondB

σ,b→ σ,true

σ,if b c1 else c2→ σ,c1
CondI

σ,b→ σ,false

σ,if b c1 else c2→ σ,c2
CondII

2.3 Provenance

Provenance has been investigated in the database field. It was designed to record
the relevant history information of data. It has become more important over
the last years since data now comes not only from trusted sources but also from
the Internet. The integrity of data is not ensured if one does not know the
provenance information of the result data. Furthermore, some applications access
a collection of databases. For the users of an application, it is important to know
the provenance of data. In Cheney et al.’s survey (2009), the three most common
forms of provenance in the relational database setting which were where-, why-
and how- provenance have been summarized and compared to each other. Where
provenance provided the information of the locations of the input data of some
parts of the output of a query. Why provenance collected the set of input records
that might contribute to the output of a query. How provenance recorded the
full procedure of how the output is produced.

2.3.1 Lineage, Why-provenance and Where provenance

Cui et al. (2000) were among the first to introduce a notion of provenance of data
for relational databases, called lineage. It relates one output entry to all the input
entries that contribute to generating this output. According to Cui et al., each
entry in the database is labelled with a symbol called an annotation. For each
entry in the output, it is labelled by a set of annotations that correspond to all
the entries in the database that contribute the entry in this output entry. Such a
set of labels is called a “proof” or “witness”. However such sets do not necessarily
correspond to the minimal set of entries that could produce an output entry.

Buneman et al. (2001) introduced why-provenance for a semi-structured data
model that is more general than the relational model. Why-provenance can cap-

18 Chapter 2. Background

ture different witnesses for an output entry. They introduced the concept of
witness basis where one of the tuples has to appear in why-provenance, which
formalised the idea of multiple witnesses for one output tuple.

The authors modified a deterministic tree model, an edge-labelled tree model,
in which each node is uniquely determined by a path of edge labels from root node
to that node. They then proposed a query language named Deterministic QL.
The authors also put restrictions on both syntax and interpretation of queries so
as to make them sound.

Based on the deterministic model and the query language, two meanings of
provenance and how to compute provenance were formulated. The authors de-
scribed the difference between why- and where-provenance for the first time.
Why-provenance is to address the relevant inputs as witnesses that influence one
output in a query result; while where-provenance indicates the location in the in-
put where a value in the output tuple is copied from. Why-provenance has been
studied for relational models while in this paper a syntactic approach has been
used to explore why-provenance and where-provenance for more general models.

2.3.2 How Provenance

Green et al. (2007a) proposed commutative semirings as a model for annotations
in relational databases which describes how the output tuple was computed. They
first identified the similarity in query answering in four extensions of annotated re-
lations, such as incomplete databases generalising RA to conditional tables where
relations are annotated with Boolean formulas, probabilistic databases generalis-
ing relational algebra to event tables which is a form of annotated relations, com-
puting lineage for the output tuples of queries in data warehousing, and finally
RA on bag semantics. The bag semantics means a multiset that is a set where
an element can appear more than one time. They proposed to use commutative
semirings as a general algebraic structure for these models. The authors argued
that the polynomials of commutative semirings formed a symbolic representation
of semiring calculations that indeed captures the computation information of RA
querying from inputs to outputs.

This paper gave examples of annotated RA applied to incomplete databases,
multisets and probabilistic databases. In every case, the tuples in databases are
labeled in some way. For incomplete databases, Imieliński and Lipski (1984) cre-

2.3. Provenance 19

ated c-tables where the tuples in databases are labelled with boolean variables. In
multiset or bag applications, numbers represent the multiplicity of the tuple in the
multiset. In probabilistic databases, the tuples are labelled with a value between
0 and 1 to represent their probabilistics. In these applications, query answer-
ing is also extended to compute the annotations for the outputs of queries. The
authors observed the similarity among these relational algebras and generalised
them to a common algebra model. They first generalised the tags (annotations)
with various kinds of information and then the positive algebra noted as RA+ for
such annotated-tuple relations.

This paper also pointed out that computing why-provenance for queries in
RA+ would not provide enough information if the tags of two output tuples are
the same while they were computed from different tuples, i.e. different tags. They
found out using the different operations of the semiring, positive algebra can fully
record how an output tuple is produced. Thus they introduced positive algebra
provenance semiring which was the semiring of polynomials. They show that
the annotation semantics given by polynomial semirings is as general as (or more
general than) the semantics for any other semiring.

2.3.3 Dependency Provenance

Cheney et al. (2007) tried to understand the mathematical or semantic foun-
dations of data provenance. Inspired by the motivations in some very different
fields such as program slicing, the authors built up a foundation for a new form
of provenance dependency-provenance. They proposed that dependency analysis
and slicing techniques familiar from programming languages provide a suitable
foundation for an interesting class of provenance techniques. They gave an ex-
ample for static and dynamic slicing. This slicing technique means to identify a
subset of a program that contributes to some result of the output. It has been
used in the process of debugging. The authors tried to explain how to understand
data dependency provenance in databases in the light of programming slicing as
data slice. It used three queries in relational database to illustrate dependency
provenance.

The authors considered annotation propagating semantics for the queries of
nested relational calculus (NRC) which is a core database query language closely
related to monad algebra. Then they defined the property dependency-correctness

20 Chapter 2. Background

which means that the provenance annotation produced by queries shows how the
output is influenced if any input is changed.

They also addressed the weakness of the previous research on provenance on
databases. The definitions of provenance were elusive so that they are ambiguous
and hard to be formalised based on the semantic descriptions. In particular, many
forms of provenance defined before are sensitive to query rewriting in the sense
that equal queries may have different provenance behaviours. These approaches
are difficult to extend beyond monotone relational queries. In a word, there is a
lack of the formal definition and foundations for provenance.

2.4 Language-based and Information Flow Security

Language-based security is the line of research that uses programming language
techniques, such as type systems, dynamic monitoring, or a combination of static
and dynamic methods, to ensure the security properties of the programs such as
confidentiality. Language-based techniques have also taken part into the line of
research of information flows. These works are related to provenance since all
of them try to characterise what happens in the execution so as to verify some
security property or help to understand the errors after a failure.

Pottier and Conchon (2000) presented a framework that can extend an ar-
bitrary type system with dependency information and how soundness and non-
interference proofs for the new system may rely on. This work enriches any of
the type system today with information flow analysis. They pointed out infor-
mation flow analysis is nothing but a dependency analysis. They realised this by
proposing a translation scheme which translated the programs written in a source
labelled ML to a target calculus that is equipped with a type system. Then the
type system of the source language was built by the translation and the type
system of the target calculus. The non-interference property was stated based on
the soundness properties of the type systems of the target and the source calculus.
This revealed the type system contains useful dependency information.

Indeed, Abadi et al. (1999) found that many program analysis techniques, such
as program slicing, call tracking, binding-time analysis, are actually dependency
analysis. They presented a unifying dependency calculus, a small extension of
Moggi’s computational lambda calculus, called Dependency Core Calculus(DCC).
Simple non-interference proofs can be derived for each case.

2.5. Synthesis-Based System Repair 21

Dependency-provenance in databases is also a dynamic dependency tracking.
However more detailed techniques in these lines of research are less comparable
to that of provenance, so we will not present them here.

2.5 Synthesis-Based System Repair

Besides configuration management tools, there is a line of research employing
synthesis-based techniques to facilitate system changes.

Weiss et al. (2017) addressed the problem that when changes need to make
to system configurations, how to benefit from both the configuration tools and
shell commands. Change requirements on system configurations happen often.
Using configuration tools is not always the easiest way to realise changes since
it is hard to find where and how to make changes in the configuration specifica-
tion. In some cases, shell commands remain the simple way for administrators
to apply the changes and detect the states of system immediately. This work
proposed to combine the strength of both configuration languages and shell com-
mands for system configuration updates. While configuration languages are used
for machine states, shell commands can be employed for small changes. However
changing the system by shell commands when a manifest is in use can cause con-
figuration shift. To solve this, the authors realised this approach in a tool Tortoise
that automatically synthesizes repairs to system configurations so as to change
Puppet manifests consistent with the changes made by shell commands. Tortoise
includes a imperative modelling language ∆P . It can translate system manifests
and shell commands used by administrators to the models in this languages, then
find a repair space for manifests.

Chugh et al. (2016) focused on the problem how to combine programmatic
systems and direct manipulation. Either of these methods has their own strength.
Direct manipulation provides visual feedback and enable rapid prototyping, whereas
programmatic method allows reusing complex abstractions. This work proposed
to integrate these two modes to use, a combination called prodirect manipulation.
It was realised in the specific domain of Scalable Vector Graphics (SVG). The
authors proposed the approach, a workflow called live synchronization, which
means the system will synthesizes the updates to a program immediately when
users make changes to the output on the interface. The authors realised this
approach in the system Sketch-n-Sketch. A framework in it to infer program

22 Chapter 2. Background

updates is called trace-based synthesis. The programming language in Sketch-
n-Sketch is a core, untyped functional language called little. All the data
are labelled uniquely by their locations in the AST of the program. Trace-based
synthesis instruments the execution of the programs so that it produces a trace
for each output values. Traces are formed in the run-time. Then the program and
output are related by value-trace equations that are used for inferring program
updates. When the user manipulate a value on the interface,Sketch-n-Sketch
updates the values at program locations in real-time.

Synthesis-Based system repair focuses on updating systems or programs au-
tomatically conforming to the changes caused in other ways by using language
relevant techniques. It does not mean to provide information on the reason of
errors for users so to fix them as provenance does.

Chapter 3

Semantics of µPuppet

Puppet is a popular declarative framework for specifying and managing complex
system configurations. The Puppet framework includes a domain-specific lan-
guage with several advanced features inspired by object-oriented programming,
including user-defined resource types, ‘classes’ with a form of inheritance, and de-
pendency management. Like most real-world languages, the language has evolved
in an ad hoc fashion, resulting in a design with numerous features, some of which
are complex, hard to understand, and difficult to use correctly.

We present an operational semantics for µPuppet, a representative subset of
the Puppet language that covers the distinctive features of Puppet, while ex-
cluding features that are either deprecated or work-in-progress. Formalising the
semantics sheds light on difficult parts of the language, identifies opportunities
for future improvements, and provides a foundation for provenance tracking in
the following chapters. Our semantics leads straightforwardly to a reference im-
plementation in Haskell. We also discuss some of Puppet’s idiosyncrasies, partic-
ularly its handling of classes and scope, and present an initial corpus of test cases
supported by our formal semantics. The content of this chapter is based on the
ECOOP paper (Fu et al., 2017).

3.1 Introduction

Managing a large-scale data centre consisting of hundreds or thousands of ma-
chines is a major challenge. Manual installation and configuration is simply im-
practical, given that each machine hosts numerous software components, such as
databases, web servers, and middleware. Hand-coded configuration scripts are

23

24 Chapter 3. Semantics of µPuppet

difficult to manage and debug when multiple target configurations are needed.
Moreover, misconfigurations can potentially affect millions of users. Recent em-
pirical studies (Yin et al., 2011; Gunawi et al., 2014) attribute a significant pro-
portion of system failures to misconfiguration rather than bugs in the software
itself. Thus better support for specifying, debugging and verifying software con-
figurations is essential to future improvements in reliability (Xu and Zhou, 2015).

A variety of configuration frameworks have been developed to increase the
level of automation and reliability. They typically contain their own configu-
ration languages. Like most real-world languages, configuration languages have
largely evolved in an ad hoc fashion, with little attention paid to their semantics.
Given their infrastructural significance, this makes them an important (although
challenging) target for formal study: a formal model can clarify difficult or coun-
terintuitive aspects of the language, identify opportunities for improvements and
bug-fixes, and provide a foundation for static or dynamic analysis techniques, such
as typechecking, provenance tracking and execution monitoring. In this chapter,
we investigate the semantics of the configuration language used by the Puppet
framework. Puppet is a natural choice because of its DSL-based approach, and
the fact that it has seen widespread adoption. The 2018 PuppetConf conference
was packed with over 80 sessions presented by more than 100 of the industries
top leaders and had more than 30 sponsors from around the world.

An additional challenge for the formalisation of real-world languages is that
they tend to be moving targets. For example, Puppet 4.0, released in March 2015,
introduced several changes that are not backwards-compatible with Puppet 3,
along with a number of non-trivial new features. In this chapter, we take Puppet
4.8 (the version included with Puppet Enterprise 2016.5) as the baseline version
of the language, and define a subset called µPuppet that includes the established
features of the language that appear most important and distinctive; in particular,
it includes the constructs node, class, and define. These are used in almost all
Puppet programs (called manifests). We chose to exclude some features that are
either deprecated or not yet in widespread use, or whose formalisation would add
complication without being particularly enlightening, such as regular expressions
and string interpolation.

The main contributions of this chapter are:

1. a formalisation of µPuppet, a subset of Puppet 4.8;

3.2. Puppet 25

2. a discussion of simple metatheoretic properties of µPuppet such as deter-
minism, monotonicity and (non-)termination;

3. a reference implementation of µPuppet in Haskell;

4. a corpus of test cases accepted by our implementation;

5. a discussion of the more complex features not handled by µPuppet.

We first give an overview of the language via some examples (Section 3.2.1),
covering some of the more counterintuitive and surprising parts of the language.
Next we define the abstract syntax and a small-step operational semantics of
µPuppet (Section 3.3). We believe ours to be the first formal semantics of a rep-
resentative subset of Puppet; although recent work by Shambaugh et al. (2016)
handles some features of Puppet, they focus on analysis of the “realisation” phase
and do not present a semantics for the node or class constructs or for inheritance
(although their implementation does handle some of these features). We use a
small-step operational semantics (as opposed to large-step or denotational seman-
tics) because it is better suited to modelling some of the idiosyncratic aspects of
Puppet, particularly the sensitivity of scoping to evaluation order. We focus on
unusual or novel aspects of the language in the main body of the chapter; the
full set of rules are given in Appendix A.3. Section 3.4 discusses some properties
of µPuppet. Section 3.5 describes our implementation and how we validated our
rules against the actual behavior of Puppet, and discusses some of the omitted
features. Sections 3.6 and 3.7 discuss related work and present our conclusions.

3.2 Puppet

3.2.1 Puppet: key concepts

We now introduce the basic concepts of the Puppet language – manifests, cata-
logs, resources, and classes – with reference to various examples. We also discuss
some behaviours which may seem surprising or unintuitive; clarifying such issues
is one reason for pursuing a formal definition of the language. The full Puppet 4.8
language has many more features than presented here. Appendix A.2 contains a
complete list of features and the subset supported by µPuppet.

26 Chapter 3. Semantics of µPuppet

3.2.1.1 Manifests and catalogs

Figure 3.1 shows a typical manifest, consisting of a node definition and various
classes declaring resources, which will be explained in § 3.2.1.4 below. Node
definitions, such as the one starting on line 1, specify how a single machine or
group of machines should be configured. Single machines can be specified by
giving a single hostname, and groups of machines by giving a list of hostnames, a
regular expression, or default (as in this example). The default node definition
is used if no other definition applies.

In this case the only node definition is default, and so compiling this manifest
for any node results in the catalog on the right of Figure 3.1. In this case the
catalog is a set of resources of type file with titles config1, config2 and
config3, each with a collection of attribute-value pairs. Puppet supports several
persistence formats for catalogs, including YAML; here we present the catalog
using an abstract syntax which is essentially a sub-language of the language of
manifests. The file resource type is one of Puppet’s many built-in resource
types, which include other common configuration management concepts such as
user, service and package.

3.2.1.2 Resource declarations

Line 11 of the manifest in Figure 3.1 shows how the config1 resource in the
catalog was originally declared. The path attribute was specified explicitly as a
string literal; the other attributes were given as variable references of the form $x.
Since a resource with a given title and type is global to the entire catalog, it may
be declared only once during a given compilation. A compilation error results
if a given resource is declared more than once. Note that what Puppet calls a
“compilation error” is a purely dynamic condition, and so is really a runtime error
in conventional terms.

The ordering of attributes within a resource is not significant; by default
they appear in the catalog in the order in which they were declared. Optionally
they can be sorted (by specifying ordering constraints) or randomised. Sorting is
usually recommended over relying on declaration order (Rhett, 2016).

3.2. Puppet 27

1 node default {

2 $source = ’/source ’

3 include service1

4 }

5
6 class service1 {

7 $mode = ’123’

8
9 include service2

10
11 file { ’config1 ’:

12 path => ’path1 ’,

13 source => $source ,

14 mode => $mode ,

15 checksum => $checksum ,

16 provider => $provider ,

17 recurse => $recurse

18 }

19
20 $checksum = md5

21 }

22
23 class service2 inherits service3 {

24 $recurse = true

25
26 file { ’config2 ’:

27 path => ’path2 ’,

28 source => $source ,

29 mode => $mode ,

30 checksum => $checksum ,

31 provider => $provider ,

32 recurse => $recurse

33 }

34 }

35
36 class service3 {

37 $provider = posix

38
39 file { ’config3 ’:

40 path => ’path3 ’,

41 mode => $mode ,

42 checksum => $checksum ,

43 recurse => $recurse

44 }

45 }

1 file { ’config3 ’:

2 path => ’path3 ’

3 }

4 file { ’config2 ’:

5 path => ’path2 ’,

6 source => ’/source ’,

7 provider => ’posix ’,

8 recurse => true

9 }

10 file { ’config1 ’:

11 path => ’path1 ’,

12 source => ’/source ’,

13 mode => ’123’

14 }

Figure 3.1: Example manifest (left); compiled catalog (right)

28 Chapter 3. Semantics of µPuppet

3.2.1.3 Variables and strict mode

Puppet lacks variable declarations in the usual sense; instead variables are im-
plicitly declared when they are assigned to. A compilation error results if a given
variable is assigned to more than once in the same scope. As we saw above,
unqualified variables, whether being read or assigned to, are written in “scripting
language” style $x.

Puppet allows variables to be used before they are assigned, in which case
their value is a special “undefined” value undef, analogous to Ruby’s nil or
JavaScript’s undefined. By default, attributes only appear in the compiled out-
put if their values are defined. Consider the variables $mode and $checksum

introduced by the assignments at lines 7 and 20 in the manifest in Figure 3.1.
The ordering of these variables relative to the file resource config1 is signifi-
cant, because it affects whether they are in scope. Since $mode is defined before
config1, its value can be read and assigned to the attribute mode. In the com-
piled catalog, mode thus appears as an attribute of config1. On the other hand
$checksum is assigned after config1, and is therefore undefined when read by
the code which initialises the checksum attribute. Thus checksum is omitted
from the compiled version of config1.

Since relying on the values of undefined variables is often considered poor
practice, Puppet provides a strict mode which treats the use of undefined variables
as an error. For similar reasons, and also to keep the formal model simple,
µPuppet always operates in strict mode. We discuss the possibility of relaxing
this in Section 3.5.2.

3.2.1.4 Classes and includes

Resource declarations may be grouped into classes. However, Puppet “classes”
are quite different from the usual concept of classes in object-oriented program-
ming – they define collections of resources which can be declared together by
including the class. This is sometimes called declaring the class, although there
is a subtle but important distinction between “declaring” and “including” which
we will return to shortly.

In Figure 3.1, it is the inclusion into the node definition of class service1

which explains the appearance of config1 in the catalog, and in turn the inclusion
into service1 of class service2 which explains the appearance of config2.

3.2. Puppet 29

(The fact that config3 also appears in the output relates to inheritance, and
is discussed in §3.2.1.6 below.) Inclusion is idempotent: the same class may be
included multiple times, but doing so only generates a single copy of the resources
in the catalog. This allows a set of resources to be included into all locations in
the manifest which depend on them, without causing errors due to duplicate
declarations of the same resource.

To a first approximation, including a class into another class obeys a lexical
scope discipline, meaning names in the including class are not visible in the
included class. However inclusion into a node definition has a quite different
behaviour: it introduces a containment relation between the node definition and
the class, meaning that names scoped to the node definition are visible in the
body of the included class. Thus in Figure 3.1, although the variable $mode

defined in service1 is not in scope inside the included class service2 (as per
lexical scoping), the $source variable defined in the node definition is in scope
in service1, because service1 is included into the node scope.

This is similar to the situation in Java where a class asserts its membership
of a package using a package declaration, except here the node definition pulls in
the classes it requires. The subtlety is that it is actually when a class is declared
(included for the first time, dynamically speaking) that any names in the body
of the class are resolved. If the usage of a class happens to change so that it ends
up being declared in so-called top scope (the root namespace usually determine
at check-in time), it may pick up a different set of bindings. Thus including a
class, although idempotent, has a “side effect” – binding the names in the class
– making Puppet programs potentially fragile. More of the details of scoping are
given in the language reference manual (Puppet, 2016).

3.2.1.5 Qualified names

A definition which is not in scope can be accessed using a qualified name, using a
syntax reminiscent of C++ and Java, with atomic names separated by the token
::. For example, in Figure 3.2 above, $::osfamily refers to a variable in the
top scope, while $::ssh::params::sshd_package is an absolute reference to
the $sshd_package variable of class ssh::params.

Less conventionally, Puppet also allows the name of a class to be a qualified
name, such as ssh::params in Figure 3.2. Despite the suggestive syntax, which
resembles a C++ member declaration, this is mostly just a convention used to

30 Chapter 3. Semantics of µPuppet

indicate related classes. In particular, qualified names used in this way do not
require any of the qualifying prefixes to denote an actual namespace. (Although
see the discussion in Section 3.5.2 for an interaction between this feature and
nested classes, which µPuppet does not support.)

3.2.1.6 Inheritance and class parameters

Classes may inherit from other classes; the inheriting class inherits the variables
of the parent class, including their values. In the earlier example (Figure 3.1),
service2 inherits the value of $provider from service3. Including a derived
class implicitly includes the inherited class, potentially causing the inherited class
to be declared (in the Puppet sense of the word) when the derived class is declared:

When you declare a derived class whose base class hasn’t already been
declared, the base class is immediately declared in the current scope,
and its parent assigned accordingly. This effectively “inserts” the base
class between the derived class and the current scope. (If the base
class has already been declared elsewhere, its existing parent scope is
not changed.)

This explains why config3 appears in the compiled catalog for Figure 3.1.
Since the scope in which a class is eventually declared determines the meaning

of the names in the class (§ 3.2.1.4 above), inheritance may have surprising (and
non-local) consequences. At any rate, the use of inheritance for most use cases is
now discouraged.1 The main exception is the use of inheritance to specify default
values; this is the scenario illustrated in Figure 3.2.

Line 1 of Figure 3.2 introduces class ssh::params, which assigns to variable
$sshd_package a value conditional on the operating system name $::osfamily

(line 2). The class ssh (line 8) inherits from ssh::params. It also defines a
class parameter $ssh_pkg (before the inherits clause), and uses the value of
the $sshd_package variable in the inherited class as the default value for the
parameter. Because an inherited class is processed before a derived class, the
value of $sshd_package is available at this point.

The value of the parameter $ssh_pkg is then used as the title of the package

resource declared in the ssh class (line 9) specifying that the relevant software
package exists in the target configuration. The last construct is a node definition
specifying how to configure the machine with hostname ssh.example.com. If

1https://docs.puppet.com/puppet/latest/style_guide.html, section 11.1.

https://docs .puppet.com/puppet/latest/style_guide.html

3.2. Puppet 31

1 class ssh :: params {

2 case $:: osfamily {

3 ’Debian ’: { $sshd_package = ’ssh ’ }

4 ’RedHat ’: { $sshd_package = ’openssh -server ’ }

5 default : { fail (" SSH class not supported ") }

6 }

7 }

8 class ssh ($ssh_pkg = $:: ssh :: params :: sshd_package) inherits ssh :: params {

9 package { $ssh_pkg :

10 ensure => installed

11 }

12 }

13 node ’ssh. example .com ’ {

14 include ssh

15 }

Figure 3.2: Example manifest showing recommended use of inheritance for setting
default parameters

host ssh.example.com is a Debian machine, the result of compiling this manifest
is a catalog containing the following package resource:

1 package { ’ssh ’ : ensure => installed }

3.2.1.7 Class statements

Figure 3.3 defines a class c with three parameters. The class statement (line 31)
can be used to include a class and provide values for (some of) the parameters.
In the resulting catalog, the from class resource has backup set to true (from
the explicit argument), mode set to 123 (because no mode argument is specified),
and source set to ’/default’ (because the path variable is undefined at the
point where the class is declared (line 31)).

However, the potential for conflicting parameter values means that multiple
declarations with parameters are not permitted, and the class statement must
be used instead (which only allows a single declaration).

3.2.1.8 Defined resource types

Defined resource types are similarly to classes, but provide a more flexible way of
introducing a user-defined set of resources. Definition d (line 14) in Figure 3.3
introduces a defined resource type. The definition looks very similar to a class
definition, but the body is a macro which can be instantiated (line 36) multiple

32 Chapter 3. Semantics of µPuppet

1 class c (

2 $backupArg = false ,

3 $pathArg = ’/default ’,

4 $modeArg = ’123’) {

5
6 file { ’from_class ’:

7 backup => $backupArg ,

8 source => $pathArg ,

9 path => $path ,

10 mode => $modeArg

11 }

12 }

13
14 define d (

15 $backupArg = false ,

16 $pathArg = ’/default ’,

17 $modeArg = ’123’) {

18
19 file { ’from_define ’:

20 backup => $backupArg ,

21 source => $pathArg ,

22 path => $path ,

23 mode => $modeArg

24 }

25 }

26
27 node default {

28
29 $backup = true

30
31 class { c:

32 backupArg => $backup ,

33 pathArg => $path

34 }

35
36 d { " service3 ":

37 backupArg => $backup ,

38 pathArg => $path

39 }

40
41 $path = ’/path ’

42 }

1 file { ’from_class ’:

2 backup => true ,

3 source => ’/default ’,

4 mode => ’123’

5 }

6 file { ’from_define ’:

7 path => ’/path ’,

8 backup => true ,

9 source => ’/default ’,

10 mode => ’123’

11 }

Figure 3.3: Manifest with class parameters and defined resource types (left); catalog
(right)

times with different parameters.

Interestingly, the path attribute in the from class file is undefined in the
result, apparently because the assignment $path = ’/path’ follows the declara-

3.3. µPuppet 33

tion of the class — however, in the from define file, path is defined as ’/path’!
The reason appears to be that defined resources are added to the catalog and
re-processed after other manifest constructs.2 We will not model this behaviour
of the assignments as $path = ’/path’ since we want to model a monotonic
sub-language. Monotonicity will be explained later in detail.

3.3 µPuppet

We now formalise µPuppet, a language which captures many of the essential
features of Puppet. Our goal is not to model all of Puppet’s idiosyncrasies, but
instead to attempt to capture the ‘declarative’ core of Puppet, as a starting point
for future study. As we discuss later, Puppet also contains several non-declarative
features whose behaviour can be counterintuitive and surprising; their use tends
to be discouraged in Puppet’s documentation and by other authors.

3.3.1 Abstract syntax

The syntax of µPuppet manifests m is defined in Figure 4.3, including expressions
e and statements s. Constant expressions in µPuppet can be integer literals i,
string literals w, or boolean literals true or false. Other expressions include
arithmetic and boolean operations, variable forms $x, $::x and $::a::x. Here, x
stands for variable names and a stands for class names. Selectors e ? {M} are
conditional expressions that evaluate e and then conditionally evaluate the first
matching branch in M . Arrays are written [e1, . . . , en] and hashes (dictionaries)
are written {k⇒ e, . . .} where k is a key (either a constant number or string).
Full Puppet includes many more built-in functions that we omit here.

Statements s include expressions e (whose value is discarded), composite state-
ments s1 s2, assignments $x = e, and conditionals unless, if, case, which are
mostly standard. (Full Puppet includes an elsif construct that we omit from
µPuppet.) Statements also include resource declarations t {e : H} for built-in
resource types t, resource declarations u {e :H} for defined resource types u, and
class declarations class {a :H} and include a.

Manifests m can be statements s; composite manifests m1 m2, class defini-
tions class a {s} with or without parameters ρ and inheritance clauses inherits b;

2http://puppet-on-the-edge.blogspot.co.uk/2014/04/getting-your-puppet-ducks-in-row.
html

http://puppet-on-the- edge.blogspot.co.uk/2014/04/getting-your-puppet-ducks-in-row.html
http://puppet-on-the- edge.blogspot.co.uk/2014/04/getting-your-puppet-ducks-in-row.html

34 Chapter 3. Semantics of µPuppet

Expression e ::= i | w | true | false | $x | $::x | $::a::x
| e1 +e2 | e1−e2 | e1/e2 | e1 > e2 | e1 = e2 | e1 ande2 | e1 ore2 | !e | . . .
| {H} | [e1, . . . ,en] | e1[e2] | e ? {M}

Array A ::= ε | e,A
Hash H ::= ε | k⇒ e,H

Case c ::= e | default

Matches M ::= ε | c⇒ e,M

Statement s ::= e | s1 s2 | $x= e | unless e {s} | if e {s} else {s} | case e {C} |D
Cases C ::= ε | c : {s} C
Declaration D ::= t {e :H} | u {e :H} | class {a :H} | include a

Manifest m ::= s |m1 m2 | node Q {s} | define u (ρ) {s} | class a {s} | class a (ρ) {s}
| class a inherits b {s} | class a (ρ) inherits b {s}

Node spec Q ::= N | default | (N1, . . . ,Nk) | r ∈ RegExp
Parameters ρ ::= ε | x,ρ | x= e,ρ

Figure 3.4: Abstract syntax of µPuppet

node definitions nodeQ {s}; or defined resource type definitions define u (ρ) {s}.
Node specifications Q include literal node names N , default, lists of node names,
and regular expressions r (which we do not model explicitly).

Sequences of statements, cases, or manifest items can be written by writing
one statement after the other, separated by whitespace, and we write when
necessary to emphasise that this whitespace is significant. The symbol ε denotes
the empty string.

3.3.2 Operational Semantics

We now define a small-step operational semantics for µPuppet. This is a con-
sidered choice: although Puppet is advertised as a declarative language, it is not
a priori clear that manifest compilation is a terminating or even deterministic
process. Using small-step semantics allows us to translate the (often) procedural
descriptions of Puppet’s constructs directly from the documentation.

The operational semantics relies on auxiliary notions of catalogs vC, scopes α,
variable environments σ, and definition environments κ explained in more detail
below. We employ three main judgements, for processing expressions, statements,

3.3. µPuppet 35

and manifests:

σ,κ,vC, e
α−→ e′ σ,κ,vC, s

α−→s σ
′,κ′,v′C, s

′ σ,κ,vC,m
N−→m σ′,κ′,v′C,m

′

Here, σ, κ, and vC are the variable environment, definition environment, and
catalog beforehand, and their primed versions are the corresponding components
after one compilation step. The parameter α for expressions and statements
represents the ambient scope; the parameter N for manifests is the target node
name.

The main judgement is −→m, which takes a µPuppet manifest m and a node
nameN and compiles it to a catalog vC, that is, a list of resource values vR for that
node. Given initial variable environments σ (representing data provided by the
client) and κ (containing any predefined classes or resource definitions), execution
of manifest m begins with an empty catalog and terminates with catalog vC when
the manifest equals skip, i.e. σ,κ,ε,m N−→m · · ·

N−→m σ′,κ′,vC,skip.

3.3.2.1 Auxiliary definitions: catalogs, scopes and environments

Before defining compilation formally, we first define catalogs (§3.3.2.1.1), the re-
sult of compiling manifests; scopes (§3.3.2.1.2), which explicitly represent the
ambient scope used to resolve unqualified variable references; variable environ-
ments (§3.3.2.1.3), which store variable bindings; and definition environments
(§3.3.2.1.4), which store class and resource definitions.

3.3.2.1.1 Catalogs The syntax of catalogs is given in Figure 3.5. A catalog
vC is a sequence of resource values, separated by whitespace; a resource value
vR = t {w : vH} is a resource whose title is a string value and whose content is a
hash value; a hash value vH is an attribute-value sequence in which all expressions
are values; and finally a value v is either an integer literal i, string literal w,
boolean literal true or false, hash {vH}, or array [v1, . . . ,vn]. In a well-formed
catalog, there is at most one resource with a given type and title; attempting to
add a resource with the same type and title as one already in the catalog is an
error.

3.3.2.1.2 Scopes As discussed in Section 3.2.1, Puppet variables can be as-
signed in one scope and referenced in a different scope. For example, in Figure 3.2,
the parent scope of class scope ssh is class scope ssh::params. To model this,

36 Chapter 3. Semantics of µPuppet

Catalog vC ::= ε | vR vC

Value v ::= i | w | true | false | {vH} | [v1, . . . ,vn] | t[v]
Hash value vH ::= ε | k⇒ v,vH

Resource value vR ::= t {w : vH}

Scope α ::= :: | ::a | ::nd | α def

Statement s ::= ... | scope α s | skip

Figure 3.5: Auxiliary constructs: catalogs and scopes

we model scopes and parent-child relations between scopes explicitly. Scope ::
represents the top scope, ::a is the scope of class a, ::nd is the active node scope,
and α def is the scope of a resource definition that is executed in ambient scope
α.

The scope for defined resources takes another scope parameter α in order
to model resource definitions that call other resource definitions. The top-level,
class, and node scopes are persistent, while α def is cleared at the end of the
corresponding resource definition; thus these scopes can be thought of as names
for stack frames. The special statement form scope α s is used internally in the
semantics to model scope changes. An additional internal statement form skip,
unrelated to scopes, represents the empty statement. Neither of these forms are
allowed in Puppet manifests.

As discussed earlier, there is an ancestry relation on scopes, which governs
the order in which scopes are checked when dereferencing an unqualified variable
reference. We use mutually recursive auxiliary judgments αparentofκβ to indicate
that α is the parent scope of β in the context of κ and αbaseofκβ to indicate that
α is the base scope of β. The base scope is either ::, indicating that the scope is
the top scope, or ::nd, indicating that the scope is being processed inside a node
definition. We first discuss the rules for parentofκ:

:: parentofκ ::nd
PNode

β baseofκα def

β parentofκα def
PDefRes

κ(a) = DeclaredClass(α)

αparentofκ ::a
PClass

The PNode rules says that the top-level scope is the parent scope of node scope.

3.3. µPuppet 37

The PDefRes rule says that the parent scope of the defined resource type scope
is its base scope. Thus, a resource definition being declared in the toplevel will
have parent ::, while one being declared inside a node definition will have parent
scope ::nd. The PClass rule defines the scope of the (declared) parent class b
to be the scope α that is recorded in the DeclaredClass(α) entry. The rules for
class inclusion and declaration in the next section show how the DeclaredClass(α)
entry is initialised; this also uses the baseofκ relation. The rules defining baseofκ
are as follows:

:: baseofκ ::
BTop

::nd baseofκ ::nd
BNode

αbaseofκ β

αbaseofκ β def
BDefRes

κ(a) = DeclaredClass(β) αbaseofκ β

αbaseofκ ::a
BClass

These rules determine whether the ambient scope α in which the class is declared
is inside or outside a node declaration. The base scope of toplevel or node scope
is toplevel or node scope respectively. The base scope of β def is the base scope
of β, while the base scope of a class scope ::a is the base scope of its parent scope
as defined in the definition environment κ. (We will only try to obtain the base
scope of a class that has already been declared.)

3.3.2.1.3 Variable environments During the compilation of a manifest, the
values of variables are recorded in variable environments σ which are then ac-
cessed when these variables are referenced in the manifest. (We call these variable
environments, rather than plain environments, since “environment” has a specific
technical meaning in Puppet; see the glossary in Appendix A.1.)

Formally, a variable environment is defined as a partial function σ : Scope×
Var → Value which maps pairs of scopes and variables to values. The scope
component indicates the scope in which the variable was assigned. We sometimes
write σα(x) for σ(α,x). Updating a variable environment σ with new binding
(α,x) to v is written σ[(α,x) : v], and clearing an environment (removing all
bindings in scope α) is written clear(σ,α).

3.3.2.1.4 Definition environments Some components in Puppet, like classes
and defined resource types, introduce definitions which can be declared elsewhere.
To model this, we record such definitions in definition environments κ. Formally,

38 Chapter 3. Semantics of µPuppet

a definition environment is a partial function κ : Identifier →Definition mapping
each identifier to a definition D. Evaluation of the definition only begins when a
resource is declared which uses that definition.

Definitions are of the following forms:

D ::= ClassDef(copt,ρ,s) | DeclaredClass(α) | ResourceDef(ρ,s)

copt ::= c | ⊥

The definition form ClassDef(copt,ρ,s) represents the definition of a class (before
it has been declared); copt is the optional name of the class’s parent, ρ is the list
of parameters of the class (with optional default values), and s is the body of
the class. The definition form DeclaredClass(α) represents a class that has been
declared; α is the class’s parent scope and ρ and s are no longer needed. In
Puppet, a class can be declared only once, and when it is declared its definition
environment entry is changed to DeclaredClass(copt). Finally, the definition form
ResourceDef(ρ,s) represents the definition of a new resource type, where ρ and s

are as above.

3.3.2.2 Expression evaluation

Expressions are the basic computational components of µPuppet. The rules for
expression forms such as primitive operations are standard. The rules for selec-
tor expressions are also straightforward. Since variable accessibility depends on
scope, the variable evaluation rules are a little more involved:

x ∈ dom(σα)

σ,κ,vC,$x
α−→ σα(x)

LVar

x /∈ dom(σα) σ,κ,vC,$x
β−→ v β parentofκα

σ,κ,vC,$x
α−→ v

PVar

x ∈ dom(σ::)

σ,κ,vC,$::x α−→ σ::(x)
TVar

x ∈ dom(σ::a)

σ,κ,vC,$::a :: x α−→ σ::a(x)
QVar

The LVar rule looks up the value of an unqualified variable in the current
scope, if present. The PVar rule handles the case of an unqualified variable that
is not defined in the current scope; its value is the value of the variable in the
parent scope. The TVar and QVar rules look up fully-qualified variables in top

3.3. µPuppet 39

scope or class scope, respectively. (There is no qualified syntax for referencing
variables in node scope from other scopes.)

µPuppet also includes array and hash expressions. An array is a list of ex-
pressions in brackets and a hash is a list of keys and their expression assignments
in braces. When the expressions are values, an array or a hash is also a value.
Each expression in them can be dereferenced by the array or hash followed by its
index or key in brackets. The rules for constructing and evaluating arrays and
hashes are straightforward, and included in Appendix A.

Resource references of the form t[v] are allowed as values, where t is a built-in
resource name and v is a (string) value. Such references can be used as param-
eters in other resources and to express ordering relationships between resources.
Resource references can be used to extend resources or override inherited resource
parameters; we do not model this behaviour. A resource reference can also (as
of Puppet 4) be used to access the values of the resource’s parameters. This is
supported in µPuppet as shown in the following example.

1 file {" foo.txt ":

2 owner => "alice"

3 }

4 $y = "foo.txt"

5 $x = File[$y]

6 file {" bar.txt ":

7 owner => $x[" owner "]

8 }

In this example, we first declare a file resource, with an owner parameter "alice",
then we assign y the filename and $x a resource reference (value) File["foo.txt"].
Then in defining a second file resource we refer to the "owner" parameter of the
already-declared file resource via the reference File["foo.txt"]. This declara-
tion results in a second file resource with the same owner as the first.

The rules for dereferencing arrays, hashes, and resource references are as fol-

40 Chapter 3. Semantics of µPuppet

lows:

σ,κ,vC,d
α−→ d′

σ,κ,vC,d[e] α−→ d′[e]
DeRefExp

σ,κ,vC, e
α−→ e′

σ,κ,vC,v[e] α−→ v[e′]
DeRefIndex

σ,κ,vC, [v0, . . . , vn, . . . ,vm][n] α−→ vn
DeRefArray

k = kn

σ,κ,vC,{k1 = v1, . . . ,kn = vn, . . . ,km = vm}[k] α−→ vn
DeRefHash

σ,κ,vC, e
α−→ e′

σ,κ,vC, t[e]
α−→ t[e′]

RefRes
lookupC(vC, t,w,k) = v

σ,κ,vC, t[w][k] α−→ v
DeRefRes

In the rule DeRefExp the expression e is evaluated to an array or a hash
value. The rule DeRefIndex evaluates the index inside the brackets to a value.
Rule DeRefArray accesses the value in an array at the index n while rule
DeRefHash accesses the hash value by searching its key k. There could be a
sequence of reference indexes in a reference. As we can see, such reference is
evaluated in the left-to-right order of the index list. Rule ResRef evaluates the
index and in the DeRefRec rule, the function lookupC looks up the catalog for
the value of the attribute k of the resource t[v].

3.3.2.3 Statement evaluation

As with expressions, some of the statement forms, such as sequential composition,
conditionals (if, unless), and case statements have a conventional operational
semantics, shown in the appendix. An expression can occur as a statement; its
value is ignored. Assignments, like variable references, are a little more complex.
When storing the value of a variable in an assignment in σ, the compilation rule
binds the value to x in the scope α:

σ,κ,vC, e
α−→ e′

σ,κ,vC,$x= e
α−→s σ,κ,vC,$x= e′

AssignStep

x /∈ dom(σα)

σ,κ,vC,$x= v
α−→s σ[(α,x) : v],κ,vC,skip

Assign

Notice that Puppet does not allow assignment into any other scopes, only the
current scope α.

3.3. µPuppet 41

We now consider scope α s statements, which are internal constructs (not
part of the Puppet source language) we have introduced to track the scope that
is in effect in different parts of the manifest during execution. The following rules
handle compilation inside scope statements and cleanup when execution inside
such a statement finally terminates.

α ∈ {::, ::a, ::nd} σ,κ,vC, s
α→s σ

′,κ′,v′C, s
′

σ,κ,vC,scope α s
α′
−→s σ

′,κ′,v′C,scope α s′
ScopeStep

σ,κ,vC, s
α def−−−→s σ

′,κ′,v′C, s
′

σ,κ,vC,scope (α def) s α−→s σ
′,κ′,v′C,scope (α def) s′

DefScopeStep

α ∈ {::, ::a, ::nd}

σ,κ,vC,scope α skip β−→s σ,κ,vC,skip
ScopeDone

σ,κ,vC,scope (α def) skip α−→s clear(σ,α def),κ,vC,skip
DefScopeDone

The ScopeStep and DefScopeStep rules handle compilation inside a scope;
in the ScopeStep rule the ambient scope α′ is overridden and the scope param-
eter α is used instead; similarly in the DefScopeStep rule the local scope α def

of s replaces the scope α. The ScopeDone rule handles the end of compilation
inside a “persistent” scope, such as top-level, node or class scope, whose variables
persist throughout execution, and the DefScopeDone rule handles the tempo-
rary scope of defined resources, whose locally-defined variables and parameters
become unbound at the end of the definition. (In contrast, variables defined in
toplevel, node, or class scopes remain visible throughout compilation.)

Resource declarations are compiled in a straightforward way; the title expres-
sion is evaluated, then all the expressions in attribute-value pairs in the hash
component are evaluated. Once a resource is fully evaluated, it is appended to
the catalog:

σ,κ,vC, e :H α−→R e
′ :H ′

σ,κ,vC, t {e :H} α−→s σ,κ,vC, t {e′ :H ′}
ResStep

σ,κ,vC,vR
α−→s σ,κ,vC vR,skip

ResDecl

42 Chapter 3. Semantics of µPuppet

Defined resource declarations look much like built-in resources:
1 apache :: vhost {’homepages ’:

2 port => 8081 ,

3 docroot => ’/var/www -testhost ’,

4 }

When a defined resource type declaration is fully evaluated, it is expanded (much
like a function call).

σ,κ,vC,{e :H} α−→R {e′ :H ′}

σ,κ,vC,u {e :H} α−→s σ,κ,vC,u {e′ :H ′}
DefStep

κ(u) = ResourceDef(ρ,s) s′ = merge(ρ,vH)

σ,κ,vC,u {w : vH}
α−→s σ,κ,vC,scope (α def) {$title= w s′ s}

Def

The merge function returns a statement s′ assigning the parameters to their
default values in ρ or overridden values from vH. Notice that we also add the
special parameter binding $title = w; this is because in Puppet, the title of a
defined resource is made available in the body of the resource using the parameter
$title. The body of the resource definition s is processed in scope α def. Class
declarations take two forms: include-like and resource-like declarations.

The statement include a is an include-like declaration of a class a. (Pup-
pet includes some additional include-like declaration forms such as contain and
require). Intuitively, this means that the class body is processed (declaring any
ancestors and resources inside the class), and the class is marked as declared; a
class can be declared at most once. The simplest case is when a class has no
parent, covered by the first two rules below:

κ(a) = ClassDef(⊥,ρ,s) s′ = merge(ρ,ε) β baseofκα

σ,κ,vC,include a α−→s σ,κ[a : DeclaredClass(β)],vC,scope (::a) s′ s
IncU

κ(a) = DeclaredClass(β)

σ,κ,vC,include a α−→s σ,κ,vC,skip
IncD

κ(a) = ClassDef(b,ρ,s) κ(b) = ClassDef(copt,ρ′, s′)

σ,κ,vC,include a α−→s σ,κ,vC,include b include a
IncPU

κ(a) = ClassDef(b,ρ,s) κ(b) = DeclaredClass(β) s′ = merge(ρ,ε)

σ,κ,vC,include a α−→s σ,κ[a : DeclaredClass(::b)],vC,scope (::a) {s′ s}
IncPD

3.3. µPuppet 43

In the IncU rule, the class has not been declared yet, so we look up its body
and default parameters and process the body in the appropriate scope. (We use
the merge function again here to obtain a statement initialising all parameters
which have default values.) In addition, we modify the class’s entry in κ to
DeclaredClass(β), where β baseofκα. As described in Section 3.2.1, this aspect of
Puppet scoping is dynamic: if a base class is defined outside a node definition
then its parent scope is ::, whereas if it is declared during the processing of a node
definition then its parent scope is ::nd. (As discussed below, if a class inherits
from another, however, the parent scope is the scope of the parent class no matter
what). If this sounds confusing, this is because it is; this is the trickiest aspect
of Puppet scope that is correctly handled by µPuppet. This complexity appears
to be one reason that the use of node-scoped variables is discouraged by some
experts (Rhett, 2016).

In the IncD rule, the class a is already declared, so no action needs to be
taken. In the IncPU rule, we include the parent class so that it (and any ances-
tors) will be processed first. If there is an inheritance cycle, this process loops;
we have confirmed experimentally that Puppet does not check for such cycles and
instead fails with a stack overflow. In the IncPD rule, the parent class is already
declared, so we proceed just as in the case where there is no parent class.

The rules for resource-like class declarations are similar:

κ(a) = ClassDef(copt,ρ,S) σ,κ,vC,H
α−→H H

′

σ,κ,vC,class {a :H} α−→s σ,κ,vC,class {a :H ′}
CDecStep

κ(a) = ClassDef(⊥,ρ,s) s′ = merge(ρ,vH) β baseofκα

σ,κ,vC,class {a : vH}
α−→s σ,κ[a : DeclaredClass(β)],vC,scope (::a) s′ s

CDecU

κ(a) = ClassDef(b,ρ,s) κ(b) = ClassDef(copt,ρ′, s′)

σ,κ,vC,class {a : vH}
α−→s σ,κ,vC,include b class {a : vH}

CDecPU

κ(a) = ClassDef(b,ρ,s) κ(b) = DeclaredClass(β) s′ = merge(ρ,vH)

σ,κ,vC,class {a : vH}
α−→s σ,κ[a : DeclaredClass(::b)],vC,scope (::a) {s′ s}

CDecPD

There are two differences. First, because resource-like class declarations provide
parameters, the rule CDecStep provides for evaluation of these parameters.
Second, there is no rule analogous to IncD that ignores re-declaration of an
already-declared class. Instead, this is an error. (As with multiple definitions of

44 Chapter 3. Semantics of µPuppet

variables and other constructs, however, we do not explicitly model errors in our
rules.)

3.3.2.4 Manifest compilation

At the top level, manifests can contain statements, node definitions, resource type
definitions, and class definitions. To compile statements at the top level, we use
the following rule:

σ,κ,vC, s
::−→s σ

′,κ′,v′C, s
′

σ,κ,vC, s
N−→m σ′,κ′,v′C, s

′
TopScope

The main point of interest here is that we change from the manifest judgement
(with the node name parameter N) to the statement judgement (with toplevel
scope parameter ::). The node name parameter is not needed for processing
statements, and we (initially) process statements in the toplevel scope. Of course,
the statement s may well itself be a scope statement which immediately changes
the scope.

A manifest in Puppet can configure all the machines (nodes) in a system.
A node definition describes the configuration of one node (or type of nodes) in
the system. The node declaration includes a specifier Q used to match against the
node’s hostname. We abstract this matching process as a function nodeMatch(N,Q)
that checks if the name N of the requesting computer matches the specifier
Q. If so (NodeMatch) we will compile the statement body of N . Other-
wise (NodeNoMatch) we will skip this definition and process the rest of the
manifest.

nodeMatch(N,Q)

σ,κ,vC,nodeQ {s} N−→m σ,κ,vC,scope (::nd) s
NodeMatch

¬nodeMatch(N,Q)

σ,κ,vC,nodeQ {s} N−→m σ,κ,vC,skip
NodeNoMatch

Resource type definitions in Puppet are used to design new, high-level resource
types, possibly by declaring other built-in resource types, defined resource types,
or classes. Such a definition includes Puppet code to be executed when a resource
of the defined type is declared. Defined resource types can be declared multiple
times with different parameters, so resource type definitions are loosely analogous
to procedure calls. The following is an example of a defined resource type:

3.3. µPuppet 45

1 define apache :: vhost (Integer $port) {

2 include apache

3 file { "host ":

4 content => template (’ apache /vhost - default .conf.erb ’),

5 owner => ’www ’

6 }

7 }

The compilation rule for defining a defined resource type is:

u /∈ dom(κ)

σ,κ,vC,define u (ρ) {s} N−→m σ,κ[u : ResourceDef(ρ,s)],vC,skip
RDef

The definition environment is updated to map u to ResourceDef(ρ,s) containing
the parameters and statements in the definition of u. The manifest then becomes
skip.

A class definition is used for specifying a particular service that could include
a set of resources and other statements. Classes are defined at the top level and
are declared as part of statements, as described earlier. Classes can be parame-
terised; the parameters are passed in at declaration time using the resource-like
declaration syntax. The parameters can be referenced as variables in the class
body. A class can also inherit directly from one other class. The following rules
handle the four possible cases:

a /∈ dom(κ)

σ,κ,vC,class a {s} N−→m σ,κ[a : ClassDef(⊥, ε,s)],vC,skip
CDef

a /∈ dom(κ)

σ,κ,vC,class a inherits b {s} N−→m σ,κ[a : ClassDef(b,ε,s)],vC,skip
CDefI

a /∈ dom(κ)

σ,κ,vC,class a (ρ) {s} N−→m σ,κ[a : ClassDef(⊥,ρ,s)],vC,skip
CDefP

a /∈ dom(κ)

σ,κ,vC,class a (ρ) inherits b {s} N−→m σ,κ[a : ClassDef(b,ρ,s)],vC,skip
CDefPI

In the simplest case (CDef) we add the class definition to the definition environ-
ment with no parent and no parameters. The other three rules handle the cases
with inheritance, with parameters, or with both.

46 Chapter 3. Semantics of µPuppet

3.4 Metatheory

Because Puppet has not been designed with formal properties in mind, there is
relatively little we can say formally about the “correctness” of µPuppet. Instead,
the main measure of correctness is the degree to which µPuppet agrees with the
behaviour of the main Puppet implementation, which is the topic of the next
section. Here, we summarise two properties of µPuppet that guided our design
of the rules. First, evaluation is deterministic: a given manifest can evaluate in
at most one way.

Theorem 3.4.1 (Determinism). All of the evaluation relations of µPuppet are
deterministic:

• If σ,κ,vC, e
α−→ e′ and σ,κ,vC, e

α−→ e′′ then e′ = e′′.

• If σ,κ,vC, s
α−→s σ′,κ′,v′C, s

′ and σ,κ,vC, s
α−→s σ′′,κ′′,v′′C, s

′′ then σ′ = σ′′, κ′ =
κ′′, v′C = v′′C and s′ = s′′.

• If σ,κ,vC,m
N−→m σ′,κ′,v′C,m

′ and σ,κ,vC,m
N−→m σ′′,κ′′,v′′C,m

′′ then σ′ =
σ′′, κ′ = κ′′, v′C = v′′C and m′ =m′′.

Proof. Straightforward by induction on derivations.

Second, in µPuppet, evaluation is monotonic in the sense that:

• Once a variable binding is defined in σ, its value never changes, and it
remains bound until the end of the scope in which it was bound.

• Once a class or resource definition is defined in κ, its definition never
changes, except that a class’s definition may change from ClassDef(copt,ρ,s)
to DeclaredClass(β).

• Once a resource is declared in vC, its title, properties and values never
change.

We can formalise this as follows.

Definition 3.4.1. We define orderings v on variable environments, definition
environments and catalogs as follows:

• σ v σ′ when x ∈ dom(σα) implies that either σα(x) = σ′α(x) or α = β def

for some β and x 6∈ dom(σ′α).

3.5. Implementation and Evaluation 47

• κvκ′ when a∈ dom(κ) implies either κ(a) =κ′(a) or κ(a) = ClassDef(copt,ρ,s)
and κ′(a) = DeclaredClass(β).

• vC v v′C when there exists v′′C such that vC v′′C = v′C.

• (σ,κ,vC)v (σ′,κ′,v′C) when σ v σ′, κv κ′ and vC v v′C.

Theorem 3.4.2 (Monotonicity). The statement and manifest evaluation rela-
tions of µPuppet are monotonic in σ,κ,vC:

• If σ,κ,vC, s
α−→s σ′,κ′,v′C, s

′ then (σ,κ,vC)v (σ′,κ′,v′C).

• If σ,κ,vC,m
N−→m σ′,κ′,v′C,m

′ then (σ,κ,vC)v (σ′,κ′,v′C).

Proof. Straightforward by induction. The only interesting cases are the rules in
which σ, κ or vC change; in each case the conclusion is immediate.

These properties are not especially surprising or difficult to prove; neverthe-
less, they provide some justification for calling µPuppet a ‘declarative’ language.
However, µPuppet does not satisfy some other desirable properties. For exam-
ple, as we have seen, the order in which variable definitions or resource or class
declarations appear can affect the final result. Likewise, there is no notion of
‘well-formedness’ that guarantees that a µPuppet program terminates success-
fully: compilation may diverge or encounter a run-time error. Furthermore, full
Puppet does not satisfy monotonicity, because of other non-declarative features
that we have chosen not to model. Further work is needed to identify and prove
desirable properties of the full Puppet language, and identify subsets of (or mod-
ifications to) Puppet that make such properties valid.

3.5 Implementation and Evaluation

We implemented a prototype parser and evaluator for µPuppet in Haskell (GHC
8.0.1). The parser accepts source syntax for features of µPuppet as described in
the Puppet documentation and produces abstract syntax trees as described in
Section 3.3.2. The evaluator implements µPuppet compilation based on the rules
shown in Appendix A.3. The implementation constitutes roughly 1300 lines of
Haskell code. The evaluator itself is roughly 400 lines of code, most of which are
line-by-line translations of the inference rules.

48 Chapter 3. Semantics of µPuppet

We also implemented a test framework that creates an Ubuntu 16.04.1 (x86 64)
virtual machine with Puppet installed, and scripts which run each example us-
ing both µPuppet and Puppet and compare the resulting messages and catalog
output.

3.5.1 Test cases and results

During our early investigations with Puppet, we constructed a test set of 52
manifests that illustrate Puppet’s more unusual features, including resources,
classes, inheritance, and resource type definitions. The tests include successful
examples (where Puppet produces a catalog) and failing examples (where Puppet
fails with an error); we found both kinds of tests valuable for understanding what
is possible in cases where the documentation was unspecific.

We used these test cases to guide the design of µPuppet, and developed 16
additional test cases along the way to test corner cases or clarify behavior that
our rules did not originally capture correctly. We developed further tests during
debugging and to check the behavior of Puppet’s (relatively) standard features,
such as conditionals and case statements, arrays, and hashes. We did not en-
counter any surprises there so we do not present these results in detail.

We summarise the test cases and their results in Table 3.1. The “Feature” col-
umn describes the classification of features present in our test set. The “#Tests”
and “#Pass” columns show the number of tests in each category and the number
of them that pass. A test that is intended to succeed passes if both Puppet and
µPuppet succeed and produce the same catalog (up to reordering of resources); a
test that is intended to fail passes if both Puppet and µPuppet fail. The “#Un-
supported” column shows the number of test cases that involve features that
µPuppet does not handle. All of the tests either pass or use features that are not
supported by µPuppet. Features that µPuppet (by design) does not support are
italicised.

All of the examples listed in the above table are included in the repository
on github3, together with the resulting catalogs and error messages provided by
Puppet.

3https://github.com/dcspaul/uPuppet

3.5. Implementation and Evaluation 49

Feature #Tests #Pass #Unsupported
Statements 11 11 0

Assignment 2 2 0
Case 1 1 0
If 4 4 0
Unless 4 4 0

Resources 18 11 7
Basics 2 2 0
Variables 3 3 0
User defined resource types 5 5 0
Virtual resources 1 0 1
Default values 1 0 1
Resource extension 4 0 4
Ordering Constraints 2 1 1

Classes 32 22 10
Basics 4 4 0
Inheritance 3 3 0
Scope 2 2 0
Variables & classes 6 6 0
Class Parameters 6 6 0
Overriding 5 0 5
Nesting and redefinition 6 1 5

Nodes 8 8 0
Resource Collectors 9 0 9

Basics 1 0 1
Collectors, references & variables 3 0 3
Application order 5 0 5

Table 3.1: Summary of test cases. Features in italics are not supported in µPuppet.

50 Chapter 3. Semantics of µPuppet

3.5.2 Unsupported features

Our formalisation handles some but not all of the distinctive features of Puppet.
As mentioned in the introduction, we chose to focus effort on the well-established
features of Puppet that appear closest to its declarative aspirations. In this
section we discuss the features we chose not to support and how they might be
supported in the future, in increasing order of complexity.

String interpolation. Puppet supports a rich set of string operations in-
cluding string interpolation (i.e. variables and other expression forms embed-
ded in strings). For example, writing "Hello ${planet[’earth’]}!" produces
"Hello world!" if variable planet is a hash whose ’earth’ key is bound to
’world’. String interpolation is not conceptually difficult but it is widely used
and desugaring it correctly to plain string append operations is an engineering
challenge.

Dynamic data types. Puppet 4 also supports type annotations, which are
checked dynamically and can be used for automatic validation of parameters.
For example, writing Integer $x = 5 in a parameter list says that x is required
to be an integer and its default value is 5. Types can also express constraints
on the allowed values: for example, 5 =˜ Integer[1,10] is a valid expression
that evaluates to true because 5 is an integer between 1 and 10. Data types are
themselves values and there is a type Type of data types.

Undefined values and strict mode. By default, Puppet treats an unde-
fined variable as having a special “undefined value” undef. Puppet provides a
“strict” mode that treats an attempt to dereference an undefined variable as an
error. We have focused on modelling strict semantics, so our rules get stuck if an
attempt is made to dereference an undefined variable; handling explicit undefined
values seems straightforward, by changing the definitions of lookup and related
operations to return undef instead of failing.

Functions, iteration and lambdas. As of version 4, Puppet allows func-
tion definitions to be written in Puppet and also includes support for iteration
functions (each, slice, filter, map, reduce, with) which take lambda blocks as
arguments. The latter can only be used as function arguments, and cannot be as-
signed to variables, so Puppet does not yet have true first-class functions. We do
see no immediate obstacle to handling these features, using standard techniques.

Nested constructs and multiple definitions. We chose to consider only

3.5. Implementation and Evaluation 51

top-level definitions of classes and defined resources, but Puppet allows nesting
of these constructs, which also makes it possible for classes to be defined more
than once. For example:

1 class a {

2 $x1 = "a"

3 class b {

4 $y1 = "b"

5 }

6 }

7
8 class a::b {

9 $y2 = "ab"

10 }

11 include a

12 include a::b

Surprisingly, both line 4 and line 9 are executed (in unspecified order) when a::b

is declared, so both $::a::b::y1 and $::a::b::y2 are in scope at the end.
Our impression is that it would be better to simply reject Puppet manifests that
employ either nested classes or multiple definitions, since nesting of class and
resource definitions is explicitly discouraged by the Puppet documentation.

Dynamically-scoped resource defaults. Puppet also allows setting re-
source defaults. For example one can write (using the capitalised resource type
File):

1 File { owner => ’alice ’ }

to indicate that the default owner of all files is alice. Defaults can be declared in
classes, but unlike variables, resourced defaults are dynamically scoped; for this
reason, the documentation and some authors both recommend using resource
defaults sparingly. Puppet 4 provides an alternative way to specify defaults as
part of the resource declaration.

Resource extension and overriding. In Puppet, attributes can be added
to a resource which has been previously defined by using a reference to the re-
source, or removed by setting them to undef.

1 class main {

2 file { ’file ’: owner => ’alice ’ }

3 File[’file ’] { mode => ’0755’ }

4 }

However, it is an error to attempt to change the value of an already-defined
resource, unless the updating operation is performed in a subclass of the class in
which the resource was originally declared. For example:

52 Chapter 3. Semantics of µPuppet

1 class main :: parent {

2 file { ’file ’:

3 owner => ’bob ’,

4 source => ’the source ’

5 }

6 }

7 class main inherits main :: parent {

8 File[’file ’] {

9 owner => ’alice ’,

10 source => undef

11 }

12 }

This illustrates that code in the derived class is given special permission to over-
ride any resource attributes that were set in the base class. Handling this be-
haviour seems to require (at least) tracking the classes in which resources are
declared.

Resource collectors and virtual resources. Resource collectors allow for
selecting, and also updating, groups of resources specified via predicates. For
example, the following code declares a resource and then immediately uses the
collector File <|title == ’file’|> to modify its parameters.

1 class main {

2 file { ’file ’: owner => ’alice ’ }

3 File <| title == ’file ’ |> {

4 owner => ’bob ’,

5 group => ’the group ’,

6 }

7 }

Updates based on resource collectors are unrestricted, and the scope of the modifi-
cation is also unrestricted: so for example the resource collector File<|owner=’root’|>

will select all files owned by root, and potentially update their parameters in ar-
bitrary ways. The Puppet documentation recommends using resource collectors
only in idiomatic ways, e.g. using the title of a known resource as part of the
predicate. Puppet also supports virtual resources, that is, resources with pa-
rameter values that are not added to the catalog until declared or referenced
elsewhere. Virtual resources allow a resource to be declared in one place without
the resource being included in the catalog. The resource can then be realised in
one or more other places to include it in the catalog. Notice that you can realise
virtual resources before declaring them:

1 class main {

2 realize User [" alice "]

3.6. Related work 53

3 @user { "alice ": uid => 100 }

4 @user { "bob ": uid => 101 }

5 realize User [" alice "]

6 }

As Shambaugh et al. (2016) observe, these features can have global side-
effects and make separate compilation impossible; the Puppet documentation
also recommends avoiding them if possible. We have not attempted to model
these features formally, and doing so appears to be a challenging future direction.

Ordering constraints. By default, Puppet does not guarantee to process the
resources in the catalog in a fixed order. To provide finer-grained (and arguably
more declarative) control over ordering, Puppet provides several features: special
metaparameters such as ensure, require, notify, and subscribe, chaining ar-
rows -> and ˜> that declare dependencies among resources, and the require func-
tion that includes a class and creates dependencies on its resources. From the
point of view of our semantics, all of these amount to ways to define dependency
edges among resources, making the catalog into a resource graph. Puppet repre-
sents the chaining arrow dependencies using metaparameters, so we believe this
behavior can be handled using techniques similar to those for resource parameter
overrides or resource collectors. The rules for translating the different ordering
constraints to resource graph edges can be expressed using Datalog rules (Sham-
baugh et al., 2016) and this approach may be adaptable to our semantics too.

3.6 Related work

Other declarative configuration frameworks include LCFG (Anderson, 2008), a
configuration management system for Unix, and SmartFrog (Goldsack et al.,
2009), a configuration language developed by HP Labs. Of these, only Smart-
Frog has been formally specified; Anderson and Herry (2016) propose a formal
semantics and identify some complications, including potential termination prob-
lems exhibited by the SmartFrog interpreter. Their semantics is presented in a
denotational style, in contrast to the small-step operational semantics presented
here for Puppet. Other systems, such as Ponder (Damianou, 2002), adopt an
operational approach to policies for distributed systems.

Beyond this, there are relatively few formal studies of configuration languages,
and we are aware of only two papers on Puppet specifically. Vanbrabant et al.

54 Chapter 3. Semantics of µPuppet

(2011) propose an access control technique for an early version of Puppet based
on checking whether the changes to the catalog resulting from a change to the
manifest are allowed by a policy. Catalogs are represented as XML files and
allowed changes are described using path expressions. Shambaugh et al. (2016)
present a configuration verification tool for Puppet called Rehearsal. Their tool
is concerned primarily with the “realisation” stage of a Puppet configuration, and
focuses on the problem of determinacy analysis: that is, determining whether a
proposed reconfiguration leads to a unique result state. Shambaugh et al. (2016)
consider a subset of Puppet as a source language, including resources, defined
resources, and dependencies; they do not formalise the semantics of classes, in-
heritance or scope, though their implementation supports some of these features.

The present work continues a line of recent efforts to study the semantics of
programming and scripting languages “in the wild”. There have been efforts to
define semantics for JavaScript (Maffeis et al., 2008; Guha et al., 2010), R (Moran-
dat et al., 2012), PHP (Filaretti and Maffeis, 2014), and Python (Politz et al.,
2013). Work on formal techniques for Ruby (Ueno et al., 2014) may be especially
relevant to Puppet: Puppet is implemented in Ruby, and plugins can be written
in Ruby, so modelling the behaviour of Puppet as a whole may require modelling
both the Puppet configuration language and the Ruby code used to implement
plugins, as well as other tools such as Hiera4 that are an increasingly impor-
tant component of the Puppet toolchain. Hiera supports reuse of data values
by storing default values, which facilitates the modularity of Puppet. However,
Puppet itself differs significantly from Ruby, and Puppet “classes” in particular
bear little relation to classes in Ruby or other object-oriented languages. As for
data-tracking by provenance, it would not be difficult to extend the tracking from
Puppet to Hiera to find the source of data values.

3.7 Conclusions

In this chapter, we identified the main features of the Puppet language and their
semantic behaviour. We named these main features as µPuppet. We modelled
their semantics by operational semantics. These features includes resource, node,
class and defined resource types. We also presented some meta results that justi-
fied some basic characterisation of µPuppet as a ‘declarative’ subset of Puppet.

4https://docs.puppet.com/hiera/.

https://docs.puppet.com/hiera/

3.7. Conclusions 55

Besides the theoretical results, we implemented an interpreter and a parser in
Haskell for µPuppet based on its operational semantics and compared them with
the Puppet 4.8 implementation on a number of examples. We also identified
idiosyncrasies concerning evaluation order and scope where our initial approach
differed from Puppet’s actual behaviour. In the next two chapters, we will in-
vestigate provenance techniques developed in the database field in the context of
operational semantics that explain where the output values in the catalog come
from in the manifest, how the output values have been derived and what input
values in the manifest are responsible for the output values in the catalog.

Chapter 4

Where and Expression Provenance

After defining the formal semantics of µPuppet, we now start to introduce prove-
nance from the database field in the context of configuration language in this
chapter. After the file is compiled to a catalog, it will be deployed to the node
who requested to make a change to its configuration. The configuration on the
node will be changed according to the catalog. When configuration failures ap-
pear, there must be mistakes in the configuration of the node changed according
to the catalog. Configuration failures cause the lost of services. For example,
misconfigured backup DNS (used upon attacks) made LinkedIn inaccessible for
half a day. The administrators need to find the wrong parameters in the config-
urations. To make the configuration correct, the administrators find the solution
to mend the manifest according to the possible reasons for the mistakes. Since
these kind of mistakes are not bugs due to compilation failure, it is not obvious
for the administrators to find out the part of the manifest that is responsible for
the mistake. Moreover the manifest is normally written by many parties and is
a large file, understanding the manifest and locating the problematic part in it is
even harder. Provenance, as a technique to record the history of data changing
over time, will naturally be adapted here to provide the information for the out-
put data in the catalog about what happened over the compilation so the data
was derived. With this provenance, the administrator will get more information
besides the mistake data in the catalog, so to locate the problematic part in the
manifest that caused this mistake.

The data in the catalog have been derived by the compilation process from
the input data in the manifest. There are several possible ways through which
the compilation procedure decides how an output data value was derived. The

57

58 Chapter 4. Where and Expression Provenance

first is that the output data value is copied from the input data from the manifest
without going through any change. The second is that the data is generated by
primitive computations, i.e. arithmetic operations on some input data in the
manifest. The third is that the conditional constructs in the manifest influences
the control flow where the output was derived in the catalog. In this chapter,
we will focus on the first and second effects for which we formalise where- and
expression-provenance for output data values. Where-provenance describes the
location of the original input in the manifest where an output data value was
copied from, while expression-provenance provides the information on how a data
in the manifest has been generated by primitive computations and from what
input data it is derived from. To make the first step, provenance will be built
on µPuppet except array, hash and resource reference constructs. We believe it
should be easy to extend these provenance to these constructs and explore it in
the future.

4.1 Methodology

Since the data in the manifest goes through changes in the compilation pro-
cess, provenance in the context of a configuration language means to record the
changes of input data in the procedure of compilation. Since provenance is a
formal specification, it is natural to build it based on the formal semantics of the
configuration languages, i.e. µPuppet in our case.

It is natural for us to introduce a new construct in µPuppet to get involved in
the compilation procedure so to record the desired information of changes on input
data. As provenance in database field, the new construct could be a set of labels
of mutually disjoint single elements. We have formalized the semantic behaviour
of µPuppet using operational semantics in last chapter. With these labels, we
could record the relevant change of the data in every step of evaluation, i.e. every
semantic rule of µPuppet. In particular we annotate each data with a label in
the manifest. When a labeled data gets through every step of evolution, its label
will be evolved to another form representing the respective change depending on
the form of provenance we define. When the compilation of a manifest stops,
the data in the generated catalog will carry their labels. These labels will be
provenance intended to record the relevant information of an output data value.

Later when we define a model of provenance, we will propose a form of labels

4.2. Where-Provenance 59

Figure 4.1: Where-provenance in Puppet

for recording the form of provenance. Then we will illustrate in every semantic
rule of µPuppet how the label will be evolved in the rule.

4.2 Where-Provenance

We will define where-provenance that means to indicate the original location in
the manifest for an output data in the catalog. Where-provenance can indicate
the location of an input data value because the label of every input data is unique.
So we know where an output data value was copied from by the correspondence of
the labels of the input data and the output data. Such output data values are the
ones that have not been changed and were copied as-is by the compilation. When
the administrator is interested in such an output data value, where-provenance
will inform the location of its input data in the manifest. As we mentioned, the
manifest is normally large and contributed by many parties. It is hard to locate
a particular data in the manifest, especially when there are many data of the
same value. Furthermore, knowing the location of the input data of a data in the
manifest, the administrator will know the contributor of this data. An example
in Puppet below illustrates how where-provenance should work.

In Figure 4.1, all the input data values in the manifest are annotated with
unique labels li. After the manifest is complied to a catalog, the inputs that have
not been going through any changes remain in the catalog, as well as their labels.

60 Chapter 4. Where and Expression Provenance

For the multiple appearances of values, such as 123 and default, each appearance
is labelled uniquely. In the catalog, we can know which data values exactly were
copied from by the annotations. For example, the labels of the output data values
123 and default indicate which 123 and default in the inputs were copied from.

4.2.1 Annotated Compact Grammar

Where-provenance is defined to provide the location information of the input data
value for an output data value. For this purpose, we will label every data value in
a manifest with a unique label. In the process of every evaluation rule, the data
value will carry its label. Depending on the specific evaluation rule, the labels on
the data values will either remain if these data values are changed after the rule
is applied, or be changed to an empty label on the result data value if these data
values go through primitive operations in the rule. To formalising this behaviour
of labels, we introduce first an infinite set of different elements {l1, l2, . . . ,} as
labels and an empty label as ⊥ in the abstract syntax of µPuppet. A label that is
either a li or ⊥ is represented as β. The abstract syntax for labels is formalised
as in Figure 4.2.

We will use these labels to annotate the compact syntax of µPuppet, catalogs
and the environments helping the formal semantics of evaluation.

4.2.1.1 Annotations on Data Values

We will annotate the raw values in manifests in µPuppet. We start with anno-
tating the primitive value types in µPuppet, which are integer i, strings w and
boolean values true and false. We simply associate each value in manifests
with a unique label l, represented as vl called labelled data value. Such annotated
raw data value is represented as vβ, i.e. v̂.

Besides the raw input data values in manifests, there are also other forms
of data values related to µPuppet. After a manifest has been compiled, the
generated catalog is a set of resource values. Resource values are a structured
data type of primitive data values. We define the annotated resource values and
then catalog in Figure 4.2.

4.2. Where-Provenance 61

Label β ::= l |⊥

Value v ::= i | w | true | false

Annotated value v̂ ::= vβ

Catalog v̂C ::= ε | v̂R v̂C

Hash value v̂H ::= ε | k⇒ v̂, v̂H

Resource value v̂R ::= t {wβ : v̂H}

Scope α ::= :: | ::a | ::nd | α def

Statement s ::= ... | scope α s | skip

Figure 4.2: Annotated auxiliary constructs: catalogs and scopes

4.2.1.2 Annotating µPuppet

The constructs in µPuppet, such as expression e and statements s includes pre-
mier data values too and are labelled inductively on their structures. The anno-
tated expressions and all kinds of statements are defined in Figure 4.2. We retain
the representations e and s in the annotated compact syntax for simplicity.

4.2.1.3 Annotating evaluation environments

We will also annotate the environment constructs where the data values or state-
ments are carried to help the evaluation procedure. Labelling these constructs
can be made by induction on their structure. In store σ, we label every data
value bound with a variable in it. The annotated store is represented as σ̂. κ is
annotated if every definition associated with a class name in it is labelled. An
annotated κ is represented as κβ. Every definition is annotated if the statement
set S or the parameter set ρ in this definition is labelled. Their compact syntax
is in Figure 4.4.

4.2.2 Propagation of Evaluation in the Evaluation

Having the annotated compact syntax of µPuppet in hand, we will see how an
annotation on a raw data value in a manifest should evolve under evaluation. We
will define the evolution of the annotations step by step in semantic rules. We
intend to get the evolved annotations on data values in the catalog that indicate
the location of a data value back in the manifest. These annotations on data

62 Chapter 4. Where and Expression Provenance

Expression e ::= v̂ | $x | $::x | $::a::x
| e1 +e2 | e1−e2 | e1/e2 | e1 > e2 | e1 = e2 | e1 ande2 | e1 ore2 | !e | . . .
| {H} | [e1, . . . ,en] | e1[e2] | e ? {M}

Hash H ::= ε | k⇒ e,H

Case c ::= e | default

Matches M ::= ε | c⇒ e,M

Statement s ::= e | s1 s2 | $x= e | unless e {s} | if e {s} else {s} | case e {C} |D
Cases C ::= ε | c : {s} C
Declaration D ::= t {e :H} | u {e :H} | class {a :H} | include a

Manifest m ::= s |m1 m2 | node Q {s} | define u (ρ) {s} | class a {s} | class a (ρ) {s}
| class a inherits b {s} | class a (ρ) inherits b {s}

Node spec Q ::= N | default | (N1, . . . ,Nk) | r ∈ RegExp
Parameters ρ ::= ε | x,ρ | x= e,ρ

Figure 4.3: Annotated abstract syntax of µPuppet

Store σ̂ : Scope×V ar→ V̂ alue

κ κ̂ ::= ε | a→ d̂ | a→ d̂, k̂

Definition d̂ ::= ⊥ | ClassDef(optc,ρ,s) | DeclaredClass(optc) | ResourceDef(ρ,s)

Figure 4.4: Annotated abstract syntax of environments

values are where-provenance for these data values we want to define. For this
purpose, we will define the evolution of the annotations on data values in each
evaluation rule according to the following rules.

(1) If there is an operation in an evaluation rule where using data values as
inputs, the result data value after this evaluation step will have an empty
annotation ⊥ as its annotation.

(2) If a conditional statement if is evaluated, the control expression will be
omitted after its evaluation; the annotated data values in any branch will
remain if this branch is chosen.

(3) If a case statement is evaluated, the control expression will be omitted after
its evaluation; the data values in the branch chosen after its evaluation will

4.2. Where-Provenance 63

be kept in the result of its evaluation.

(4) If a selector expression is evaluated, the control expression will be omitted
after its evaluation; the branch chosen after its evaluation will be kept in
the result of its evaluation.

(5) The annotations of the data values not falling in the cases above will remain
in the evaluation.

4.2.2.1 Annotated Judgements

We defined three judgements for evaluating manifests in Chapter 3. For annotated
manifests, we will need to change these judgements to the forms with annotations.
Since the annotations are just decorations on the syntax of µPuppet, the changes
on the annotations made by semantic rules are only shown in the annotations
after the evaluation, but on the output elements of the evaluations. So when
considering the annotations on the constructs in the evaluation judgements, we
only need to add the annotations on the constructs as inputs and outputs.

σ̂, κ̂, v̂C, e
α−→ e′ σ̂, κ̂, v̂C, s

α−→s σ̂′, κ̂′, v̂′C, s
′ σ̂, κ̂, v̂C,m

N−→m σ̂′, κ̂′, v̂′C,m
′

We will illustrate next the evaluation rules for the constructs in µPuppet
where there are crucial evolutions on the annotations on data values.

4.2.2.2 Annotation Propagation in Expression Evaluation

We will see how the annotations in expression evaluations change. We will look
at different constructs of expressions respectively. We will have a sense of how
the annotations on data values should change in the evaluation rules for the basic
operations.

Arithmetic expressions For the rules for evaluating arithmetic operations on
two operands, there are three cases. First, if the two operands are both annotated
data values iβ1

1 and iβ2
2 , the result data value (i1 +Z i2) after the evaluation will

be labelled with an empty label ⊥. The labels β1 and β2 will be discarded since
the two input data values were consumed in the + operation. Second, if the left
hand side operand of an arithmetic operation is an annotated data value iβ and
its right hand side is an expression e, the evaluate e will be evaluated in the

64 Chapter 4. Where and Expression Provenance

next step. The data value i with its label β will be preserved in this evaluation
step. Last, if both operands are two expressions e1 and e2, the first expression
e1 will be evaluated first using the right rule. The evaluation rules for annotated
expressions below shows how the labels on the data values change.

σ̂, κ̂, v̂C, e1
α−→ e′1

σ̂, κ̂, v̂C, e1 + e2
α−→ e′1 + e2

ArithLeft
σ̂, κ̂, v̂C, e

α−→ e′

σ̂, κ̂, v̂C, i
β + e

α−→ iβ + e′
ArithRight

σ̂, κ̂, v̂C, i
β1
1 + iβ2

2
α−→ (i1 +Z i2)⊥

ArithValue

The evaluation rules for annotated constructs for other arithmetic operators
−,∗,/ are similar as these rules for +.

Comparison expressions Similarly we will define how to evaluate annotated
comparison expressions. There are three cases too. We make the comparison
operation on the operator > as an example. When the two operands of > operator
are annotated data values vβ1

1 and vβ2
2 , the evaluation result will be either true

or false depending on if v1 >Z v2 or v1 <=Z v2. Its annotation will be an empty
label ⊥ since vβ1

1 and vβ2
2 have been consumed as inputs of > operation. When

the left hand side operand is an annotated data value vβ1 and the right hand side
is an annotated expression e, the next step will evaluate e and vβ1 will be carried
in the result of the step. If both sides of > operation are expressions e1 and e2,
the left hand expression e1 will be evaluated next.

σ̂, κ̂, v̂C, e1
α−→ e′1

σ̂, κ̂, v̂C, e1 > e2
α−→ e′1 > e2

CompLeft
σ̂, κ̂, v̂C, e

α−→ e′

σ̂, κ̂, v̂C,v
β > e

α−→ vβ > e′
CompRight

v1 >Z v2

σ̂, κ̂, v̂C,v
β1
1 > vβ2

2
α−→ true⊥

CompValueI

v1 <=Z v2

σ̂, κ̂, v̂C,v
β1
1 > vβ2

2
α−→ false⊥

CompValueII

The annotation evolution in the rules for other comparison operators <, >=,
<=, == and ! = are similar and we omit them.

4.2. Where-Provenance 65

Boolean expressions We now will see how to evaluate annotated “and” and “!”
expressions. When the expression on and operator is on two true values trueβ1

and trueβ2 , the result will be true⊥. The annotations β1 and β2 on the two
inputs will not carried in the annotation of the result since the inputs have been
consumed. Similarly, when the left hand operator is an annotated false value
falseβ, the result will be false⊥ where β will be not recorded.

For ! expressions, when the operator ! is applied on an annotated truth value
trueβ or falseβ, the result will be false⊥ or true⊥ where the label β will not
be recorded for the same reason.

σ̂, κ̂, v̂C, e1
α−→ e′1

σ̂, κ̂, v̂C, e1 and e2
α−→ e′1 and e2

AndLeft

σ̂, κ̂, v̂C, e
α−→ e′

σ̂, κ̂, v̂C,falseβ and e α−→ false⊥
AndRightI

σ̂, κ̂, v̂C, e
α−→ e′

σ̂, κ̂, v̂C,trueβ and e α−→ trueβ and e′
AndRightII

σ̂, κ̂, v̂C,trueβ1 andtrueβ2 α−→ true⊥
AndValueI

σ̂, κ̂, v̂C,trueβ1 andfalseβ2 α−→ false⊥
AndValueII

σ̂, κ̂, v̂C, e
α−→ e′

σ̂, κ̂, v̂C, !e
α−→ !e′

NotSTEP
σ̂, κ̂, v̂C, !trueβ α−→ false⊥

NotValueI

σ̂, κ̂, v̂C, !falseβ α−→ true⊥
NotValueII

The rules for disjunction are similar and are omitted.

Selector In the rule SChoose, the current branch in the selector expression is
chosen since the two control data values vβ and vβ1

1 match. The statements in
the body of this branch will retain in the result. The annotations β and β1 will
retain in the result of this evaluation step since the data values they labelled do

66 Chapter 4. Where and Expression Provenance

not retain. Similarly, in the rule SDefault, the default branch is chosen to be
evaluated continuously, while the label β on the control data value vβ will not
be carried in the result of this step evaluation. In the rule SChooseI, the current
branch is not chosen since the two control data values do not match. Then the
current branch is omitted for later evaluation. The label on the control data value
vβ1

1 will not be preserved in any form for later evaluation.

σ̂, κ̂, v̂C, e
α−→ e′

σ̂, κ̂, v̂C, e ?{M} α−→ e′ ?{M}
SCon

σ̂, κ̂, v̂C, e1
α−→ e′1

σ̂, κ̂, v̂C,v
β ?{e1⇒ e,M} α−→ vβ ?{e′1⇒ e,M}

SEle

caseMatch(v,v1)

σ̂, κ̂, v̂C,v
β ?{vβ1

1 ⇒ e,M} α−→ e
SChoose

¬caseMatch(v,v1)

σ̂, κ̂, v̂C,v
β ?{vβ1

1 ⇒ e,M} α−→ vβ ?{M}
SChooseI

σ̂, κ̂, v̂C,v
β ?{default⇒ e,M} α−→ e

SDefault

Variables The annotations in the evaluation rules for variables will not change
during the evaluation procedure. So we omit them here and are shown in Ap-
pendix B.

4.2.2.3 Annotation Propagation in Statement Evaluation

After defining the annotation evolution in expression evaluation, we will define
now how the annotations on data values appearing in a statement evolve in its
evaluation rule. Similarly, the evaluation for annotated statements will happen
under annotated environments σ̂, κ̂ and v̂C. All the evaluation rules for state-
ments will follow the annotated judgement for statements. Since there are no
primitive operations happening to data values, there is no direct change on the
annotations from some label l to an empty label ⊥ in one evaluation step. In-
stead, there are conditional statements if, unless and case that will choose one
branch of the statement according to the control expressions.

4.2. Where-Provenance 67

In the following, we will see the evaluation rule for storing an annotated
data value vβ in an assignment to the annotated store σ̂. We will also define
how the annotations in the control expressions will evolve in the evaluation of
the conditional statements. The evaluation of other statements involve either
the propagation to the expression evaluation, or the operation of looking up or
changing environments. Each does not bring changes on annotations in the eval-
uation of the statements. So the form of the evaluation rules for these annotated
statements will remain the same as the original rules, except all the constructs
in the rules are annotated. We will omit to list these rules here but put them in
the appendix.

Assignment The rule AssignStep propagates the evaluation of the annotated
expression e in an assignment statement to the evaluation for the expression e.
When the expression is evaluated to an annotated data value vβ, the rule Assign
will put it into the annotated store σ̂ associating the variable x in the assignment
and the scope this assignment belongs to.

σ̂, κ̂, v̂C, e
α−→ e′

σ̂, κ̂, v̂C,$x= e
α−→s σ̂, κ̂, v̂C,$x= e′

AssignStep

x /∈ dom(σα)

σ̂, κ̂, v̂C,$x= vβ
α−→s σ̂[(α,x) : vβ], κ̂, v̂C,skip

Assign

If To evaluate an if statement, if e is not an annotated truth value, the rule
IfStep will lift the evaluation of the control expression e to the rules of expression
evaluation. If the control expression is an annotated truth value trueβ or falseβ,
the rule IfT or IfF will choose s1 or s2 to be conditionally evaluated, while the
annotation β on the control data value will be discarded in the result of IfT or
IfF evaluation.

68 Chapter 4. Where and Expression Provenance

σ̂, κ̂, v̂C, e
α−→ e′

σ̂, κ̂, v̂C,if e {s1} else {s2}
α−→s σ̂, κ̂, v̂C,if e′ {s1} else {s2}

IfStep

σ̂, κ̂, v̂C,if trueβ {s1} else {s2}
α−→s σ̂, κ̂, v̂C, s1

IfT

σ̂, κ̂, v̂C,if falseβ {s1} else {s2}
α−→s σ̂, κ̂, v̂C, s2

IfF

Case After the control expressions have been evaluated to data values by the
rule CaseStep1 and CaseStep2, the other rules for case will be applied. If the
two control data values v and v1 match, the body of the current branch of case

statement will be chosen to be evaluated later. The annotations on these two
values β and β1 will not retain in this branch for further evaluation. If they do
not match, this branch will not be chosen and be omitted. The remaining case

statement will be evaluated further. The annotation on the control data value of
the omitted branch will not be carried in the remaining statement. In the rule
CaseDefault, the evaluation will choose the default branch for further evaluation.
Similarly, the annotation on the control data value will retain in the result of the
evaluation.

σ̂, κ̂, v̂C, e
α−→ e′

σ̂, κ̂, v̂C,case e {C} α−→s σ̂, κ̂, v̂C,case e′ {C}
CaseStep1

σ̂, κ̂, v̂C, e
α−→ e′

σ̂, κ̂, v̂C,case vβ {e : {s} C} α−→s σ̂, κ̂, v̂C,case vβ {e′ : {s} C}
CaseStep2

caseMatch(v,v1)

σ̂, κ̂, v̂C,case vβ {vβ1
1 : {s} C} α−→s σ̂, κ̂, v̂C, s

CaseMatch

¬caseMatch(v,v1)

σ̂, κ̂, v̂C,case vβ {vβ1
1 : {s} C} α−→s σ̂, κ̂, v̂C,case vβ {C}

CaseNoMatch

σ̂, κ̂, v̂C,case vβ {ε} α−→s σ̂, κ̂, v̂C,skip
CaseDone

σ̂, κ̂, v̂C,case vβ {default : {s} C} α−→s σ̂, κ̂, v̂C, s}
CaseDefault

4.2. Where-Provenance 69

4.2.2.4 Annotation Propagation in the Evaluation of Resources and Man-
ifests

Since the evaluation for resources and manifests does not involve direct annotation
changes, the form of their evaluation rules are the same as their original evaluation
rules, except the constructs in the rules are all annotated. We will omit these
rules here and show them in Appendix B.

4.2.3 Correctness of Where-provenance

We have defined where-provenance for the output data values in catalogs. We
will check in this section whether the semantics of where-provenance we defined
meets the intuitive requirement of where-provenance. We started defining where-
provenance from annotating the data values with unique labels. It is easy to
notice that in every evaluation step by an evaluation rule the annotations are
either copied to the result of the evaluation or omitted with their data values. The
uniqueness of the labels on input data values in the manifest should remain in the
annotations of the output data values in the catalogs. Thus by the annotation of
an output data value, we can find the location of its input data value where it was
copied in the manifest. In the following we will formalise the semantic correctness
of where-provenance first. Then we will prove it holds for our definition of where-
provenance.

4.2.3.1 Extraction Functions

To show where-provenance is correct, the uniqueness of annotations on the output
values in the catalogs is crucial to hold after the evaluation. For this purpose,
we could prove the preservation of the uniqueness of annotations to establish
the semantic correctness of where-provenance. To examine the preservation of
the uniqueness of annotations in the evaluation, we could check if the set of the
annotated data values in the catalog after the evaluation is subsumed in that of
the manifest. (We want to show that the annotations that appear in the catalogs
are from some initial annotations in the manifests.) To facilitate this purpose, we
will define extraction functions that will take all the annotated data values from
all the constructs of µPuppet and the evaluation environments.

In the following, we will first define the extract function labels(e) for the
expressions in µPuppet. Then the extract functions for statements, manifests

70 Chapter 4. Where and Expression Provenance

labels(v⊥) = ∅
labels(vl) = {vl}
labels(ε) = ∅
labels(default) = ∅
labels($x) = ∅
labels($:: x) = ∅
labels($:: a :: x) = ∅
labels(e1 +e2) = labels(e1)∪ labels(e2)
labels(e1−e2) = labels(e1)∪ labels(e2)
labels(e1 > e2) = labels(e1)∪ labels(e2)
labels(e1 = e2) = labels(e1)∪ labels(e2)
labels(e1 ande2) = labels(e1)∪ labels(e2)
labels(e1 ore2) = labels(e1)∪ labels(e2)
labels(!e) = labels(e)
labels(e? {M}) = labels(e)∪ labels(M)
labels(k⇒ e,H) = labels(e)∪ labels(H)
labels(c⇒ e,M) = labels(e)∪ labels(M)

Figure 4.5: Extraction Function labels(e) for Annotated Expressions

and the environment will be defined inductively on their structure.

labels(e) Extraction function labels(e) takes an expression in µPuppet as its
input and returns a set of annotated data values in the form vβ. For any annotated
data value vl, labels(e)(vl) gives back a singleton element set {vl}. While for the
data value annotated with ⊥, labels(v⊥) gives back an empty set. In other words,
we will omit the data values annotated with ⊥. The function on any variable gives
an empty set. After defining the primitive constructs of expressions in labels(e),
the function on other expressions will be defined inductively on the structure of
these expressions. For example, the result of labels(e) for expressions of binary
operations is defined as the union of the results of the functions on both operands.
Similarly, the application of labels(e) on the other expressions gives the union of
the results of this function on each construct in the expression. This complete
definition of function labels(e) is in Figure 4.5.

4.2. Where-Provenance 71

labels($x= e]) = labels(e)
labels(s1 s2) = labels(s1)∪ labels(s2)
labels(unless e {s}) = labels(e)∪ labels(s)
labels(if e {s1} else {s2}) = labels(e)∪ labels(s1)∪ labels(s2)
labels(case e {C}) = labels(e)∪ labels(C)
labels(c : {s} C) = labels(c)∪ labels(s)∪ labels(C)
labels(ε) = ∅
labels(t {e :H}) = labels(e)∪ labels(H)
labels(u {e :H}) = labels(e)∪ labels(H)
labels(class {a :H}) = labels(H)
labels(include a) = ∅

labels(skip) = ∅
labels(scope α s) = labels(s)

Figure 4.6: Extraction Function labels(s) for Annotated Statements

labels(s) Function labels(s) takes a statement s and returns the set of the an-
notated data values vl in the statement as result. It is also defined inductively
on the structure of every statement. Similarly, it is also defined for the run-time
statements. The complete definition of labels(s) for the annotated statements
and run-time statements in µPuppet syntax is in Figure 4.6.

labels(m) Function labels(m) takes an annotated manifest element m and re-
turns a set of the annotated data values in it. It is also defined inductively on the
structure of each element in m. To define labels(m), we will define the extraction
function for an annotated parameter set ρ. Function labels(ρ) takes a set of an-
notated parameter set ρ and returns a set of annotated data values appearing in
ρ. The default values of parameters are given as inputs in the manifest. So they
are annotated with some unique labels l. The definition of labels(ρ) is as below.

labels({x1 = vl11 , . . . ,xn = vlnn ,y1, . . . ,ym}) = {vl11 , . . . ,vlnn }

The complete definition of labels(m) is in Figure 4.7.

labels(σ̂), labels(κ̂) and labels(v̂C) These functions are defined for the environ-
ments in the evaluation. Function labels(σ̂) takes an annotated store σ̂ and gets
a set of annotated data values appearing in σ̂ whose annotations are not ⊥ as

72 Chapter 4. Where and Expression Provenance

labels(m1 m2) = labels(m1)∪ labels(m2)
labels(node Q {s}) = labels(s)
labels(define u (ρ) {s}) = labels(ρ)∪ labels(s)
labels(class a {s}) = labels(s)
labels(class a (ρ) {s}) = labels(ρ)∪ labels(s)
labels(class a inherits b {s}) = labels(s)
labels(class a (ρ) inherits b {s}) = labels(ρ)∪ labels(s)

Figure 4.7: Extraction Function labels(m) for Annotated Manifests

labels(σ̂) = labels({(α1x1,v
β1
1), . . . ,(αnxn,vβn

n)}) = {labels(vβ1
1), . . . , labels(vβn

n)}
labels(σ̂α) = labels({($α′x,vβ) | ($α′x,vβ) ∈ σ̂,α′ = α})

Figure 4.8: Extraction Function labels(σ̂) for Annotated Stores

result. We then extend this function to the functions σ̂[(α,x) : va], clear(σ̂,αdef)
and σα. The complete definition is in Figure 4.8.

Function labels(κ̂) takes an annotated definition environment κ̂ and gives back
the union of the function labels(d̂) on every definition d̂i in κ̂. The definition of
labels(κ̂) is in Figure 4.9.

Function labels(v̂C) takes an annotated catalog. It applies labels(v̂R) to each
v̂R in v̂C and returns the union of the results. Its definition is as below.

labels(v̂R v̂C) = labels(v̂C)∪ labels(v̂R)

labels({a1→ d̂1, . . . ,an→ d̂n}) =
⋃n
i=1 labels(d̂i)

labels(⊥) = ∅
labels(ClassDef(optc,ρ,s)) = labels(ρ)∪ labels(s)
labels(DeclaredClass(optc)) = ∅
labels(ResourceDef(ρ,s)) = labels(ρ)∪ labels(s)

Figure 4.9: Extraction Function labels(κ̂) for Annotated Definition Environments

4.2. Where-Provenance 73

4.2.3.2 Invariants of the Evaluation

We have defined the annotated syntax of µPuppet and how the annotations are
propagated along the evaluation rules so that where-provenance of the data values
in the catalog is defined. Given an annotated manifest, its evaluation will generate
an annotated catalog. These annotations are where-provenance of the data values
they annotate. The purpose of where-provenance we desire is to trace back the
input data value in the manifest from which the data value in the catalog has
been copied in the process of evaluation. We want to check if the semantics of
where-provenance we defined indeed satisfies this purpose.

As we mentioned, where-provenance means to identify the input data value
in the manifest that an output data value in the catalog has been copied from.
Since the initial data values in the manifest are uniquely labelled by some l, to
identify the input data value for an output data value, we only need to locate
the input data value that has the same annotation as this output data value. To
formalise this correctness semantics, we use the extraction functions to get all
the annotated data values from the manifest and the catalog after evaluation. If
the set of the output data values is a subset of that of the input data values, we
know that all the annotated output data values must come from some input data
value and we can identify them back in the manifest by their annotations.

We will formalise this correctness in the context of the semantics of µPuppet.
We have defined three judgements for the evaluation of µPuppet. To formalise
the correctness we will first define an invariant that specifies this correctness
meaning for evaluating the elements in the expression, statement or manifest
category. With these invariants, we can define the correctness when a manifest is
evaluated. In this section, we will define three invariants in expression, statement
and manifest evaluation and prove that they hold for every evaluation rule in the
evaluation category respectively.

Invariant of Expression Valuation We want to describe the meaning of correct-
ness when evaluating expressions by an invariant that states that when evaluating
an expression e, the set of all annotated data values in the input subsumes that
of the output. Recall that the annotated evaluation judgement for expressions
we defined is as below.

σ̂, κ̂, v̂C, e
α−→ e′

74 Chapter 4. Where and Expression Provenance

The input elements that take part in the evaluation are the expression e and
the environments σ̂, κ̂ and v̂C. The output of the evaluation is a new expression
e′. The evaluation of expressions does not generate new environments but might
read from some environment. That is, when generating a new expression e′, the
evaluation might need to look up some environment and read some data value in
the environment. Thus the environment could supply some data values to e′, the
output of the evaluation. We formalise the invariant of expression evaluation as
below.

Theorem 4.2.1 (Invariant of Expression Evaluation). When evaluating an ex-
pression e in µPuppet such that σ̂, κ̂, v̂C, e

α−→ e′, the subsumption on the sets of
annotated data values

labels(σ̂)∪ labels(κ̂)∪ labels(v̂C)∪ labels(e)⊇ labels(e′)

holds.

We will prove this invariant holds for all the rules of expression evaluation.
We choose the proofs below for some rules where the annotations in the input
would be changed by the evaluation rules. The proofs for the rest of the rules are
shown in the appendix.

Proof. Prove by induction.

1 Arithmetic expressions

σ̂, κ̂, v̂C, i
β1
1 + iβ2

2
α−→ (i1 +Z i2)⊥

ArithValue

By definition, we have labels(iβ1
1 + iβ2

2) = labels(iβ1
1)∪ labels(iβ2

2). If both
β1 and β1 are some concrete labels l1 and l2, then labels(iβ1

1)∪ labels(iβ2
2) =

{iβ1
1 , iβ2

2 } = {il11 , i
l2
2 }. If β1 or β1 is ⊥, then labels(iβ1

1)∪ labels(iβ2
2) is equal

to {iβ2
2 } or {iβ1

1 }. We know labels((i1 +Z i2)⊥) = ∅. Since ∅ ⊆ labels(iβ1
1)∪

labels(iβ2
2)∪labels(σ̂), we have labels(i1 +Z i

⊥
2)⊆ labels(iβ1

1 +iβ2
2)∪labels(σ̂)∪

labels(κ̂)∪ labels(v̂C). The invariant holds for this evaluation step.

σ̂, κ̂, v̂C, e
α−→ e′

σ̂, κ̂, v̂C, i
β + e

α−→ iβ + e′
ArithRight

By definition, we have labels(iβ + e) = labels(iβ)∪ labels(e) and similarly
labels(iβ + e′) = labels(iβ)∪ labels(e′). By induction hypothesis, we know

4.2. Where-Provenance 75

the invariant holds for σ̂, κ̂, v̂C, e
α−→ e′ then labels(e′)⊆ labels(σ̂)∪labels(κ̂)∪

labels(v̂C)∪labels(e), i.e. labels(e′)⊆ labels(e)∪labels(σ̂). Then labels(iβ)∪
labels(e′)⊆ labels(iβ)∪ labels(e)∪ labels(σ̂)∪ labels(κ̂)∪ labels(v̂C), i.e.
labels(iβ + e′) ⊆ labels(iβ + e)∪ labels(σ̂)∪ labels(κ̂)∪ labels(v̂C). The in-
variant holds for this evaluation step.

σ̂, κ̂, v̂C, e1
α−→ e′1

σ̂, κ̂, v̂C, e1 + e2
α−→ e′1 + e2

ArithLeft

By definition, we have labels(e1 +e2) = labels(e1)∪labels(e2) and labels(e1 +
e′2) = labels(e1)∪ labels(e′2). By induction hypothesis, we know the in-
variant holds for σ̂, κ̂, v̂C, e1

α−→ e′1 then labels(e′) ⊆ labels(σ̂)∪ labels(κ̂)∪
labels(v̂C)∪ labels(e), i.e. labels(e′1) ⊆ labels(e1)∪ labels(σ̂)∪ labels(κ̂)∪
labels(v̂C). Then labels(e1)∪labels(e2)⊆ labels(e′1)∪labels(e2)∪labels(σ̂)∪
labels(κ̂)∪labels(v̂C), i.e. labels(e1 +e2)⊆ labels(e′1 +e2)∪labels(σ̂)∪labels(κ̂)∪
labels(v̂C) . The invariant holds for this evaluation step.

2 Variables
x ∈ dom(σα)

σ̂, κ̂, v̂C,$x
α−→ σα(x)

LVar

Since x ∈ dom(σ̂α) for some α, labels(σ̂α(x))⊆ labels(σ̂) by definition. We
also have labels($x) = ∅ and labels(σ̂α(x)) = labels(σ̂α(x)). Since labels(σ̂α(x))⊆
labels(σ̂), we have labels(σ̂α(x))⊆ labels($x)∪labels(σ̂)∪labels(κ̂)∪labels(v̂C).
Then the invariant holds for this evaluation step.

Invariant of Statement Evaluation Having defined and proved the invariant in
expression evaluation, we could state the similar correctness meaning as invariant
for the statement evaluation, one level up than the expression. To remind, the
annotated judgement of evaluating statements is as below.

σ̂, κ̂, v̂C, s
α−→s σ̂′, κ̂′, v̂′C, s

′

76 Chapter 4. Where and Expression Provenance

As for the inputs of evaluating a statement, a statement s and the environ-
ments σ̂, κ̂ and v̂C could take part in the evaluation. The output of the evaluation
would be a new statement s′ and updated environments σ̂′, κ̂′ and v̂′C. The input
data values can be in s, σ̂, κ̂ or v̂C. They can flow from any one of them into
another component among them to form the output data values. After multi-
ple steps, annotated data values could go into any of these constructs to make
these constructs updated. Therefore, the invariant in statement evaluation will
be stated as the following.

Theorem 4.2.2 (Invariant of Statement Evaluation). When evaluating a state-
ment s in µPuppet such that σ̂, κ̂, v̂C, s

α−→s σ̂′, κ̂′, v̂′C, s
′, the subsumption on the

sets of annotated data values

labels(σ̂)∪ labels(κ̂)∪ labels(v̂C)∪ labels(s)⊇

labels(σ̂′)∪ labels(κ̂′)∪ labels(v̂′C)∪ labels(s′)

holds.

We will prove this invariant for all the evaluation rules for annotated state-
ments. We will choose the proofs of some rules that will change the annotations
in the input. The proofs for the rest of the rules are in the appendix.

Proof. Prove by induction.

1 Evaluation of If statement

σ̂, κ̂, v̂C,if trueβ {s1} else {s2}
α−→s σ̂, κ̂, v̂C, s1

IfT

By definition, labels(if trueβ {s1} else {s2}) = labels(trueβ)∪labels(s1)∪
labels(s2). We have {trueβ}∪ labels(s1)∪ labels(s2)⊇ labels(s1), i.e.
labels(if trueβ {s1} else {s2}) ⊇ labels(s1). Since σ̂, κ̂ and v̂C do not
change after this evaluation step, we have labels(σ̂)∪ labels(κ̂)∪ labels(v̂C)∪
labels(if trueβ {s1} else {s2})⊇ labels(σ̂)∪labels(κ̂)∪labels(v̂C)∪labels(s1).
This induction rule holds w.r.t. the invariant.

σ̂, κ̂, v̂C,if falseβ {s1} else {s2}
α−→s σ̂, κ̂, v̂C, s2

IfF

The proof is similar to the rule IfT

4.2. Where-Provenance 77

2 Evaluation of Case statement
caseMatch(v,v1)

σ̂, κ̂, v̂C,case vβ {vβ1
1 : {s} C} α−→s σ̂, κ̂, v̂C, s

CaseMatch

By definition, we have labels(case vβ {vβ1
1 : {s} C}) = labels(vβ)∪labels(vβ1

1)∪
labels(s)∪ labels(C). Since labels(vβ)∪ labels(vβ1

1)∪ labels(s)∪ labels(C)⊇
labels(s), we have labels(v̂C) ∪ labels(case vβ {vβ1

1 : {s} C) ⊇ labels(s).
Then labels(σ̂)∪labels(κ̂)∪labels(v̂C)∪labels(case vβ {vβ1

1 : {s} C)⊆ labels(σ̂)∪
labels(κ̂)∪ labels(v̂C)∪ labels(s). This induction rule holds w.r.t. the in-
variant.

¬caseMatch(v,v1)

σ̂, κ̂, v̂C,case vl {vl11 : {s} C} α−→s σ̂, κ̂, v̂C,case vl {C}
CaseNoMatch

The proof is similar as the rule above.

3 Evaluation of Resource-like class declarations
κ̂(a) = ClassDef(b,ρ,s) κ̂(b) = DeclaredClass(β) s′ = merge(ρ,vH)

σ̂, κ̂, v̂C,class {a : vH}
α−→s σ̂, κ̂[a : DeclaredClass(::b)], v̂C,scope (::a) {s′ s}

CDecPD

We have labels(class {a : vH}) = labels(vH) by definition. Since s′ =
merge(ρ,vH), we have labels(s′)⊆ labels(ρ)∪ labels(vH). We have
labels(scope (::a) {s′ s}) = labels(s′)∪ labels(s) by definition. We also
know labels(κ̂(a)) = labels(ClassDef(b,ρ,s)) = labels(s)∪ labels(ρ). Since
labels(DeclaredClass(b)) = ∅ we have labels(κ̂[a : DeclaredClass(::b)])⊆ labels(κ̂).
Thus we have labels(vH) ∪ labels(κ̂) ⊆ labels(s′) ∪ labels(s) ∪ labels(κ̂[a :
DeclaredClass(::b)]). Then labels(σ̂)∪labels(κ̂)∪labels(v̂C)∪labels(class {a :
vH}) ⊇ labels(σ̂)∪ labels(κ̂[a : DeclaredClass(::b)])∪ labels(v̂C)∪ labels(s′)∪
labels(s). This rule holds w.r.t. the invariant.

The proofs for other evaluation rules of statements are in Appendix B.

Invariant of Manifest Evaluation We will build up the invariant of manifest
evaluation given the invariants for the expression and statement level evaluation.

78 Chapter 4. Where and Expression Provenance

The judgement of the annotated manifest evaluation is as below.

σ̂, κ̂, v̂C,m
N−→m σ̂′, κ̂′, v̂′C,m

′

The inputs of every rule evaluating a manifest element are an annotated manifest
element m and the environments σ̂, κ̂ and v̂C. The output of the evaluation are
a new manifest element m′ and updated environments σ̂′, κ̂′ and v̂′C. Thus the
invariant for the sets of annotated data values before and after an evaluation step
is stated as the following.

Theorem 4.2.3 (Invariant of Manifest Evaluation). When evaluating a manifest
element m in µPuppet such that σ̂, κ̂, v̂C,m

N−→m σ̂′, κ̂′, v̂′C,m
′, the subsumption

on the sets of annotated data values

labels(m)∪ labels(σ̂)∪ labels(κ̂)∪ labels(v̂C)⊇

labels(m′)∪ labels(σ̂′)∪ labels(κ̂′)∪ labels(v̂′C)

holds.

We will prove this invariant for all the rules of evaluating manifests. We will
make an example for a rule where the definition will be changed in the evaluation.
The proofs for the other rules are in the appendix.

Proof. Prove by induction.

Evaluation of Defined resource types

u /∈ dom(κ̂)

σ̂, κ̂, v̂C,define u (ρ) {s} N−→m σ̂, κ̂[u : ResourceDef(ρ,s)], v̂C,skip
RDef

By definition, we know labels(define u (ρ) {s}) = labels(ρ)∪ labels(s), and
labels(skip) = labels(skip) = ∅. Then
labels(κ̂[u : ResourceDef(ρ,s)]) = labels(κ̂)∪labels(ResourceDef(ρ,s)) = labels(κ̂)∪
labels(s)∪labels(ρ). Thus we have labels(σ̂)∪labels(κ̂)∪labels(v̂C)∪labels(s)∪
labels(ρ) ⊇ labels(σ̂)∪ labels(κ̂[u : ResourceDef(ρ,s)])∪ labels(v̂C). That is
labels(σ̂)∪ labels(κ̂)∪ labels(v̂C)∪ labels(define u (ρ) {s}) ⊇ labels(σ̂)∪
labels(κ̂[u : ResourceDef(ρ,s)])∪ labels(v̂C). This rule holds w.r.t. the in-
variant.

4.2. Where-Provenance 79

4.2.3.3 Correctness of Where-Provenance

With these invariants in expression, statement and manifest evaluation, we can
now state the relation between the data values in the input and the output when
a manifest in µPuppet is evaluated. The correctness property states that given
a µPuppet manifest m, the annotated data values in the final catalog resulting
from evaluating m exist in the input, i.e. m. In the context of the semantics of
µPuppet, the evaluation starts from m and the empty evaluation environments.
The output of the evaluation will be the skip statement and the environments σ̂,
κ̂ and v̂C. Since Where-provenance means to define the origin of the data values in
the catalog, we specify the correctness of where-provenance as all the annotated
data values in the catalog v̂C come from the input m. Where-provenance can
be described in different ways. The correctness we characterise could imply the
case that there is no labels on input data values as where-provenance. However,
the labels in where-provenance we defined help to identify the original input data
values of outputs by the annotations. If where-provenance is described in other
ways, these descriptions could possess other properties that are not captured in
our correctness.

The correctness we address is partial, since we exclude the manifests that do
not terminate in this property.

Theorem 4.2.4 (Correctness of Where-Provenance). When evaluating an an-
notated µPuppet manifest m such that m→∗ σ̂, κ̂, v̂C,skip, the subsumption on
the sets of the annotated data values labels(v̂C)⊆ labels(m) holds.

Proof. Since m→∗ σ̂, κ̂, v̂C,skip, we know, for some n, there is an evaluation
chain m→ σ̂1, κ̂1, v̂C1,m1 . . .→ σ̂n, κ̂n, v̂Cn,mn→ σ̂, κ̂, v̂C,skip. Every evaluation
step applies an evaluation rule. By Theorems 4.2.1, 4.2.2 and 4.2.3, we have
labels(m)⊇ labels(m1)∪ labels(σ̂1)∪ labels(κ̂1)∪ labels(v̂C1)⊇ . . .⊇ labels(mi)∪
labels(σ̂i)∪ labels(κ̂i)∪ labels(v̂Ci) ⊇ . . . ⊇ labels(mn)∪ labels(σ̂n)∪ labels(κ̂n)∪
labels(v̂Cn)⊇ labels(skip)∪labels(σ̂)∪labels(κ̂)∪labels(v̂C). That is labels(m)⊇
labels(skip)∪labels(σ̂)∪labels(κ̂)∪labels(v̂C), i.e. labels(m)⊇ labels(σ̂)∪labels(κ̂)∪
labels(v̂C). Then labels(m)⊇ labels(v̂C).

80 Chapter 4. Where and Expression Provenance

4.3 Expression-Provenance

Using where-provenance, the origin of the data values in the catalog can be iden-
tified. However the input data values that would take part in the primitive
operations were not tracked so as to relate to the output data values due to
these operations in where-provenance. The data values in the manifest that have
empty annotations ⊥ may be the results of the primitive operations in the evalu-
ation. Where-provenance tells us nothing about how these results were produced,
i.e. from which inputs in the manifest and by what computation procedure they
have been generated. There have been such provenance models in the database
field that explain how every tuple in the result of a query has been generated,
called how-provenance as we introduced in the background chapter. The notion
of how-provenance has been first introduced by Green et al. (2007b). In this
model, a K-relation means a relational algebra with an annotation from the set
K on every tuple in the relations. Green et al. found the relation between the
generalised relational algebra and the algebraic structure (K,0,1,+, ·). In this al-
gebraic structure, every operator in the generalised relational algebra is mapped
into computations in the algebraic structure. When the query is applied in the
relational algebra, the computation on the annotations is represented as poly-
nomials in the algebraic structure. The intuitive meaning of the polynomials is
the explanation of how a tuple in the query result is generated, i.e. from which
source tuples and by what operations. This algebraic structure is a semiring.

Acar et al. proposed a general provenance model for where-, how- and why-
provenance built on a call-by-value, higher order, pure, functional language called
Transparent ML(TML) (Acar et al., 2013). This language includes sums, prod-
ucts, and recursive types and functions. This language has been extended with
traces. The tracing semantics was built in the big step semantics of TML such
that the traces are closely corresponding to the semantics of the language. The
traces can be seen as a general form of provenance. Then the other forms of
provenance such as where-, how- and why- provenance can be extracted from the
traces by functions. These functions defined the propagation of annotations in
traces.

Inspired by these works, we will define expression-provenance in the context
of configuration languages, in particular µPuppet. Expression-provenance means
to provide the information of how a data value in the catalog has been generated

4.3. Expression-Provenance 81

by operations. Since we care about the operation history of data values in the
catalogs, we choose to start to label the data values in µPuppet in a similar way
to it in how-provenance for databases. As the context of provenance in Acar et
al.’s work, the context of our expression provenance is a configuration language
µPuppet. We will build up our provenance in the semantics of µPuppet similarly
to how traces have been defined. While TML is a pure functional programming
language, µPuppet is mainly a declarative programming language with some
imperative programming properties. So in TML, all the constructs are expres-
sions, while in µPuppet, there are conditional constructs and the constructs for
inheritance structure besides expressions. Traces record the computation infor-
mation of all the expressions in TML. In contrast, for the expression-provenance
in µPuppet, we only want to capture the primitive operations in the expressions.
For this purpose, we will define the syntax of expression-provenance that will
correspond to the expressions in µPuppet so as to reflect the respective com-
putation. Then we will build up the semantics of expression-provenance in the
semantics of µPuppet as how traces have been defined. After the definition of
expression-provenance, we will establish the correctness of expression-provenance
that will describe the purpose of expression-provenance in our context and then
we will prove this correctness holds in our definition.

4.3.1 Annotated Compact Grammar

To define the annotated compact grammar of µPuppet for expression-provenance,
we will start to look at what the forms of annotations for expressions-provenance
should be in order to record the operations on the data values. The purpose of
expression-provenance is to record the operations that would apply to the input
data values in the process of generating output data values. The annotations
should be able to record these operations. We will extend the form of annotations
to the forms that will reflect the operations that would happen on the data values.
Then we will define the annotated constructs in µPuppet inductively on their
structures.

4.3.1.1 Syntax of Annotations

We will define the syntax of annotations in expression-provenance first. Since
we want to record the operations on the data values, we will annotate the data

82 Chapter 4. Where and Expression Provenance

values with unique labels l as in where-provenance and then extend the form of
annotations respecting to the operations in the expressions in µPuppet. Beside
the primitive operations, there are selector expressions. A selector expression is
executed as a conditional statement such that it chooses one of the branches in
the selector body to be executed in the evaluation. Since there is no computation
applied to the data values, we will not define a form of annotation that records
the evaluation of selector expressions. The syntax of annotations for expression-
provenance is as below.

β ::= l | β+β | β−β | β > β | β = β | β ≤ β | β∨β | ! β | . . .

4.3.1.2 Annotated syntax of µPuppet

With the extended annotations β, we will label the constructs in µPuppet.
We will continue to use the form of annotated syntax of µPuppet in where-
provenance. The data values v will be annotated first, noted as v̂. The other
expressions including the annotated data values will be annotated inductively
on their structures. The notations of these expressions are the same as those in
where-provenance. Then the statements and the manifests will be defined ac-
cordingly and their notations are the same as in where-provenance too. All the
environments σ, κ and vC in the evaluation rules will be defined similarly and
their notations are the same as in where-provenance. We omit their syntax here.

4.3.2 Propagation of Annotations in the Evaluation

With the annotated compact grammar of µPuppet for expression-provenance, we
will define the semantics of the annotations. Similarly to the semantics of the
traces in Acar et al.’s work, we will define the semantics of annotations by how
they are propagated in the evaluation. So we will define in every evaluation rule
how the annotations in the context of evaluation will be propagated.

4.3.2.1 Propagation of Annotations in Expression Evaluation

The annotations are designed to record the operations on the data values. These
operations happen in the expressions. We will use an example to show how the
annotations on the data value record an operation. Take a binary operation +
in an expression i1 + i2 as an example. In the annotated syntax, i1 and i2 will be

4.3. Expression-Provenance 83

labelled with β1 and β2. When evaluating the expression iβ1
1 + iβ2

2 , we will assign
the annotation β1 +β2 to the result of the expression i1 +Z i2. So the annotated
output data value will be (i1 +Z i2)β1+β2 . The annotated evaluation rule is as
below.

σ̂, κ̂, v̂C, i
β1
1 + iβ2

2
α−→ (i1 +Z i2)β1+β2

ArithValue

As for the other generation forms of + expressions, their annotated evalua-
tion rules are as below. To evaluate the expression in the form iβ + e, the rule
ArithRight will evaluate the expression e to e′. The annotated data value iβ will
remain in the result of the evaluation.

σ̂, κ̂, v̂C, e1
α−→ e′1

σ̂, κ̂, v̂C, e1 + e2
α−→ e′1 + e2

ArithLeft
σ̂, κ̂, v̂C, e

α−→ e′

σ̂, κ̂, v̂C, i
β + e

α−→ iβ + e′
ArithRight

The propagation of annotations in the rules evaluating −,∗ and / expressions
is similar to those for + expressions. We omit to show these propagation rules
here.

As another example in comparison expressions, we take > expressions. When
evaluating an annotated > expression iβ1

1 > iβ2
2 , we will assign the annotation

β1 > β2 to the result data value true or false. Notice that if i1 > i2 is false,
the annotation on the result false will be the same as if the result is true since
the annotation means to record the operation on the input values that derives a
result data value, not the computational relation on the input data values.

i1 >Z i2

σ̂, κ̂, v̂C, i
β1
1 > iβ2

2
α−→ trueβ1>β2

CompValueI

i1 ≤Z i2

σ̂, κ̂, v̂C, i
β1
1 > iβ2

2
α−→ falseβ1>β2

CompValueII

The evaluation rules for the other forms of > expressions will propagate the
annotations on the data values as the following. The evaluation on the expression
iβ > e will evaluate e to e′ in the rule CompRight. The annotated data value iβ

will be retained after the rule is applied.

84 Chapter 4. Where and Expression Provenance

σ̂, κ̂, v̂C, e1
α−→ e′1

σ̂, κ̂, v̂C, e1 > e2
α−→ e′1 > e2

CompLeft
σ̂, κ̂, v̂C, e

α−→ e′

σ̂, κ̂, v̂C, i
β > e

α−→ iβ > e′
CompRight

The evaluation rules for other comparison operators will propagate the anno-
tations in a similar way. We will omit them here.

As for the selector expressions, there will be no immediate computation on
the data values to get an output data value. Instead, there is a control flow that
will choose or omit the current branch depending on the control expressions. So
there is no annotation brought up when evaluating a selector expression. Since
the control data values take part in deciding the part of the manifests to evaluate
further, but do not resolve to some output data values in the catalogs, expression-
provenance does not track these control data values. So the annotations on the
control data values will not be carried in the further evaluation. The annotated
evaluation rules of choosing or omitting a branch in a selector expression are as
below. The other rules are in the appendix.

caseMatch(v,v1)

σ̂, κ̂, v̂C,v
β ?{vβ1

1 ⇒ e,M} α−→ e
SChoose

¬caseMatch(v,v1)

σ̂, κ̂, v̂C,v
β ?{vβ1

1 ⇒ e,M} α−→ vβ ?{M}
SChooseI

4.3.2.2 Propagation of Annotations in Resource Evaluation

Evaluating a resource involves the evaluation of expressions appearing as resource
title and the assignments of the attributes. The evaluation of expressions will
be lifted up to the expression level of evaluation. There is no direct operation
brought by the resource construct to the data values. So there is no annotation
generation caused by the resource construct directly. Moreover there is also no
control flow in the evaluation of a resource. A resource will evolve to a resource
value in the catalog. The form of annotated evaluation rules is the same as the
where-provenance. We omit them here.

4.3. Expression-Provenance 85

4.3.2.3 Propagation of Annotations in Statement Evaluation

When evaluating a statement s, there is no direct operation that applies on the
data values. Instead, the rule will lift the evaluation of an expression appearing
in s to the evaluation of the expression level. In some statements, there is a
control flow involved that will choose one branch in the body of the statements.
Such statements are if and case statements. So the evaluation rules for state-
ments will not generate the annotations for expression-provenance that means to
records operations on the data values. In the rules for the statements involving
control flows, the annotations on the control expressions and in the branches that
would not be chosen will be not remained in the further evaluation as in where-
provenance. So the forms of the evaluation rules for statement will be the same
as them in where-provenance. We will omit them here. We will see the example
of annotation propagation in if and case evaluation rules.

If statement After the control expression e is evaluated to trueβ or falseβ,
either the rule IFT or IFF will be applied. Either the branch s1 or s2 will be chosen
to remain in the evaluation, while the control truth value with its annotation will
not be discarded in the evaluation.

σ̂, κ̂, v̂C, e
α−→ e′

σ̂, κ̂, v̂C,if e {s1} else {s2}
α−→s σ̂, κ̂, v̂C,if e′ {s1} else {s2}

IfStep

σ̂, κ̂, v̂C,if trueβ {s1} else {s2}
α−→s σ̂, κ̂, v̂C, s1

IfT

σ̂, κ̂, v̂C,if falseβ {s1} else {s2}
α−→s σ̂, κ̂, v̂C, s2

IfF

Case Similarly to if statements, the evaluation of case statements involves con-
trol flows. After the two control expressions have been evaluated to the data
values, the current branch in the case body will be retained or omitted, depend-
ing on whether the two control data values match or not. The annotation on the
control data value in the current branch will be always omitted with the data
value. After one branch has been chosen, the control data value vβ of the case
statement will be omitted too.

86 Chapter 4. Where and Expression Provenance

σ̂, κ̂, v̂C, e
α−→ e′

σ̂, κ̂, v̂C,case e {C} α−→s σ̂, κ̂, v̂C,case e′ {C}
CaseStep1

σ̂, κ̂, v̂C, e
α−→ e′

σ̂, κ̂, v̂C,case vβ {e : {s} C} α−→s σ̂, κ̂, v̂C,case vβ {e′ : {s} C}
CaseStep2

caseMatch(v,v1)

σ̂, κ̂, v̂C,case vβ {vβ1
1 : {s} C} α−→s σ̂, κ̂, v̂C, s

CaseMatch

¬caseMatch(v,v1)

σ̂, κ̂, v̂C,case vβ {vβ1
1 : {s} C} α−→s σ̂, κ̂, v̂C,case vβ {C}

CaseNoMatch

σ̂, κ̂, v̂C,case vβ {ε} α−→s σ̂, κ̂, v̂C,skip
CaseDone

σ̂, κ̂, v̂C,case vβ {default : {s} C} α−→s σ̂, κ̂, v̂C, s}
CaseDefault

Similarly, the annotation propagation in the rules for other constructs at the
statement level such as sequential composition, expressions, unless, include,
resource-like class declaration, resource, defined resource types and scope state-
ments are the same in where-provenance. So the annotated evaluation rules have
the same form as in where-provenance.

4.3.2.4 Propagation of Annotations in Manifest Evaluation

Evaluating a construct at the manifest level, such as statements, class, node,
defined resource types and sequential elements, will not bring new operations on
the data values, except the expressions inside the construct. There are also no
control flows in the evaluation. So the evaluation of expressions in the manifest
construct will be lifted up to that at expression level. So there are no immediate
changes on annotations on the data values in the evaluation rules for manifest
constructs. The annotated evaluation rules will be the same as in the where-
provenance. We omit these rules here.

4.3. Expression-Provenance 87

4.3.3 Correctness of Expression-Provenance

We will adapt the definition of the correctness of expression provenance in Acar
et al’s work. In this work, a function h was defined to map the locations to
values. The locations annotate the values in every expression construct in TML.
For any annotation term t, h(t) means to evaluate t to a value by substituting
the locations appearing in t with the corresponding values by h. There is a
function occ() similar as labels(), taking an annotated expression and returning
the set of annotated constants appearing in the expression. It is called that h
is consistent with v̂ if whenever wt ∈ occ⊥(v̂), h(t) = |w| (not ⊥ here) holds.
The correctness of expression-provenance stated that if h is consistent with the
annotated environment γ̂ then h is consistent with the expression-provenance
on a trace T and γ̂. With the help of function h, the correctness shows the
expression-provenance indeed represents the operation history of an output data
value.

In the light of the method of defining the correctness in this work, we will
define our correctness for our syntax and semantics of expression-provenance for
µPuppet, the expression-provenance for µPuppet is defined to record the opera-
tions that have happened so to derive an output data. So we want to show that
expression-provenance indeed reflects the history of operations on data values.
This correctness is comparable to that in TML setting in Acar et al.’s work. By
using function h that determines a data value by a location in the original input
data value, the correctness of expression-provenance can be formalized. We will
adapt this definition in our setting of expression-provenance as a relation that
could define an annotation and a data value uniquely. Then we will use this
relation to define the correctness for our expression-provenance.

4.3.3.1 Consistency Relation

We define a labelling function µ that relates a label l from a set of labels to a
data value in the manifest as below. By labelling the data values in a manifest
by a function µ, every data value is differentiated by an unique label l.

µ : labels→ values

Then we will build up the unique relation between the data values and their
annotations by function µ. By the definition of expression provenance in the

88 Chapter 4. Where and Expression Provenance

µ(l) = v

µ |= l v v
Label

µ |=⊥v v
Bottom

µ |= β1 v v1 µ |= β1 v v1

µ |= β1 +β2 v v1 +Z v2
Add

µ |= β1 v v1 µ |= β2 v v2

µ |= β1 > β2 v v1 >Z v2
CompLar

µ |= β1 v b1 µ |= β2 v b2

µ |= β1∧β2 v b1∧B b2
And

µ |= β v true

µ |= ! β v false
Not1

µ |= β v false

µ |= ! β v true
Not2

Figure 4.10: Consistency Relation

last section, the annotation on a data value records the operations that have
happened. We know that the annotation on a data value should also uniquely
correspond to the input data values and the operation applies to them. We then
can relate the data value and its annotation under the assumption of a function µ.
We define the form of this relation as µ |= β v v, called consistency relation. We
can also say an annotation β is consistent with a data value v. We will define this
relation by induction rules that correspond to all the operations on data values
in µPuppet. The definition of consistency relation is as figure 4.10.

These induction rules have premises above the line and a conclusion under
the line, which indicates that given the premises hold, the conclusion is derived.
Rule Label says the consistency relation between a label l and a value v under
function µ is defined given µ(l) = v. Rule Bottom means a bottom label and any
data value hold for consistency relation. Rule Addition shows if β1 is consistent
with v1 and β2 is consistent with v2 then the annotation β1 + β2 is consistent
with the result data value of addition operation on v1 and v2. Rule CompLar
defines the consistency relation derived from > operation. In CompLar, if β1 is
consistent with v1, β2 is consistent with v2, then the consistency relation between
the annotation β1 > β2 and the result data value v1 >Z v2 (or the truth value)
is defined. Similarly, rule Not1 and Not2 define the consistency relation for the
annotations of the form !β. Rule Not1 tells that if an annotation β is consistent
with true then the annotation !β is consistent with the result of !true, i.e. a
new data value false. Then rule Not2 defines the consistency relation between
!β and the result of !false, i.e. a new data value true. The induction rules to

4.3. Expression-Provenance 89

µ � e ⇔∀vβ ∈ labels(e), µ |= β v v

µ � s ⇔∀vβ ∈ labels(s), µ |= β v v

µ � m ⇔∀vβ ∈ labels(m), µ |= β v v

µ � σ̂ ⇔∀vβ ∈ labels(σ̂), µ |= β v v

µ � κ̂ ⇔∀vβ ∈ labels(κ̂), µ |= β v v

µ � v̂C ⇔∀vβ ∈ labels(v̂C), µ |= β v v

Figure 4.11: Extended Consistency Relation

define the consistency relation on the form of annotations with other operations
such as -, ∗, /, = or, ∨, with their corresponding result data values are defined
similarly. We omit them here.

Extension of Consistency Relation We have defined the relation between the
generated data values by operations and their annotations. Since the expressions
of the operations on data values are carried in the constructs in µPuppet, we
will extend the consistency relation µ |= β v v to all the other constructs in
µPuppet. We will use the extraction functions defined in where-provenance to
extract all the data values appearing in a construct. Then we will establish
the consistency relation for these data values and their annotations so that the
consistency relation for this construct is established. The extended consistency
relation for expressions, statements, manifest elements and environments is in
figure 4.11.

4.3.3.2 Invariants in Evaluation with Annotation Propagation and Correct-
ness

The correctness of expression-provenance should state that the expression-provenance
records all the operations through which the data values have been in the catalog.
Since the consistency relation defines a data value and its annotation according
to the operation applied to the input data values, we will use it to formalise the
correctness. To show the correctness of expression-provenance is to prove if an
annotation or label l is consistent with a data value in a manifest, after evaluating
the manifest, the data values and their annotations in the catalog also hold for the

90 Chapter 4. Where and Expression Provenance

consistency relation. If this statement holds, it would justify that the semantics
of expression-provenance we have defined indeed reflects the operations on the
data values over the evaluation. For this purpose, as in where-provenance, we will
present this property as invariants in three levels of evaluation for µPuppet. Then
we will establish the correctness of expression-provenance by these invariants.

Invariant in Expression Evaluation The evaluation of expression follows the
judgement as below.

σ̂, κ̂, v̂C, e
α−→ e′

The operations on data values expression-provenance should record happen in
this level of evaluation.

Expression-provenance means to record the operations that have happened to
the data values. The operations on data values are carried in expressions. So
the evaluation of expressions with operations and the annotation evolution to
record these operations happen in the level of expression evaluation. We would
like to show that if the input data values of an operation in an expression and
their annotations follow the consistency relation, the result data value and its
annotation after evaluating an expression also follow this relation. This would
prove the correctness property of expression-provenance. We would instead prove
this property holds in every evaluation rule for expressions. For a variable in the
manifest, its assignment is from the annotated store σ̂. Since the input data values
of expressions could come from the environment store and catalog, we need to
show the data values and their annotations in the environments also follow the
consistency relation. The invariant in every rule for expression evaluation is
formalised as below.

Theorem 4.3.1 (Invariant in Expression Evaluation). For any σ̂, κ̂, v̂C, e
α−→ e′, if

µ |= σ̂, µ |= κ̂, µ |= v̂C and µ |= e, then µ |= e′.

This invariant has been proved for all the semantic rules for expressions.

Proof. The invariant is proved by induction.

1 Arithmetic expressions

Case (1) σ̂, κ̂, v̂C, i
β1
1 + iβ2

2
α−→ (i1 +Z i2)β1+β2

ArithValue

4.3. Expression-Provenance 91

We have labels(iβ1
1 + iβ2

2) = {iβ1
1 , iβ2

2 } and labels((i1 +Z i2)β1+β2) = {(i1 +Z

i2)β1+β2} by definition. Suppose µ |= σ̂, µ |= κ̂, µ |= v̂C and µ |= iβ1
1 + iβ2

2 .
That is ∀iβ ∈ labels(iβ1

1 + iβ2
2) µ |= β v i. Then ∀iβ ∈ {iβ1

1 , iβ2
2 }, µ |= β v i,

i.e. µ |= β1 v i1 and µ |= β2 v i2. By the inference rule, we have

µ |= β1 v i1 µ |= β2 v i2
µ |= β1 +β2 v i1 +Z i2

. Then ∀iβ ∈ {(i1 +Z i2)β1+β2}, µ |= (i1 +Z i2)β1+β2 , i.e. µ |= (i1 +Z i2)β1+β2 .
Then we have if µ |= σ̂, µ |= κ̂, µ |= v̂C and µ |= iβ1

1 + iβ2
2 , then µ |= (i1 +Z

i2)β1+β2 .

Case (2)

σ̂, κ̂, v̂C, e
α−→ e′

σ̂, κ̂, v̂C, i
β + e

α−→ iβ + e′
ArithRight

By induction hypothesis, we know if µ |= σ̂, µ |= κ̂, µ |= v̂C and µ |= e, then
µ |= e′. That is if µ |= σ̂, µ |= κ̂, µ |= v̂C, and ∀iβ ∈ labels(e) µ |= β v i

then ∀i′β′ ∈ labels(e′) µ |= β′ v i′. We know labels(iβ +e) = {iβ}∪ labels(e)
and labels(iβ + e′) = {iβ}∪ labels(e′) by definition. Suppose µ |= σ̂, µ |=
κ̂, µ |= v̂C and µ |= iβ + e. That is ∀iβ ∈ labels(iβ + e) µ |= β v i, i.e.
∀iβ ∈ {iβ}∪ labels(e) µ |= β v i. We have if µ |= σ̂, µ |= κ̂, µ |= v̂C, and
∀iβ ∈ labels(e)∪{iβ} µ |= β v i then ∀iβ ∈ labels(e′)∪{iβ} µ |= β v i, i.e.
∀iβ ∈ labels(e′+iβ) µ |= βv i. That is if µ |= σ̂ , µ |= κ̂, µ |= v̂C and µ |= iβ+e
then µ |= iβ + e′.

2 Variables
x ∈ dom(σα)

σ̂, κ̂, v̂C,$x
α−→ σα(x)

LVar

Suppose µ |= σ̂, µ |= κ̂, µ |= v̂C and µ |= $x. We know by definition labels(σ̂α(x))⊆
labels(σ̂) for some x. Then if µ |= σ̂, i.e. ∀vβ ∈ labels(σ̂) µ |= β v v, then
∀vβ ∈ labels(σ̂α(x)) µ |= β v v, i.e. µ |= σ̂α(x). Then we have if µ |= $x,
µ |= σ̂, µ |= κ̂ and µ |= v̂C then µ |= σ̂α(x).

3 Selector

92 Chapter 4. Where and Expression Provenance

caseMatch(v,v1)

σ,κ,vC,v
β ?{vβ1

1 ⇒ e,M} α−→ e
SChoose

Suppose µ |= σ̂, µ |= κ̂, µ |= v̂C and µ |= vβ ?{vβ1
1 ⇒ e,M}. We have ∀v′β′ ∈

labels(vβ ?{vβ1
1 ⇒ e,M}) µ |= β′v v′ by definition. We know labels(vβ ?{vβ1

1 ⇒
e,M}) = labels(vβ)∪ labels(vβ1

1)∪ labels(e)∪ labels(M) by definition. Since
labels(vβ)∪ labels(vβ1

1)∪ labels(e)∪ labels(M)⊇ labels(e), we have if ∀v′β′ ∈
labels(vβ ?{vβ1

1 ⇒ e,M}) µ |= β′v v′ then ∀v′β′ ∈ labels(e)µ |= β′v v′. That
is if µ |= vβ ?{vβ1

1 ⇒ e,M} then µ |= e. Then we have if µ |= σ̂, µ |= κ̂, µ |= v̂C

and µ |= vβ ?{vβ1
1 ⇒ e,M} then µ |= e.

Invariant in Statement Evaluation In the evaluation of a statement, a data
value in the statement or any environment might join the evaluation. Meanwhile,
a new statement s′ will be generated and the environments might be changed to
new environments where new data values might be included. The output of an
evaluation step will be the input of the next step evaluation. So we will consider
the data values in all the inputs and outputs for consistency relation to establish
the invariant in the evaluation. The invariant for any rule in statement evaluation
for expression-provenance will be stated as below.

Theorem 4.3.2 (Invariant in Statement Evaluation). For any σ̂, κ̂, v̂C, s
α−→s

σ̂′, κ̂′, v̂′C ` s′, if µ |= σ̂, µ |= κ̂, µ |= v̂C and µ |= s then µ |= σ̂′, µ |= κ̂′, µ |= v̂′C

and µ |= s′.

We will prove this theorem for every rule of statement evaluation. The obser-
vation is that there is no evaluation on expression level that will happen directly
in the rules for statement evaluation. The expressions included in the statements
will be lifted up to the evaluation of expression level. There will be conditional
statements that includes few branches in these statements. The result of the
evaluation will only choose one of the branches. Since the expression-provenance
means to remember the operations in expressions on data values, the annotations
appearing in the branches that are not chosen after evaluating the conditional
statements beside the annotations on the control data values will not remain in
the evaluation to shape the expression-provenance. We will choose some evalua-
tion rules for conditional statements that illustrate our observation to prove this

4.3. Expression-Provenance 93

invariant. We will also prove the invariant for some rule that involves updating
environment. Its proofs for other rules are shown in appendix.

Proof. Prove by induction.

1 Evaluation of If statement

σ̂, κ̂, v̂C,if trueβ {s1} else {s2}
α−→s σ̂, κ̂, v̂C, s1

IfT

Suppose µ |= σ̂, µ |= κ̂, µ |= v̂C and µ |= if trueβ {s1} else {s2}. By defini-
tion, we have labels(if trueβ {s1} else {s2}) = labels(trueβ)∪labels(s1)∪
labels(s2) = {trueβ}∪ labels(s1)∪ labels(s2). We have
∀va ∈ labels(if trueβ {s1} else {s2}) µ |= β v v by definition. That is
∀vβ ∈ {trueβ} ∪ labels(s1)∪ labels(s2) µ |= β v v. Then we have ∀vβ ∈
labels(s1), µ |= β v v, i.e. µ |= s1. Then we have if µ |= σ̂, µ |= κ̂, µ |= v̂C

and µ |= if trueβ {s1} else {s2} then µ |= s1.

σ̂, κ̂, v̂C,if falseβ {s1} else {s2}
α−→s σ̂, κ̂, v̂C, s2

IfF

Suppose µ |= σ̂, µ |= κ̂, µ |= v̂C and µ |= if falseβ {s1} else {s2}. By
definition, we have labels(if falseβ {s1} else {s2}) = labels(falseβ)∪
labels(s1)∪ labels(s2) = {falseβ}∪ labels(s1)∪ labels(s2). We have
∀va ∈ labels(if falseβ {s1} else {s2}) µ |= β v v by definition. That is
∀vβ ∈ {falseβ}∪ labels(s1)∪ labels(s2) µ |= β v v. Then we have ∀vβ ∈
labels(s2), µ |= β v v, i.e. µ |= s2. Then we have if µ |= σ̂, µ |= κ̂, µ |= v̂C

and µ |= if falseβ {s1} else {s2} then µ |= s2.

2 Evaluation of Case statement
caseMatch(v,v1)

σ̂, κ̂, v̂C,case vβ {vβ1
1 : {s} C} α−→s σ̂, κ̂, v̂C, s

CaseMatch

Suppose µ |= σ̂, µ |= κ̂, µ |= v̂C and µ |= case vβ {vβ1
1 : {s} C}. By definition,

we have labels(case vβ {vβ1
1 : {s} C}) = labels(vβ)∪labels(vβ1

1)∪labels(s)∪
labels(C). Then we have ∀v′β′ ∈ labels(case vβ {vβ1

1 : {s} C}) µ |= β′ v v′

by definition, i.e. ∀v′β′ ∈ labels(vβ)∪ labels(vβ1
1)∪ labels(s)∪ labels(C) µ |=

β′ v v′. We have ∀v′β′ ∈ labels(s) µ |= β′ v v′, i.e. µ |= s. Then if µ |= σ̂,

94 Chapter 4. Where and Expression Provenance

µ |= κ̂, µ |= v̂C and µ |= case vβ {vβ1
1 : {s} C} then µ |= s.

¬caseMatch(v,v1)

σ̂, κ̂, v̂C,case vβ {vβ1
1 : {s} C} α−→s σ̂, κ̂, v̂C,case vl {C}

CaseNoMatch

The proof is similar as case above.

3 Evaluation of Resource-like class declarations
κ̂(a) = ClassDef(b,ρ,s) κ̂(b) = DeclaredClass(β) s′ = merge(ρ,vH)

σ̂, κ̂, v̂C,class {a : vH}
α−→s σ̂, κ̂[a : DeclaredClass(::b)], v̂C,scope (::a) {s′ s}

CDecPD

Suppose µ |= σ̂, µ |= κ̂, µ |= v̂C and µ |= class {a : vH}. We have labels(class {a :
vH}) = labels(vH) by definition. We have ∀vβ ∈ labels(vH),µ |= β v v.
Since µ |= κ, we have ∀vβ ∈ labels(κ̂),µ |= β v v. Then we have ∀vβ ∈
labels(κ̂(a)),µ |= β v v. That is ∀vβ ∈ labels(ρ)∪ labels(s),µ |= β v v by
definition. We have ∀vβ ∈ labels(vH)∪ labels(ρ)∪ labels(s),µ |= β v v. Then
∀vβ ∈ labels(s′)∪labels(s),µ |= βv v. Since we know labels(scope (::a) {s′ s}) =
labels(s′)∪ labels(s) by definition, we have µ |= scope (::a) {s′ s}. We also
know if ∀vβ ∈ labels(κ̂),µ |= β v v and labels(DeclaredClass(b)) = ∅ then
∀vβ ∈ labels(κ̂[a : DeclaredClass(::b)]),µ |= β v v. Then we have if µ |= σ̂, µ |=
κ̂, µ |= v̂C and µ |= class {a : vH} then µ |= σ̂, µ |= κ̂[a : DeclaredClass(::b)],
µ |= v̂C and µ |= scope (::a) {s′ s}.

The proofs for other evaluation rules for statements are similar and shown
in Appendix C.

Invariant in Manifest Evaluation Similarly to statement evaluation, evaluating
a manifest element m might involve employing the data values from the input
constructs of the evaluation and the updating of data values in them, i.e. m

and the environments σ̂,κ̂ and v̂C. So to establish the invariant of expression-
provenance in every step in manifest evaluation, we will consider the data values
in all these constructs contributing to the manifest evaluation. The invariant is
formalised as below.

4.3. Expression-Provenance 95

Theorem 4.3.3 (Invariant in Manifest Evaluation). For any σ̂, κ̂, v̂C,m
N−→m

σ̂′, κ̂′, v̂′C `m′, if µ |= σ̂, µ |= κ̂, µ |= v̂C and µ |= m then µ |= σ̂′, µ |= κ̂′, µ |= v̂′C

and µ |=m′.

We will prove this invariant for every rule in manifest evaluation. Similarly
to statement evaluation, we have the observation that there are no operations on
data values directly in the evaluation of manifests. There are statements and the
definitions of classes, nodes and resource defined types as manifest elements. The
evaluation of statements will be lifted up to the evaluation at the statement level.
The evaluations of the definitions will involve the environment update. We will
make an example of proving this invariant in evaluating such a definition. The
proofs of the invariant for other rules are in appendix.

Proof. Prove by induction.

Evaluation of Defined resource types

u /∈ dom(κ̂)

σ̂, κ̂, v̂C,define u (ρ) {s} N−→m σ̂, κ̂[u : ResourceDef(ρ,s)], v̂C,skip
RDef

Suppose µ |= σ̂, µ |= κ̂, µ |= v̂C and µ |= define u (ρ) {s}. We have
labels(define u (ρ) {s}) = labels(ρ)∪ labels(s) and labels(skip) = ∅ by
definition. Since κ̂[u : ResourceDef(ρ,s)] = κ̂∪{u→ ResourceDef(ρ,s)},
labels(κ̂[u : ResourceDef(ρ,s)]) = labels(κ̂)∪ labels(ResourceDef(ρ,s)). Since
µ |= κ̂ and µ |= define u (ρ) {s}, we have ∀vβ ∈ labels(κ̂),µ |= β v v and
∀vβ ∈ labels(ρ)∪labels(s),µ |= βv v. Then ∀vβ ∈ labels(κ̂)∪labels(ResourceDef(ρ,s)),
i.e. µ |= κ̂[u : ResourceDef(ρ,s)]. Then if µ |= σ̂, µ |= κ̂, µ |= v̂C and µ |=
define u (ρ) {s} then µ |= σ̂, µ |= κ̂[u : ResourceDef(ρ,s)], µ |= v̂C.

We omit the proofs of other manifest rules here and show them in Appendix
C.

4.3.3.3 Correctness of Expression-Provenance

Having defined the three invariants for expression-provenance in expression, state-
ment and manifest evaluation, we will specify the correctness property of expression-
provenance. The correctness property states the data values in the catalog will

96 Chapter 4. Where and Expression Provenance

record the operations experienced in the evaluation of the manifest. To show
it, we will use the consistency relation that relates a data value and its anno-
tation according to the operations uniquely. Given a labelling function µ on
the data values in a manifest, if the data values and their annotations after the
evaluation in the catalog still keep the consistency relation, we know the anno-
tations record the operations through the evaluation. Similar as the correctness
of where-provenance, we only consider the correctness of expression-provenance
of the manifests that terminate. The correctness we address here is partial. We
formalise it as below.

Theorem 4.3.4 (Correctness of Expression-Provenance). Given a labelling func-
tion µ, if m→∗ σ̂, κ̂, v̂C,skip and µ |=m then µ |= v̂C.

Proof. Since m→∗ σ̂, κ̂, v̂C,skip, we know that for some n there is an evaluation
train m→ σ̂1, κ̂1, v̂C1,m1→ . . .→ σ̂n, κ̂n, v̂Cn,mn→ σ̂, κ̂, v̂C,skip. Given a func-
tion µ, we have µ |=m by assumption. By theorem 4.3.1, 4.3.2 and 4.3.3 we have
µ |= m→ (µ |= σ̂1∧µ |= κ̂1∧µ |= v̂C1∧µ |= m1)→ . . .→ (µ |= σ̂n∧µ |= κ̂n∧µ |=
v̂Cn∧µ |=mn)→ (µ |= σ̂∧µ |= κ̂∧µ |= v̂C∧µ |= skip). Thus we have µ |= v̂C.

Chapter 5

Dependency Provenance

In this chapter, we will define another form of provenance which will record
the dependency information. We call such provenance dependency provenance.
While where-provenance records the locations of input data values that the output
data values copy from and expression-provenance provides the computational
information on primitive operations about the output data value, there are other
computational factors such as conditional constructs in µPuppet that influence
how an output data value is resolved. Dependency provenance intends to collect
all the input data that could influence a final output data value in the catalog after
compilation in all possible ways. In this chapter we will first review the notion
of dependency and its correctness technique established in the provenance field.
Then we will build the syntax and semantics of dependency provenance. Moreover
we will propose our characterization of its correctness and prove the correctness
of dependency-provenance. However due to the complexity of µPuppet language,
dependency provenance does not record all the dependency information of a data
value in some unusual manifests. We will also discuss the limitation of our method
and propose the possible solutions for the unusual cases.

5.1 Background

Dependency analysis technique has been explored in program slicing and in-
formation flow analysis. As Abadi et al. (1999) pointed out, program slicing,
information flow and several other programming techniques can be made uni-
form by considering them as dependence. Cheney et al. (2011) argued that these
dependency techniques also provide a suitable foundation for a class of prove-

97

98 Chapter 5. Dependency Provenance

nance. They proposed a model of dependency provenance in the context of a
core database query language. In contrast to program slicing that separates the
part of a program responsible for an output result, their dependency provenance
model established data dependence that extracted the input data in the database
that could influence an output data in the result of a query.

In their work, the dependency provenance model was made on the nested
relational calculus (NRC) (Buneman et al., 1995). NRC is a typed functional
language. Its types include collection types. Dependency provenance was de-
fined to provide what input data in the database are responsible for one part
of the output data in the query result. The provenance model used sets of col-
ors as annotations for the data. This technique of annotations on data models
has been developed in the work on program analysis (Nielson et al., 1999) and
on provenance (Buneman et al., 2008; Wang and Madnick, 1990). Different op-
erations in NRC were treated as functions. To define provenance information,
functions have been generated operating on annotated data values. Provenance
semantics then was formed by defining annotation propagations through the gen-
eralised functions. Having the semantics of dependency provenance, the work
further proposed the correctness criterion of dependency provenance. This crite-
rion characterised whether the annotations generated by these functions describe
the dependency information introduced in any ordinary function in NRC. This
correctness was established in the way that the annotations captured the input
data of which any change might influence some part of the output of a query. This
work proposed two correctness criteria for both dynamic and static provenance
tracking.

As we discussed, where- and expression- provenance as we have defined them
do not cover all the computational behaviours that could happen in µPuppet.
There are conditional constructs by which more than one branch of computation
could be chosen. Where- and expression- provenance only tell us the provenance
information of the output data that might have been chosen by conditional con-
structs under the current input data values but do not inform us why this has
happened. We also want to capture such conditional computational information
that could describe an output in the catalog. Intuitively, such information could
be provided by dependency provenance that captures all the input data values
that could affect an output data value. Due to the computational similarity be-
tween configuration languages and queries in the database, we will adapt the

5.2. Annotations and Propagation of Annotations 99

technique of defining dependency provenance in Cheney et al.’s work to design
our dependency provenance and characterise its correctness.

Due to the complexity of µPuppet, we will consider of a subset of µPuppet
to formalise dependency-provenance and prove its correctness. The subset does
not include the data structures array, hash and resource reference. We believe it
will be easy to extend our formalization to them.

5.2 Annotations and Propagation of Annotations

5.2.1 Annotated Compact Grammar

To track dependency information in the computation, we choose to only annotate
the data values as in Cheney et al.’s work. We are concerned with the input
data values that might influence the output data but not computational process.
Starting from annotating the input data values with a single label, the annotations
on the output data values should collect all the annotations of the influential
input data values so to represent the dependency information. Thus we define
the annotations for dependency provenance as a set of unique labels. The syntax
of the annotations is as below.

β ::= ε | {l} | {l}∪β

5.2.1.1 Annotated Values

With the annotations, we will annotate all the data values in any constructs in
µPuppet. An annotated primitive data value is denoted as vβ. The structured
data values as compilation results such as hash values, resource values and cat-
alogs are defined in figure 5.1. An annotated hash value is defined as the data
values of the attributes are annotated. An annotated resource value is defined
when its hash-value body is annotated. A resource value can also be annotated
as a whole with an annotation that records the dependency on the conditionals
that have influenced the control flow so to derive this resource value. We call an
annotation of a whole construct as an outer annotation. We use an operation +
and β to denote it. We will introduce the + operation on annotations and explain
how the outer annotation is derived in detail when introducing the propagation of

100 Chapter 5. Dependency Provenance

Value v ::= i | w | true | false

Annotated Value v̂ ::= vβ

Hash value v̂H ::= ε | k⇒ v̂, v̂H

Resource value v̂R ::= (t {ŵ : v̂H})+β

Catalog v̂C ::= ε | v̂R v̂C

Figure 5.1: Annotated Values

annotations in the evaluation later. At last, an annotated catalog is the collection
of the annotated resource values.

5.2.1.2 Annotated µPuppet

The annotated µPuppet constructs will be defined inductively on their structures.
Then these constructs are annotated if the data values appearing inside are an-
notated. The full syntax of annotated µPuppet is as in figure 5.2. Not only the
data values inside a construct can be annotated, every construct can also have
its outer annotation, similar to the annotated resource value. It is needed to deal
with the conditionals so that we keep track of the annotations on the parts of
manifests that affected the control flow. In the expressions and statements, there
are conditional constructs such as selector expressions, if and case statements.
Thus the expressions and statements can carry outer annotations to record how
they depend on some conditionals. While in the level of manifests, there are no
conditional constructs that will generate the dependency in some control flow.
The manifest elements will not carry any outer annotation. Thus we only label
the expressions and statements with outer annotations denoted as e+β and s+β.

We introduce a hole as a primitive construct in the abstract syntax of µPuppet,
denoted as . It is designed to formalise the semantics of the correctness of
dependency provenance. We will explain it in detail in the section of correctness.

5.2.1.3 Annotated Environments

We have seen how v̂C is defined. In the evaluation process, the other environments
will also carry the annotated constructs of µPuppet. The annotated environments
σ̂ and κ̂ are defined by annotating all the data values appearing in them. Their
definitions are as figure 5.3. In the annotated store σ̂, the variables and their

5.2. Annotations and Propagation of Annotations 101

Expression e ::= | v̂ | e+β | $x | $::x | $::a::x
| e1 +e2 | e1−e2 | e1 ∗e2 | e1/e2

| e1 > e2 | e1 = e2 | e1 ande2 | e1 ore2 | !e | . . .
| e ? {M}

Hash H ::= ε | k⇒ e,H

Case c ::= e | defaultβ

Matches M ::= ε | c⇒ e,M

Statement s ::= e | s+β | s1 s2 | $x= e | unless e {s} | if e {s} else {s}
| case e {C} |D | skipβ

Scope α ::= scope α s

Cases C ::= ε | c : {s} C
Declaration D ::= t {e :H} | u {e :H} | class {a :H} | include a

Manifest m ::= s |m1 m2 | node Q {s} | define u (ρ) {s}
| class a {s} | class a (ρ) {s} | class a inherits b {s}
| class a (ρ) inherits b {s}

Node spec Q ::= N | default | (N1, . . . ,Nk) | r ∈ RegExp
Parameters ρ ::= ε | x,ρ | x= e,ρ

Figure 5.2: Annotated Abstract Syntax of µPuppet

data values can be annotated, but not the namespaces. V̂ ar denotes annotated
variables. We only consider the variables with the outer annotations which we
will illustrate later so V̂ ar represents the form ($x)+β, ($::x)+β or ($::a::x)+β.
In the annotated definition κ̂, every definition appearing in κ̂ is labelled. Every
definition is annotated if all the components in it are labelled.

Store σ̂ : Scope× V̂ ar→ V̂ alue

Definition environment κ̂ ::= ε | a→ d̂ | a→ d̂, κ̂

Definition d̂ ::= ⊥ | ClassDef(coptc,ρ,s) | DeclaredClass(α)
| ResourceDef(ρ,s)

Figure 5.3: Annotated Abstract Syntax of Environments

102 Chapter 5. Dependency Provenance

5.2.2 Propagation of Annotations in µPuppet Evaluation

In the dependency provenance model proposed in Cheney et al.’s work, the
provenance-tracking semantics was defined as annotated-functions that extended
ordinary functions to propagate the annotations on data so as to track depen-
dency information in the functions. We will record the dependency information
in the process of evaluation. In µPuppet, there are conditional constructs that
lead to control flows in the evaluation. Control flow will decide to evaluate one
branch among others according to the conditional in the construct. Then a re-
sult value of the evaluation could either depend on the operations on data values
or conditional constructs that choose one evaluation path. The dependency in-
formation for an output value should be able to provide the input data values
in the evaluation that decides the output value. To do that, we will propagate
annotations on data values in the evaluation when there is dependency involved
in every evaluation step. We will define the annotation propagation in every rule
evaluating expressions, statements and manifests.

5.2.2.1 Propagation of Annotation in Evaluating Expressions

Expressions in µPuppet include values, variables, all the primitive operations on
data values and a selector operation. To propagate the annotations in the expres-
sions in the evaluation to record dependency, we observe that all the operands of
an operation contribute to its result. If one of operands changes, its result might
change. Then the result of a primitive operation on the input data values depends
on each input data value. So the dependency information about the result should
be recorded as its annotation which includes the annotations on all the input
data values. With this observation, the evaluation rule for the expression on each
operator will propagate the annotations by this principle. Selector is a special
expression that has the structure of a conditional statement. The conditional
data values influence which branch in the selector body is chosen or not chosen.
The dependency information in the evaluation should reflect the conditionals in
the annotation of the evaluation result.

Variables When looking up the value of a variable in the annotated store σ̂

under the scope of the variable, the value of this variable should be an annotated
value va from the store.

5.2. Annotations and Propagation of Annotations 103

x ∈ dom(σα)

σ̂, κ̂, v̂C,$xβ
α−→ σα(x)

LVar

x /∈ dom(σα) σ̂, κ̂, v̂C,$xβ
α′
−→ vβ α′ parentofκα

σ̂, κ̂, v̂C,$xβ
α−→ vβ

PVar

x ∈ dom(σ::)

σ̂, κ̂, v̂C,$::xβ α−→ σ::(x)
TVar

x ∈ dom(σ::a)

σ̂, κ̂, v̂C,$::a :: xβ α−→ σ::a(x)
QVar

Arithmetic Expressions We choose + expressions as an example to illustrate
how the annotations will be propagated in the evaluation according to the prin-
ciple we introduced. When a + expression is e1 + e2, e1 will be evaluated first.
When it is the case iβ + e, e will be evaluated and iβ will remain in the result.
In the case iβ1

1 + iβ2
2 , the evaluation result will be i1 +Z i2 and its annotation will

be the union of β1 and β2. This annotation implies that the evaluation result
i1 +Z i2 depends on both inputs i1 and i2.

σ̂, κ̂, v̂C, e1
α−→ e′1

σ̂, κ̂, v̂C, e1 + e2
α−→ e′1 + e2

ArithLeft
σ̂, κ̂, v̂C, e

α−→ e′

σ̂, κ̂, v̂C, i
β + e

α−→ iβ + e′
ArithRight

σ̂, κ̂, v̂C, i
β1
1 + iβ2

2
α−→ (i1 +Z i2)β1∪β2

ArithValue

The annotation propagation in the evaluation rules for the expressions on
other arithmetic operators are similar.

Comparison Expressions Similarly, we show how the annotations will be prop-
agated in the evaluation of comparison expressions. We use > expressions as an
example. In the case to evaluate e1 > e2, e1 will be evaluated. In the case of
iβ > e, e will be evaluated and iβ will remain in the result. For the case iβ1

1 > iβ2
2 ,

the result will be true or false while their annotations would be β1∪β2 since
the truth value depends on both input data values i1 and i2 that β1 and β2 label
respectively .

104 Chapter 5. Dependency Provenance

σ̂, κ̂, v̂C, e1
α−→ e′1

σ̂, κ̂, v̂C, e1 > e2
α−→ e′1 > e2

CompLeft
σ̂, κ̂, v̂C, e

α−→ e′

σ̂, κ̂, v̂C, i
β > e

α−→ iβ > e′
CompRight

i1 >Z i2

σ̂, κ̂, v̂C, i
β1
1 > iβ2

2
α−→ trueβ1∪β2

CompValueI

i1 <=Z i2

σ̂, κ̂, v̂C, i
β1
1 > iβ2

2
α−→ falseβ1∪β2

CompValueII

The rules for other comparison operators are similar and omitted.

Boolean Expressions We will show the annotation propagation in the evalua-
tion for negation expressions. In the rule to evaluate !e, e will be evaluated. For
the expressions !trueβ and !falseβ, the result truth values false and true will
be annotated with β since the results depend on the input truth values.

σ̂, κ̂, v̂C, e
α−→ e′

σ̂, κ̂, v̂C, !e
α−→ !e′

NotSTEP
σ̂, κ̂, v̂C, !trueβ α−→ falseβ

NotValueI

σ̂, κ̂, v̂C, !falseβ α−→ trueβ
NotValueII

The rules for disjunction are similar and omitted. In Puppet, side-effecting
expressions do not appear to be allowed inside Boolean expressions so we assume
eager semantics for Boolean operations (both sides are fully evaluated).

Selector Expressions The rule SCon and SEle will evaluate the control expres-
sions e and e1 to data values respectively. For the rule SChoose and SChooseI,
the evaluation will resolve different results when v = v1 and v 6= v1. Since their
evaluation results depends on the comparison result of v and v1, both of them
influence whether they are equal or not. Then either of the results e and vβ ?{M}
will be annotated with the union of the annotations on v and v1, i.e. β∪β1. Since
both evaluation results are expressions, their annotations should be an outer an-
notation +(β∪β1).

5.2. Annotations and Propagation of Annotations 105

σ̂, κ̂, v̂C, e
α−→ e′

σ̂, κ̂, v̂C, e ?{M} α−→ e′ ?{M}
SCon

σ̂, κ̂, v̂C, e1
α−→ e′1

σ̂, κ̂, v̂C,v
β ?{e1⇒ e,M} α−→ vβ ?{e′1⇒ e,M}

SEle

caseMatch(v,v1)

σ̂, κ̂, v̂C,v
β ?{vβ1

1 ⇒ e,M} α−→ e+(β∪β1)
SChoose

¬caseMatch(v,v1)

σ̂, κ̂, v̂C,v
β ?{vβ1

1 ⇒ e,M} α−→ (vβ ?{M})+(β∪β1)
SChooseI

σ̂, κ̂, v̂C,v
β ?{default⇒ e,M} α−→ e+β

SDefault

5.2.2.2 Propagation of Annotations in Evaluating Resources

As we already have shown that a resource would be evaluated to a resource value
which would in turn be stored in the catalog vC. Every expression appearing
in a resource will be evaluated by employing different evaluation rules. There
are no conditionals or direct operations in a resource construct that decide the
evaluation result. So there is no immediate annotation propagation that would
describe the dependency associated with the level of evaluation of a resource. So
the evaluation rules will work the same as the original rules except the constructs
in the evaluation are annotated.

σ̂, κ̂, v̂C, e
α−→ e′

σ̂, κ̂, v̂C,x⇒ e,H
α−→H x⇒ e′,H

RbodyExp

σ̂, κ̂, v̂C,H
α−→H H

′

σ̂, κ̂, v̂C,x⇒ vβ,H
α−→H x⇒ vβ,H ′

RbodyStep

σ̂, κ̂, v̂C, e
α−→ e′

σ̂, κ̂, v̂C, e :H α−→R e
′ :H

RName
σ̂, κ̂, v̂C,H

α−→H H
′

σ̂, κ̂, v̂C,v
β :H α−→R v

β :H ′
Rbody

106 Chapter 5. Dependency Provenance

5.2.2.3 Propagation of Annotations in Evaluating Statements

In the statements of µPuppet, there are no direct operations on data values in-
volved. However, there are conditional statements if, unless and cases. As we
mentioned, when there is a conditional in the construct, one of the branches in
the construct body will be chosen or not chosen depending on the data value of
the conditional. The remaining branch depends on the data value of the condi-
tional. Thus there is dependency that should be recorded in the annotation on
the evaluation result. We will define the annotation propagation in the evaluation
of these statements to reflect the dependency which happened in the evaluation
by collecting the annotations of relevant input data values. In the following, we
will use the evaluation of if and case statements to illustrate the annotation prop-
agation in it to show how the annotations on the results describe the dependency
information.

Assignment Statement

σ̂, κ̂, v̂C, e
α−→ e′

σ̂, κ̂, v̂C,$x= e
α−→s σ̂, κ̂, v̂C,$x= e′

AssignStep

x /∈ dom(σα)

σ̂, κ̂, v̂C,$x= vβ
α−→s σ̂[(α,x) : vβ], κ̂, v̂C,skip

Assign

If Statement To evaluate an if statement, the conditional expression e is first
evaluated to an annotated truth value vβ. Depending on whether v is true or
false, in the rule IfT and IfF, one of the two branches s1 and s2 will be chosen
to remain in the evaluation respectively and the other branch will be discarded.
That is their evaluation results s1 and s2 depend on the conditional truth value vβ.
To record this dependency, we propagate the annotation β of v as the annotation
of the results s1 and s2.

σ̂, κ̂, v̂C, e
α−→ e′

σ̂, κ̂, v̂C,if e {s1} else {s2}
α−→s σ̂, κ̂, v̂C,if e′ {s1} else {s2}

IfStep

σ̂, κ̂, v̂C,if trueβ {s1} else {s2}
α−→s σ̂, κ̂, v̂C,(s1)+β

IfT

σ̂, κ̂, v̂C,if falseβ {s1} else {s2}
α−→s σ̂, κ̂, v̂C,(s2)+β

IfF

5.2. Annotations and Propagation of Annotations 107

The annotation propagation in the evaluation of unless statements is similar as
in if statements. We show the rules for unless statements in the appendix.

Case Statement The conditional in a case statement is to compare the control
data value with that of the current branch. If they are equal, this branch remains
as the result of the evaluation and the other branches will be discarded. If not, this
branch will be omitted and the other branches will subsequently be checked by the
conditional. Thus according to the result of the conditional, a different evaluation
result will be derived. That is, if one of the control data values changes, the
comparison of them will lead to a different truth value, thus a different evaluation
result. Thus any of the two evaluation results depends on two control data values.
The dependency information in the annotation on the evaluation results should
reflect this by including the annotations of these two control data values. As
shown in the rules CaseMatch and CaseNoMatch below, the evaluation results
have the union of β and β1 as their annotation.

σ̂, κ̂, v̂C, e
α−→ e′

σ̂, κ̂, v̂C,case e {C} α−→s σ̂, κ̂, v̂C,case e′ {C}
CaseStep1

σ̂, κ̂, v̂C, e
α−→ e′

σ̂, κ̂, v̂C,case vβ {e : {s} C} α−→s σ̂, κ̂, v̂C,case vβ {e′ : {s} C}
CaseStep2

caseMatch(v,v1)

σ̂, κ̂, v̂C,case vβ {vβ1
1 : {s} C} α−→s σ̂, κ̂, v̂C, s

β∪β1
CaseMatch

¬caseMatch(v,v1)

σ̂, κ̂, v̂C,case vβ {vβ1
1 : {s} C} α−→s σ̂, κ̂, v̂C,(case vβ {C})+(β∪β1)

CaseNoMatch

σ̂, κ̂, v̂C,case vβ {εβ1} α−→s σ̂, κ̂, v̂C,skipβ∪β1
CaseDone

The other statements such as expressions, assignments, include, resource-like
class declaration, resources, defined resource types declaration, scope statements
and sequential statements do not involve immediate operations on data values
or conditionals. Their evaluation on the statement level does not involve the
dependency on the input data values so there is no annotation propagation to
define to record dependency information. The evaluation of these statements is

108 Chapter 5. Dependency Provenance

about to be lifted to the level of expression evaluation, read or change stores,
or derive the evaluation result constructs in different structures. The evaluation
rules for these statements are omitted here and shown in the appendix.

5.2.2.4 Propagation of Annotation in Evaluating Manifests

Manifest elements consist of statements, sequential manifest elements, class defi-
nitions, node definitions and defined resource type definitions. They do not relate
to the operations on data values or control flows directly. Their evaluation does
not concern the dependency on the inputs so to derive the results. Then there is
no annotation propagation involved in their evaluation rules. The rules will be
the same as the ordinary rules, except the components in them are annotated.
We omit these rules here and show them in the appendix.

5.2.2.5 Propagation of the Outer Annotation +β in the Evaluation

As we noticed, when evaluating a construct involving conditionals, its evalua-
tion result will carry an outer annotation of the form +β that collects all the
annotations of the data values in the conditional. That is, the evaluation result
of conditional statements will be in the form of e+β and s+β. The manifest m
will not carry outer annotations since there are no conditional constructs at its
level. Using an outer annotation on the output construct indicates the whole
annotated construct has been derived due to some conditional in the previous
evaluation. The propagation of outer annotations implies that the dependency
information should be carried along the evaluation. That is, every sub-construct
in the construct must depend on this information.

Operation + on Annotations In an outer annotation +β, + can be seen as an
operation on annotations, which is to push the annotation β into the construct
and unions it with the inner annotation on each substructure inside the construct.
As we knew, since the outer annotation of a construct records the dependency
information in the past evaluation, every sub-construct in the construct must de-
pend on it. We define the operation of +β applied on expressions and statements
respectively in the figure 5.4 (P.109) and figure 5.5 (P.110). In this definition, the
operation of +β applied on variables, assignments, resource-like class declaration
and defined resource type will remain these constructs with +β as they are. That
is because these constructs with outer annotation should be treated differently

5.2. Annotations and Propagation of Annotations 109

Value (vβ1)+β2 = vβ1∪β2

Variable ($x)+β = ($x)+β

($::x)+β = ($::x)+β

($::a::x)+β = ($::a::x)+β

(e1 +e2)+β = e+β
1 +e+β

2

(e1−e2)+β = e+β
1 −e

+β
2

(e1 ∗e2)+β = e+β
1 ∗e

+β
2

(e1/e2)+β = e+β
1 /e+β

2

(e1 > e2)+β = e+β
1 > e+β

2

(e1 = e2)+β = e+β
1 = e+β

2

(e1 ande2)+β = e+β
1 ande+β

2

(e1 ore2)+β = e+β
1 ore+β

2

(!e)+β = !e+β

(e ? {M})+β = e+β ? {M+β}
Hash (k⇒ e,H)+β = k⇒ e+β,H+β

Matches (c⇒ e,M)+β = (c⇒ e)+β,M+β

(c⇒ e)+β = c+β ⇒ e+β

(defaultβ)+β′ = defaultβ∪β′

(e+β)+β′ = e+(β∪β′)

Figure 5.4: +β Operation on e

in the evaluation we will illustrate later. In the figure 5.4, when an annotated
value vβ1 carries an outer annotation +β2, v will be labelled with the union of
β1 and β2 as vβ1∪β2 . For the structured constructs, +β will push this operation
to every sub-construct. Then +β operation is defined inductively on the struc-
ture of the constructs. For example, +β on the expression e1 + e2 will resolve to
the expression e+β

1 + e+β
2 . In the figure 5.5, for a sequence of statements, +β is

pushed inside to be the outer annotation of each statement in the sequence. This
is especially useful when the statements in the sequence are all the specific con-
structs we mentioned above whose outer annotations will be treated differently
in the evaluation.

Moreover, we extend the + operation on the outer annotation itself. If
an expression (a statement) has two layers of outer annotations, i.e. (e+β)+β′

((s+β)+β′), this operation will union the two outer annotations as one outer an-
notation, i.e. e+(β∪β′) (s+(β∪β′)).

110 Chapter 5. Dependency Provenance

Statement ($x= e)+β = ($x= e)+β

(s1 s2)+β = s+β
1 s+β

2

(if e {s} else {s})+β = if e+β {s+β} else {s+β}
(unless e {s})+β = unless e+β {s+β}

(case e {C})+β = case e+β {C+β}
Cases (c : {s} C)+β = c+β : {s+β} C+β

Declaration (t {e :H})+β = (t {e :H})+β

(u {e :H})+β = (u {e :H})+β

(class {a :H})+β = (class {a :H})+β

(include a)+β = (include a)+β

Scope (scope α s)+β = scope α s+β

(s+β)+β′ = s+(β∪β′)

Figure 5.5: +β Operation on s

There are two ways to evaluate the constructs with outer annotations. One
is to push the outer annotation into the construct and then evaluate the result
using the rules introduced in the previous sections. The other is to evaluate
the inside construct as usual and then propagate its outer annotation as that of
the evaluation result. We choose the second way for the evaluation unless some
special cases for which we will define the evaluation rules for them. In other case,
we can express the propagation of outer annotations uniformly in the judgements
of the evaluation for expressions and statements as below.

σ̂, κ̂, v̂C, e
α−→ e′

σ̂, κ̂, v̂C, e
+β α−→ e′+β

Expre
σ̂, κ̂, v̂C, s

α−→s σ̂′, κ̂′, v̂′C, s
′

σ̂, κ̂, v̂C, s
+β α−→s σ̂′, κ̂′, v̂′C, s

′+β
Statement

In the following, we will define the evaluation rules for some specific constructs
with outer annotations that include variable, assignment, include, resource-like
class declaration and defined resource type.

Variables When a variable $x ($::x, $::a :: x) has its dependency information,
it carries some outer annotation +β. The evaluation rule looks up the store and
get its value as usual. Meanwhile the outer annotation +β of the variable will
be propagated to its value. The dependency information in the outer annotation

5.2. Annotations and Propagation of Annotations 111

is passed from the variable to its value. The propagation of outer annotations in
the rules for the variables in different scopes are as below.

x ∈ dom(σα)

σ̂, κ̂, v̂C,($x)+β α−→ (σα(x))+β
LVar

x /∈ dom(σα) σ̂, κ̂, v̂C,($x)+β′ α′
−→ (vβ)+β′

α′ parentofκα

σ̂, κ̂, v̂C,($x)+β′ α−→ (vβ)+β′ PVar

x ∈ dom(σ::)

σ̂, κ̂, v̂C,($::x)+β α−→ (σ::(x))+β
TVar

x ∈ dom(σ::a)

σ̂, κ̂, v̂C,($::a :: x)+β α−→ (σ::a(x))+β
QVar

Assignment Statements When an assignment statement inherits an outer an-
notation, the outer annotation can be pushed inside to both the variable and
the expression. The evaluation can be conducted in the following way. If the
expression is not a value, it will be evaluated first as usual, as shown in the rule
AssignStepPlus. If the expression is a value, the value will carry the union of its
original annotation and the outer annotation same as its variable, as shown in
the rule AssignPlus. When updating the store with this variable, its value will
have this union as its annotation.

σ̂, κ̂, v̂C, e
α−→ e′

σ̂, κ̂, v̂C,($x= e)+β α−→s σ̂, κ̂, v̂C,($x= e′)+β
AssignStepPlus

x /∈ dom(σα)

σ̂, κ̂, v̂C,($x= vβ)+β′ α−→s σ̂[(α,x+β′
) : (vβ)+β′

], κ̂, v̂C,skip
AssignPlus

Include Statements An interesting case is the statements of the declaration of
classes. A class-declaration statement could be made in any place in µPuppet,
including in the body of a conditional construct. So it can be the result of the
evaluation of such construct so that it carries an outer annotation. While evalu-
ating an annotated class declaration, the evaluation will execute as the ordinary

112 Chapter 5. Dependency Provenance

evaluation rules and then annotate the evaluation result with the outer annotation
of the declaration statement.

In the rule IncU, the class a has not been declared. So this rule declares this
class and resolve to the content of this class stored in the definition. Meanwhile
this result carries the outer annotation +β as its outer annotation. If a class
has been declared, the rule IncD will omit this statement and resolve it to skip

that also carries the outer annotation of this statement. The rule IncPu deals
with the case when the class a has a parent class b that has not been declared.
The result is the declaration statement of class b together with the declaration
of class a. At this step, class b has not been declared. The definition of class b
in κ̂ remain as ClassDef(copt,ρ′, s′). (include b)+β is as notification with no real
content to evaluate. The evaluation result is not enlarged considering the whole
environments. It will introduce the content of class b from its definition in κ̂ when
(include b)+β is evaluated. In the rule IncPd, class a has a parent class b which
has been declared. Then the content of class a will replace (include a)+β as the
result of the evaluation.

κ̂(a) = ClassDef(⊥,ρ,s) s′ = merge(ρ,ε) α′ baseof κ̂α

σ̂, κ̂, v̂C,(include a)+β α−→s σ̂,κ[a : DeclaredClass(α′)], v̂C,(scope (::a) s′ s)+β
IncU

κ̂(a) = DeclaredClass(α′)

σ̂, κ̂, v̂C,(include a)+β α−→s σ̂, κ̂, v̂C,skip+β
IncD

κ̂(a) = ClassDef(b,ρ,s) κ̂(b) = ClassDef(copt,ρ′, s′)

σ̂, κ̂, v̂C,(include a)+β α−→s σ̂, κ̂, v̂C,(include b)+β (include a)+β
IncPU

κ̂(a) = ClassDef(b,ρ,s) κ̂(b) = DeclaredClass(α′) s′ = merge(ρ,ε)

σ̂, κ̂, v̂C,(include a)+β α−→s σ,κ[a : DeclaredClass(::b)], v̂C,(scope (::a) {s′ s})+β
IncPD

Resource-like Class Declaration Statements A resource-like class declaration
statement with an outer annotation will be evaluated similarly. The body of the
statement will be evaluated to values by the rule CDecStepPlus. Then when
the declaration is evaluated to the other statement, this statement will carry the
outer annotation.

5.3. Correctness of Dependency-Provenance 113

κ̂(a) = ClassDef(copt,ρ,S) σ̂, κ̂, v̂C,H
α−→H H

′

σ̂, κ̂, v̂C,(class {a :H})+β α−→s σ̂, κ̂, v̂C,(class {a :H ′})+β
CDecStepPlus

κ̂(a) = ClassDef(⊥,ρ,s) s′ = merge(ρ,vH) α′ baseofκα

σ̂, κ̂, v̂C,(class {a : vH})+β α−→s σ̂,κ[a : DeclaredClass(α′)], v̂C,scope (::a) s′+β s+β
CDecUPlus

κ̂(a) = ClassDef(b,ρ,s) κ̂(b) = ClassDef(copt,ρ′, s′)

σ̂, κ̂, v̂C,(class {a : vH})+β α−→s σ̂, κ̂, v̂C,(include b)+β (class {a : vH})+β
CDecPUPlus

κ̂(a) = ClassDef(b,ρ,s) κ̂(b) = DeclaredClass(α) s′ = merge(ρ,vH)

σ̂, κ̂, v̂C,(class {a : vH})+β α−→s σ̂,κ[a : DeclaredClass(::b)], v̂C,scope (::a) {s′+β s+β}
CDecPDPlus

Defined Resource Type Statements While a defined resource type statement
carries an outer annotation, the statement will be evaluated first until the defined
resource type name and the body become values by the rule DefStepPlus. Then
in the rule DefPlus, the name and the statements inside the scope statement will
carry the outer annotation.

The cases of evaluating (class {a : vH})+β are similar as for (include a)+β.
In the rule CDecPUPlus, the parent of class a has been not declared. The result
includes the declaration of the parent class to denote that it will be evaluated
before class a in the further evaluation.

σ̂, κ̂, v̂C,{e :H} α−→R {e′ :H ′}

σ̂, κ̂, v̂C,(u {e :H})+β α−→s σ̂, κ̂, v̂C,(u {e′ :H ′})+β
DefStepPlus

κ̂(u) = ResourceDef(ρ,s) s′ = merge(ρ,vH)

σ̂, κ̂, v̂C,(u {wβ : vH})+β′ α−→s σ̂, κ̂, v̂C,scope (α def) {$title= wβ∪β
′
s′+β

′
s+β′
}

DefPlus

x

5.3 Correctness of Dependency-Provenance

Dependency provenance we have defined is the dependency information abstracted
dynamically. The propagation of annotations in the evaluation of a manifest

114 Chapter 5. Dependency Provenance

records and transfers the dependency information of each data value until the
end of evaluation is reached. Thus every data value in the catalog carries an
annotation which records the dependency information about all the data values
that have contributed to derive this data value in the process of the evaluation.
In other words, the dependency information of an output data value specifies
any change of which inputs might influence this output and the change of the
other inputs definitely will not. In Cheney et al’s work (2007), they captured this
idea so as to establish a dependency correctness for the annotation behaviour of
annotation-functions. The annotation behaviour of functions on annotated val-
ues (a.k.a. a-values) was characterised using a relation “equal except at c” on
a-values. It tries to capture the changes in the data by relating two data that
are only different at some place annotated by a specific label c. So it is defined
in the way that two a-values are equal except at some label c if they have the
same structure or if they are labelled with c and do not necessarily have the same
structure. This relation was used to examine the influence of two input data equal
except at c on the output data labelled with c. We will adapt this relation to
capture two data values in µPuppet only different at some annotations including
some label l. Then similarly we will use this relation to formalise the correct-
ness characterisation of dependency-provenance by identifying whether two data
values satisfying this relation might influence the specific output data value.

5.3.1 Limitation of Method

Before presenting the correctness characterisation and the proof of the correct-
ness of our dependency-provenance, we want to show their limitations. Due to the
complexity of µPuppet language, it turns out dependency-provenance we defined
cannot capture the full dependency information of data values in some unusual
manifests. The correctness characterisation is also limited to verify such mani-
fests. We will use examples to illustrate where our definition works and where it
does not. Then we will propose some possible approaches to solve this limitation.

5.3.1.1 Positive Examples

Dependency-provenance tracks the dependency due to the primitive computations
and the conditionals. As in the example below, the declaration of class a depends
on the value of $x. According to the propagation of the annotations we defined,

5.3. Correctness of Dependency-Provenance 115

when $x= 1 is true, the statement “include a” will carry the annotation of $x as
its outer annotation.

1 $x=1

2 Class a {

3 $y= 2

4 }

5 If $x=1 { include a}

6 else {$z =2}

Dependency-provenance respects class inheritance in that the variables have
their correct final values according to scope levels as well as the annotations of
these values. In the example below, $y is defined both in the parent class b and
its child class a. When class a is declared, $y is read in class a so it should get
the assignment in class a, i.e. ’Tomorrow is another day’, and its annotation.

1 Class b {

2 $y= ’Nice day ’

3 }

4
5 Class a ($x) inherits b {

6 $y= ’Tomorrow is another day ’

7 file { ’motd ’:

8 path => $x ,

9 content => $y ,

10 }

11 }

12
13 class {a: x=>2}

5.3.1.2 Counter Examples

We have known that the assignment of a variable in a higher level of scope can
be overridden by its assignment in a lower level. In the correctness property we
define, the overriding is tracked by storing every assignment of this variable in
different scope in the store. However, in the unusual case where there is a con-
ditional also taking part in deciding the final value of an overriding variable, the
dependency of the value of this variable on the conditional will not be recorded.
Let us see an example as below.

1 $y=1

2 Class a ($x) {

3 if $x=1 {$y =42}

4 $z=$y

5 }

6 class {a: x=>2}

7 $w=$a::z

116 Chapter 5. Dependency Provenance

In this example, the variable $y is declared and assigned by 1 in the top level of its
manifest. Then a class a is defined where $y is declared and assigned again in the
body of an if statement. y will be overridden by 42 if the conditional is satisfied,
i.e. $x = 1. Then class a is declared meanwhile $x is passed with the value
2. In this case, the inner assignment of $y will not be executed. The variable
$z will get 1 as its value, so as the variable $w. The dependency-provenance
we have defined records the dependency information of conditionals only inside
the statement itself, but is not passed to the statements out of it. The value
of the variable $x decides whether the final value of $y is 42 or 1. However the
dependency on the data value of $x will only be recorded by propagating its
annotation to $y when $x = 1. In the case of the example, the dependency of
$y = 1 on $x is lost. Variable overriding makes the dependency tracking of a data
value not explicit.

5.3.1.3 Solutions

We claim that dependency-provenance we defined in the last section is correct
for most manifests where the variables to be looked up should have their names-
paces in front to identify the scopes where they have been declared. Under
this constraint, $z = $y in the last example should be changed to $z = $::y or
$z = $::a::y. $y = 42 declared in the body of if statement is not allowed since it
has been declared in the scope of class a and will be undefined if $x = 1 fails.
The correctness characterisation we define also can only verify the correctness of
dependency-provenance of the manifests within this semantic behaviour.

Besides adding proper constraints that limit the manifests with unusual se-
mantics, we can also modify dependency-provenance to include more dependency
informations by changing the propagation of the annotations in the evaluation
rules.

In the following presentation, we constrain the semantics of µPuppet to the
sub-language µPuppet’ where the variables to look up have their namespaces in
front.

5.3.2 Equivalence Relation

We will define an equivalence relation between two constructs in µPuppet. To
help with defining this relation, we borrow the concept of a hole “ ” in the syntax

5.3. Correctness of Dependency-Provenance 117

in Pottier and Conchon’s work (Pottier and Conchon, 2000). This work intro-
duced the hole in the syntax of core ML to remove the irrelevant dependency
information in the expressions in terms of an output expression. The hole was
treated as a free variable. We will use the hole in µPuppet that expresses the
contrary meaning in terms of dependency. Since we want to describe the influence
of changing a data value on the output data values, we replace the data value
in our observation with a hole in the constructs and leave the other information
unchanged in the constructs. Therefore, after employing the hole in the syntax,
the equivalence relation on a label l on two constructs will express that either
they are syntactically equal or they are labelled with annotations containing l no
matter whether they share the same structure or not. We will define a floor func-
tion on l to introduce the hole in the annotated µPuppet syntax that replaces
the data values whose annotations include the label l. Its definition is as below.

bvβcl = if l ∈ β
bvβcl = vβ if l 6∈ β

The floor function on l bcl is defined on annotated data values. It takes an anno-
tated data value vβ and returns a hole if the label l belongs to the annotation
β, or returns vβ itself otherwise. Intuitively, the label l indicates the data value
whose annotation includes l we want to observe about whether it influences the
output data values in the catalog.

With the floor function on l in hand, we are ready to express two constructs
are equal except at some label l, i.e. the equivalence relation except l, denoted
as ≡l. We define this relation for expressions, statements and manifests in the
figure 5.7, figure 5.8, figure 5.9 respectively. Moreover it is also defined for the
constructs with an outer annotation +β in the figure 5.10. It is also extended to
the environments in the run-time syntax in the figure 5.11.

In the figure 5.7, the equivalence relation except at l is first defined for two
annotated data values vβ1

1 and vβ2
2 in the rule Value. They are equal except at l

if the results of the floor function on l to them are equal. This rule includes two
cases such that vβ1

1 ≡l v
β2
2 . One is that l is in both β1 and β2. Then bvβ1

1 cl =
bvβ2

2 cl = . The other case is that l is not in β1 or β2. Then to satisfy the
condition bvβ1

1 cl = bvβ2
2 cl, v

β1
1 = vβ2

2 . The other expressions are structured. The
equivalence relation except at l on them is defined on the expressions having the
same structure. For two + expressions e1 + e2 and e3 + e4, they are equal except
at l up to commutativity if two operands are equal except at l respectively, i.e.

118 Chapter 5. Dependency Provenance

1 if $x=3 { $y=2 } else { }

Figure 5.6: Assignment in the if statement

e1 ≡l e3 and e2 ≡l e4. The relation on the expressions of other operations is
defined similarly. For the expressions Hash, Match and Selector, the relation is
defined as two expressions are equivalent except at l if the two sub-constructs
of every corresponding part in them are equal except at l. The equivalence
relation on statements, manifests and environments in the figure 5.8, figure 5.9
and figure 5.11 is also defined on two constructs with the same structure such
that the two sub-constructs of every corresponding part are equal except at l.

The equivalence relation on stores, definitions and catalogs is defined in the
figure 5.11. The store σ̂ is to keep the values of the variable by processing an
assignment statement. While an assignment can appear as the body in the condi-
tional, its appearance in the store depends on the control values in the conditional.
See an example as in the figure 5.6. When $x= 3{l} or $x= 1{l}, the evaluation
result of this statement would be $y = 2 or empty statement. In the first case,
y and its value 2{l,l′} will be stored in σ̂. In the second case, y will be not in σ̂.
However, in two cases, the dependency on $x in terms of the label l, two stores
should follow the equivalence relation. For defining the equivalence relation on
stores, we generalise the floor function bcl on annotation data values to stores.
Similar to how it deals with annotation data values, it will leave out the triples
where the variables depend on the data value represented by the label l, i.e. their
annotations include l. The floor function on stores is defined as below.

b{(x+β1
1 ,α1,v

β11
1), . . . ,(x+βn

n ,αn,v
βnn
n)}cl = {b(x+β1

1 ,α1,v
β11
1)cl, . . . ,b(x+βn

n ,αn,v
βnn
n)cl}

b(x+βi
i ,αi,v

βii
i)cl = if l ∈ βi

b(x+βi
i ,αi,v

βii
i)cl = (x+βi

i ,αi,v
βii
i) if l 6∈ βi

The function removes the triples that depend on the information represented
by l while remain the others. In this way, we can define the equivalence relation
on the stores in this example as if the results of the floor functions on them are
equal they are equal except at l, as shown in the rule Sigma in the figure 5.11.

Similarly to the assignments, the resource values could also depend on the
conditionals. To define the equivalence relations on catalog in terms of some
label l, we will need to remove the resource values that depend on l. We extend

5.3. Correctness of Dependency-Provenance 119

the floor function to catalogs too. The function is defined as below.

b(vR)1, . . . ,(vR)ncl = {b(vR)1cl, . . . ,b(vR)ncl}
b(t {ŵ : v̂H})+βcl = if l ∈ β
b(t {ŵ : v̂H})+βcl = (t {ŵ : v̂H})+β if l 6∈ β

The function on annotated catalogs is defined as if the outer annotation of a
resource value includes the label l this resource value will be removed. Otherwise
it keeps this resource value. Then the equivalence relation on catalogs will be
defined as two catalogs are equal except at l if the results of the floor function on
them are equal as shown by the rule Catalog in the figure 5.11.

Since any construct could carry outer annotations, we will define the equiv-
alence relation for such constructs too. As we notice, the outer annotations of
the constructs represent the dependency information on which these constructs
depended. If the outer annotations contain the label l of some data value in our
observation, these constructs may depend on this data value. Thus these con-
structs satisfy the condition of the equivalence relation since this relation requires
the constructs not labelled by l are equal but consider the constructs of which
the annotations contains l the same.

In the figure 5.10, we will define the equivalence relation for expressions, state-
ments and manifests with outer annotations respectively. There are two possi-
bilities for each of them to satisfy this relation. One is that the two constructs
on which the outer annotations are labelled are equal except at l themselves. In
this possibility, whether l is contained in β1 or β2 is irrelevant since both two
constructs are equal in terms of the dependency on the data value l is labelled
on. The other possibility is that l is contained in both β1 and β2. As we notice,
the outer annotations of the constructs represent the dependency information on
which these constructs have depended on. If the outer annotations includes the
label l, these constructs must depend on the data value l is labelled on. Thus
these constructs should be equal in terms of the dependency on this data value,
while whether they have the same structures or not is not relevant. The rules
TopAnnoEI, TopAnnoSI and TopAnnoMI formalise this possibility for expres-
sions, statements and manifests respectively. Notice more that expressions are
statements and statements are manifests meanwhile. These rules imply that any
two constructs in µPuppet could be related by this relation if the condition on
their outer annotations holds for this possibility.

120 Chapter 5. Dependency Provenance

bvβ1
1 cl = bvβ2

2 cl

vβ1
1 ≡l v

β2
2

Value
x1 = x2

$x1 ≡l $x2
Var

x1 = x2

$::x1 ≡l $::x2
VarSco

a1 = a2 x1 = x2

$::a1::x1 ≡l $::a2::x2
VarClaSco

e1 ≡l e3 e2 ≡l e4

e1 +e2 ≡l e3 +e4
Add

e1 ≡l e3 e2 ≡l e4

e1 > e2 ≡l e3 > e4
CompL

e1 ≡l e3 e2 ≡l e4

e1∧e2 ≡l e3∧e4
And

e1 ≡l e2

!e1 ≡l !e2
Not

k1 = k′
1 e1 ≡l e′

1 H1 ≡l H2

k1⇒ e1,H1 ≡l k′
1⇒ e′

1,H2
Hash

c1 ≡l c2 e1 ≡l e2 M1 ≡lM2

c1⇒ e1,M1 ≡l c2⇒ e2,M2
Match

e1 ≡l e2 M1 ≡lM2

e1 ? {M1} ≡l e2 ? {M2}
Selec

l ∈ β1∩β2

defaultβ1 ≡l defaultβ2
Default

l 6∈ β1∪β2

defaultβ1 ≡l defaultβ2
DefaultI

Figure 5.7: Equivalence Relation Except at l on Expressions

5.3.3 Correctness of Dependency Provenance

The equivalence relation describes that two constructs are equal except where
their sub-constructs are labelled with annotations including l. It provides the
observation that two constructs are the same except the places labelled with l.
This gives the way of describing changing some part of the inputs identified by
its label. Thus we can capture the correctness of dependency provenance by
examining the changes of the output data values when part of the dependency
information of output data values in our observation is changed. The equivalence
relation allows us to ignore the information labelled with l. Thus we can relate
the input data values before and after change at some label l. They hold for the
equivalence relation. After the evaluation, we will examine again the output data
values with the output before whether they hold for the equivalence relation. It
means that if the dependency provenance we define is correct, the output data
values before and after the changes of the input data values should hold for the
equivalence relation. The outputs not labelled with l should be unchanged. Thus

5.3. Correctness of Dependency-Provenance 121

s≡l s
SymS

s1 ≡l s3 s2 ≡l s4

s1 s2 ≡l s3 s4
SeqS

x1 = x2 e1 ≡l e2

$x1 = e1 ≡l $x2 = e2
Assign

e1 ≡l e2 s1 ≡l s2 s′
1 ≡l s′

2

if e1 {s1} else {s′
1} ≡l if e2 {s2} else {s′

2}
If

e1 ≡l e2 s1 ≡l s2

unless e1 {s1} ≡l unless e2 {s2}
Unless

e1 ≡l e2 C1 ≡l C2

case e1 {C1} ≡l case e2 {C2}
Case

c1 ≡l c2 s1 ≡l s2 C1 ≡l C2

c1 : {s1} C1 ≡l c2 : {s2} C2
CaseBody

t1 = t2 e1 ≡l e2 H1 ≡l H2

t1 {e1 :H1} ≡l t2 {e2 :H2}
ResDec

u1 = u2 e1 ≡l e2 H1 ≡l H2

u1 {e1 :H1} ≡l u2 {e2 :H2}
DefResTDec

a= b

include a≡l include b
ClassDel

a1 = a2 H1 ≡l H2

class {a1 :H1} ≡l class {a2 :H2}
ClassDelI

α1 = α2 s1 ≡l s2

scope α1 s1 ≡l scope α2 s2
Scope

Figure 5.8: Equivalence Relation Except at l on Statements

the outputs before and after the change of the inputs should be equal. The
equivalence relation on them also holds. Those outputs labelled with l might be
changed. Since the equivalence relation ignores the information labelled with l,
those outputs should also satisfy the equivalence relation.

Thus, if the outputs hold for the equivalence relation up to the changes in
the inputs, the dependency information abstracted in the annotations is correct.
We will use the equivalence relation to express the changes and relate them so
to formalise the correctness of dependency provenance. We only concern the
manifests that terminate so the correctness we will address is partial.

122 Chapter 5. Dependency Provenance

m≡l m
SymM

m1 ≡l m3 m2 ≡l m4

m1 m2 ≡l m3 m4
SeqM

Q1 =Q2 s1 ≡l s2

node Q1 {s1} ≡l node Q2 {s2}
NodeDef

u1 = u2 ρ1 ≡l ρ2 s1 ≡l s2

define u1 (ρ1) {s1} ≡l define u2 (ρ2) {s2}
DefResTDef

a1 = a2 s1 ≡l s2

class a1 {s1} ≡l class a2 {s2}
ClassDefI

a1 = a2 ρ1 ≡l ρ2 s1 ≡l s2

class a1 (ρ1) {s1} ≡l class a2 (ρ2) {s2}
ClassDefII

a1 = a2 b1 = b2 s1 ≡l s2

class a1 inherits b1 {s1} ≡l class a2 inherits b2 {s2}
ClassDefIII

a1 = a2 b1 = b2 ρ1 ≡l ρ2 s1 ≡l s2

class a1 (ρ1) inherits b1 {s1} ≡l class a2 (ρ2) inherits b2 {s2}
ClassDefIV

x= x′ e≡l e′ ρ≡l ρ′

x= e,ρ≡l x′ = e′,ρ′
Param

Figure 5.9: Equivalence Relation Except at l on Manifests

5.3.3.1 Invariants of the Evaluation

Since the evaluation and the propagation of annotations is defined in the expres-
sion, statement and manifest levels, we will first show the invariants about the
correctness of dependency provenance in these evaluations respectively. Then we
will state the correctness of dependency provenance when evaluating a manifest.

Invariant of Expression Evaluation To examine the correctness of the depen-
dency information generated by the annotation propagation in the expression
evaluation, we will show the evaluation of two expressions which are equal except
at some label l and check whether their output expressions still follow the equiv-

5.3. Correctness of Dependency-Provenance 123

alence relation or not. In the evaluation of expressions, the environments could
be visited for the values and scopes of the variables. So we require the environ-
ments of the evaluation of two expressions also follow the equivalence relation.
The correctness of dependency provenance in the expression evaluation is stated
as an invariant as below.

Theorem 5.3.1 (Invariant of Expression Evaluation). Given σ̂1, κ̂1, (̂vC)1, e1
α1−→

e′1 and σ̂2, κ̂2, (̂vC)2, e2
α2−→ e′2 in µPuppet’, if we have σ̂1 ≡l σ̂2, κ̂1 ≡l κ̂2, (̂vC)1 ≡l

(̂vC)2, α1 ≡l α2 and e1 ≡l e2 at some label l, then e′1 ≡l e′2.

Proof. Assume σ̂1 ≡l σ̂2, κ̂1 ≡l κ̂2, (̂vC)1 ≡l (̂vC)2. To have two expressions that
are equal except at l, i.e. e1 ≡l e2, they must either have the same structure or
have outer annotations including l. In the first case, we will need to prove e′1≡l e′2.
In the second case, we assume that e1 is in the form e+β1

01 and e2 is in the form
e+β2

02 . As we defined the judgement of the propagation of outer annotations in
the section 5.2.2, the outer annotations of the inputs will be transferred as the
outer annotations of their outputs shown as below.

σ̂1, κ̂1, (̂vC)1, e
+β1
01

α1−→ (e′01)+β1

σ̂2, κ̂2, (̂vC)2, e
+β2
02

α2−→ (e′02)+β2

Then if e+β1
01 ≡l e+β2

02 , then either e01 ≡l e02 or l ∈ β1∩β2 by definition. For the
first possibility, we should show e′01 ≡l e′02. It falls to prove the same as in the
first case, i.e. e′1 ≡l e′2. For the second possibility, the two output expressions
(e′01)+β1 and (e′02)+β2 will have their outer annotations including l. According
to the definition of the equivalence relation we have (e′01)+β1 ≡l (e′02)+β2 . In the
following we will prove the first case which is to show e′1 ≡l e′2.

As mentioned, in the first case e1 and e2 have the same structure. Then we
can prove this theorem for each kind of expression.

1 Variables

Suppose two variables $α1x
β1
1 and $α2x

β2
2 . There are four rules possibly

applicable for their evaluations. When α1 (α2) is ε, i.e. $α1x
β1
1 ($α2x

β2
2)

is of the form $xβ1
1 ($xβ2

2), the rule LVar or PVar could apply depending on
if x1 ∈ dom(σα′

1
) or not where α′1 is the current evaluation scope. However

since σ̂1 ≡l σ̂2, we observe in its definition that if two variables are equal
except at l their values also follow this relation and their annotations are

124 Chapter 5. Dependency Provenance

the same as the variables. Then no matter in which scope $xβ1
1 ($xβ2

2) was
stored, σ̂1α12(xβ1

1)≡l σ̂2α22(xβ2
1) for some α12 and α22. If α1 (α2) is the top

scope :: or the class scope :: a ::, the similar analysis will apply too.

2 Arithmetic expressions

We choose the rules for evaluating + expressions as an example of proving
the theorem.

Suppose two + expressions e1 + e2 and e3 + e4 such that e1 + e2 ≡l e3 + e4.
Since e1, e2, e3 and e4 could be values or other expressions, we need to
consider double derivations of the evaluation of two expressions e1 +e2 and
e3 + e4. However, by definition, we know e1 ≡l e3 and e2 ≡l e4. For the
sub-constructs in the expressions, we only consider they are the constructs
without outer annotations for the same reason we mentioned. Thus by
definition, e1 and e3 have the same structure, so as e2 and e4. Each of the
three rules will be employed depending on whether e1, e2, e3 and e4 are
values or not.

Case (1) e1, e2, e3 and e4 are values. Then the rule ArithValue is employed.

We suppose e1 + e2 = iβ1
1 + iβ2

2 and e3 + e4 = iβ3
3 + iβ4

4 . Then the evaluation
of them will be as below.

σ̂1, κ̂1, (̂vC)1, i
β1
1 + iβ2

2
α−→ (i1 +Z i2)β1∪β2

σ̂2, κ̂2, (̂vC)2, i
β3
3 + iβ4

4
α−→ (i3 +Z i4)β3∪β4

We will prove (i1 +Z i2)β1∪β2 ≡l (i3 +Z i4)β3∪β4 . We know that iβ1
1 ≡l i

β3
3 and

iβ2
2 ≡l i

β4
4 . We know by definition either i1 = i3 and l 6∈ β1∪β3, or l ∈ β1∩β3.

Similarly we have either i2 = i4 and l 6∈ β2∪β4, or l ∈ β2∩β4. Since i1 +Z i2

and i3 +Z i4 are values, we will check the condition of the rule Value in the
definition, i.e. whether b(i1 +Z i2)β1∪β2cl = b(i3 +Z i4)β3∪β4cl or not. Then
we need to check whether l is in β1∪β2 and β3∪β4 or not. There are two
cases which can be deduced.

(a) i1 = i3, i2 = i4 and l 6∈ β1∪β2 and l 6∈ β3∪β4

(b) l ∈ β1∪β2 and l ∈ β3∪β4

5.3. Correctness of Dependency-Provenance 125

Then b(i1 +Z i2)β1∪β2cl = b(i3 +Z i4)β3∪β4cl. Then we have (i1 +Z i2)β1∪β2 ≡l
(i3 +Z i4)β3∪β4 by definition.

Case (2) e1 and e3 are not values and are expressions of the same structure.
Then the rule ArithLeft is employed. The evaluation of the two expressions
will be as below.

σ̂1, κ̂1, (̂vC)1, e1
α−→ e′1

σ̂1, κ̂1, (̂vC)1, e1 + e2
α−→ e′1 + e2

σ̂2, κ̂2, (̂vC)2, e3
α−→ e′3

σ̂2, κ̂2, (̂vC)2, e3 + e4
α−→ e′3 + e4

.

Since σ̂1, κ̂1, (̂vC)1, e1
α−→ e′1 and σ̂2, κ̂2, (̂vC)2, e3

α−→ e′3, and e1≡l e3, by induc-
tion hypothesis, we have e′1 ≡l e′3. Since e2 ≡l e4, we have e′1 +e2 ≡l e′3 +e4

by definition.

Case (3) e1 and e3 are values. e2 and e4 are expressions of the same struc-
ture. Then the rule ArithRight is employed.

Suppose e1 + e2 = iβ1
1 + e2 and e3 + e4 = iβ3

3 + e4. Their evaluation will be
as below.

σ̂1, κ̂1, (̂vC)1, e2
α−→ e′2

σ̂1, κ̂1, (̂vC)1, i
β1
1 + e2

α−→ iβ1
1 + e′2

σ̂2, κ̂2, (̂vC)2, e4
α−→ e′4

σ̂2, κ̂2, (̂vC)2, i
β3
3 + e4

α−→ iβ3
3 + e′4

.

Since σ̂1, κ̂1, (̂vC)1, e2
α−→ e′2 and σ̂2, κ̂2, (̂vC)2, e4

α−→ e′4, and e2≡l e4, by induc-
tion hypothesis, we have e′2≡l e′4. Since iβ1

1 ≡l i
β3
3 , we have iβ1

1 +e′2≡l i
β3
3 +e′4

by definition.

The proofs of the rules for the expressions of other primitive operations are
similar and omitted here.

3 Selector expressions

126 Chapter 5. Dependency Provenance

Suppose two selector expressions e1 ?{e2⇒ e3,M1} and e4 ?{e5⇒ e6,M2}
such that they are equal except at some label l. We will need to consider
double derivations of these two expressions to prove the theorem. However,
we have by definition that e1 ≡l e4, e2 ≡l e5, e3 ≡l e6 and M1 ≡lM2. Then
we know e1 and e4 either have the same structure or they have outer anno-
tations, so as for e2 and e5, e3 and e6, and M1 and M2. We only consider
the first case as usual. Then the control expressions e1 and e4 (e2 and e5)
are either both values or both not. When they are not values, the rule SCon
and SEle will be employed. The proofs are trivial we omitted here. We will
prove the case when they are values.

We suppose the two expressions will be vβ1
1 ?{vβ2

2 ⇒ e3,M1} and vβ4
4 ?{vβ5

5 ⇒
e6,M2}. Whether the rule SChoose or SChooseI is employable depends
on whether v1 = v2 and v4 = v5 or not. The evaluation of two rules will
propagate the outer annotations +(β1 ∪ β2) and +(β4 ∪ β5) to the result
expressions. To show whether the evaluation result expressions are equal
except at l or not, we will check whether l is in the outer annotations or
not.

Since vβ1
1 ≡l v

β4
4 , vβ2

2 ≡l v
β5
5 , we have bvβ1

1 cl = bvβ4
4 cl and bvβ2

2 cl = bvβ5
5 cl by

definition. Then we can infer

(a) l ∈ β1∩β4, or v1 = v4 and l 6∈ β1∪β4

(b) l ∈ β2∩β5, or v2 = v5 and l 6∈ β2∪β5

Then there are four combinations of these conditions which derive the fol-
lowing.

(a) l ∈ β1∩β4 and l ∈ β2∩β5.

(b) l ∈ β1∩β4, v2 = v5 and l 6∈ β2∪β5.

(c) v1 = v4, l 6∈ β1∪β4, and l ∈ β2∩β5.

In these three cases, we would not know whether v1 = v2 and v4 = v5

or not. The rule SChoose or SChooseI could be employed for each
expression. However we notice l will be in the outer annotations +(β1∪
β2) and +(β4 ∪β5) of the evaluation results no matter which rule is
employed. Then by definition, the results will be equal except at l.

(d) v1 = v4, v2 = v5, l 6∈ β1∪β4 and l 6∈ β2∪β5.

5.3. Correctness of Dependency-Provenance 127

Then we have v1 = v2 and v4 = v5, or v1 6= v2 and v4 6= v5. In the
first case, the rule SChoose is employed for both selector expressions.
The results will be e+(β1∪β2)

3 and e
+(β4∪β6)
6 . But since e3 ≡l e6 by as-

sumption, we have e+(β1∪β2)
3 ≡l e

+(β4∪β6)
6 by definition. In the second

case, the rule SChooseI is employed for both selector expressions. The
results will be (vβ1

1 ?{M1})+(β1∪β2) and (vβ4
4 ?{M2})+(β4∪β5). Since

M1≡lM2 by assumption, we have (vβ1
1 ?{M1})+(β1∪β2)≡l (vβ4

4 ?{M2})+(β4∪β5)

by definition.

There are other cases when the current branch in the selector body is a
default branch. Since the annotated defaultβ1 could only be equal except
at l with some defaultβ2 if their annotations satisfy the conditions in the
definition by definition. The selector expressions can be equal except at l
only when their current branches are default branches. The proof of this
case will be similar to above when the current branches are expressions. We
omit it here.

The proofs for other expressions are similar and omitted here.

Invariant of Resource Evaluation

Theorem 5.3.2 (Invariant of Resource Evaluation). Given σ̂1, κ̂1, (̂vC)1,D1
α−→R

D′1 and σ̂2, κ̂2, (̂vC)2,D2
α−→R D

′
2 in µPuppet’, if σ̂1 ≡l σ̂2, and κ̂1 ≡l κ̂2, (̂vC)1 ≡l

(̂vC)2 and D1 ≡l D2, then D′1 ≡l D′2.

We consider two resources for the proof without outer annotations for the
same reason as for expressions. They must have the same structure as well. Thus
we could prove this theorem for each rule of resource evaluation. These proofs
can be done by induction on the derivation. We omit them here.

Invariant of Statement Evaluation The evaluation of statements may change
the environments. Given two statements and their environments such that they
are equal except at l, after the evaluation on them, we want to show the re-
sult statements as well as the updated environments still respect the equivalence
relation. We state it as invariant of statement evaluation as below.

128 Chapter 5. Dependency Provenance

Theorem 5.3.3 (Invariant of Statement Evaluation). Given σ̂1, κ̂1, (̂vC)1, s1
α−→

σ̂′1, κ̂
′
1, (̂vC)′1, s′1 and σ̂2, κ̂2, (̂vC)2, s2

α−→ σ̂′2, κ̂
′
2, (̂vC)′2, s′2 in µPuppet’, if σ̂1 ≡l σ̂2,

and κ̂1 ≡l κ̂2, (̂vC)1 ≡l (̂vC)2 and s1 ≡l s2, then σ̂′1 ≡l σ̂′2, κ̂′1 ≡l κ̂′2, (̂vC)′1 ≡l (̂vC)′2
and s′1 ≡l s′2.

Proof. Statements can carry outer annotations. As the analysis of expression
evaluation, two such statements are equal except at some l if either they follow
the equivalence relation themselves or the label l is included in their outer anno-
tations. In the first case, we need to show the evaluation result of two statements
are still equal except at l. In the second case, their evaluation results will carry
the same outer annotations so they are equal except at l as well. We will prove the
invariant in the following for the statements without outer annotations. Then by
definition, the given two statements have the same structure. We will prove the
invariant for each kind of statements. We assume in the following proof the two
environments for two statements σ̂1, κ̂1, (̂vC)1 and σ̂2, κ̂2, (̂vC)2 such that σ̂1 ≡l σ̂2,
κ̂1 ≡l κ̂2, (̂vC)1 ≡l (̂vC)2. The current evaluation scopes of them are α1 and α2

such that α1 ≡l α2.

1 Assignment statement

Suppose two assignment statements $x1 = e1 and $x2 = e2 such that $x1 =
e1 ≡l $x2 = e2. By definition, we know x1 ≡l x2 and e1 ≡l e2. Then we have
x1 = x2 by definition. Suppose e1 and e2 are in the form e+β01

01 ≡l e+β02
02 .

Since e1 ≡l e2, by definition, we know either they have the same structure
or both e1 and e2 have outer annotations. We consider the first case as
usual.

There are two rules applicable to assignments. One is to store the values
of the variables and the other is to evaluate the expressions in them. But
since e1 and e2 have the same structure, their evaluation will employ the
same rule.

When e1 and e2 are not values, the rule AssignStep is applied. Suppose
their evaluations are as below.

σ̂1, κ̂1, (̂vC)1, e1
α1−→ e′1

σ̂1, κ̂1, (̂vC)1,$x= e1
α1−→s σ̂1, κ̂1, (̂vC)1,$x= e′1

σ̂2, κ̂2, (̂vC)2, e2
α2−→ e′2

σ̂2, κ̂2, (̂vC)2,$x= e2
α2−→s σ̂2, κ̂2, (̂vC)2,$x= e′2

5.3. Correctness of Dependency-Provenance 129

Since the environments have been not changed after the evaluation, we only
need to prove $x1 = e′1≡l $x2 = e′2. Since σ̂1, κ̂1, (̂vC)1, e1

α−→ e′1, σ̂2, κ̂2, (̂vC)2, e2
α−→

e′2, and e1 ≡l e2, by induction hypothesis, we have e′1 ≡l e′2. Since x1 = x2,
we have $x1 = e′1 ≡l $x2 = e′2.

When e1 and e2 are values, the rule Assign is employed. Suppose e1 = vβ1
1

and e2 = vβ2
2 . Their evaluations will be as below.

x /∈ dom(σα1)

σ̂1, κ̂1, (̂vC)1,$x1 = vβ1
1

α1−→s σ̂1[(α1,x1) : vβ1
1], κ̂1, (̂vC)1,skip

x /∈ dom(σα2)

σ̂2, κ̂2, (̂vC)2,$x2 = vβ2
2

α2−→s σ̂2[(α2,x2) : vβ2
2], κ̂2, (̂vC)2,skip

We have skip≡l skip by definition. We want to prove σ̂1[(α1,x1) : vβ1
1]≡l

σ̂2[(α2,x2) : vβ2
2]. Since x1 = vβ1

1 ≡l x2 = vβ2
2 , we have x1 = x2 and vβ1

1 ≡l
vβ2

2 by definition. We have α1 = α2 by assumption. Then we have the
extensions of σ̂1 and σ̂2 on $x1 and $x2 follow the equivalence relation, i.e.
σ̂1[(α1,x1) : vβ1

1]≡l σ̂2[(α2,x2) : vβ2
2].

2 If statement

Suppose two if statements sif1 and sif2 such that sif1 ≡l sif2. We con-
sider the case when they do not have outer annotations. Suppose sif1 =
if e1 {s1} else {s′1} and sif1 = if e2 {s2} else {s′2}. There are three rules
applicable to each of them. However since sif1 ≡l sif2, we have e1 ≡l e2,
s1 ≡l s2 and s′1 ≡l s′2. e1 and e2 must be both values or both not.

When e1 and e2 are not values, the rule IfStep is applied to them. Their
evaluations are as below.

σ̂1, κ̂1, (̂vC)1, e1
α1−→ e′1

σ̂1, κ̂1, (̂vC)1,if e1 {s1} else {s′1}
α1−→s σ̂, κ̂1, v̂C,if e′1 {s1} else {s2}

σ̂2, κ̂2, (̂vC)2, e
α2−→ e′2

σ̂2, κ̂2, (̂vC)2,if e2 {s2} else {s′2}
α2−→s σ̂2, κ̂2, (̂vC)2,if e′2 {s3} else {s4}

Since the environments have not been changed by the evaluation, we only
need to prove if e′1 {s1} else {s′1} ≡l if e′2 {s2} else {s′2}.

130 Chapter 5. Dependency Provenance

By assumption, we have σ̂1, κ̂1, (̂vC)1, e1
α−→ e′1 and σ̂2, κ̂2, (̂vC)2, e2

α−→ e′2.
Since σ̂1 ≡l σ̂2, κ̂1 ≡l κ̂2, (̂vC)1 ≡l (̂vC)2, and e1 ≡l e2, by induction hypothe-
sis, we have e′1≡l e′2. Since s1≡l s2 and s′1≡l s′2, we have if e′1 {s1} else {s′1}≡l
if e′2 {s2} else {s′2}.

When e1 and e2 are values, the rule IfT or IfF could apply to them depending
on whether they are true or false. Suppose e1 = vβ1

1 and e2 = vβ2
2 . Since

vβ1
1 ≡l v

β2
2 , we have either l ∈ β1∩β2, or v1 = v2 and l 6∈ β1∪β2 by definition.

In the first case, either of the rules IfT and IfF could apply to the state-
ments. The evaluation result of each statement will be s+β1

1 or s′+β1
1 (s+β2

2

or s′+β2
2) if the rule IfT or IfF is applied. However, the results of two if

statements carries the outer annotations +β1 and +β2 no matter which
rule is employed. Moreover since l ∈ β1∩β2, we have the evaluation results
follow s′β1

i ≡l s
′β2
j (i, j ∈ {1,2}) by definition.

In the second case, since v1 = v2, the same rule IfT or IfF will be applied to
both if statements. Their evaluation results will be s+β1

1 and s+β2
2 , or s′+β1

1

and s′+β2
2 if the rule IfT or IfF is applied. Since s1 ≡l s2 and s′1 ≡l s′2, we

have s+β1
1 ≡l s+β2

2 or s+β1
1 ≡l s+β2

2 in each case.

3 Case statement
Suppose two case statements sc1 and sc2 such that sc1 ≡l sc2. We consider
the case when they do not have outer annotations as usual. Then they have
the same structure. Suppose sc1 = case e1 {C1} and sc2 = case e2 {C2}.
Since sc1 ≡l sc2, we know e1 ≡l e2 and C1 ≡l C2 by definition. Then we
know e1 and e2 have the same structure.

If they are not values, the rule CaseStep1 will be applicable. The theorem
will be proved by induction on the derivation of the evaluation. We omit
it here. If they are values, we assume the statements are case vβ1

1 {e1 :
{s1} C1} and case vβ2

2 {e2 : {s2} C2}. Since e1 : {s1} C1 ≡l e2 : {s2} C2,
we have e1 ≡l e2, s1 ≡l s2 and C1 ≡l C2. Then the rule CaseStep2 will be
applied to both statements. The proof will be constructed by induction
on the evaluation derivation. We omit it here. If e1 and e2 are values, we
assume the two statements are case vβ1

1 {v
′β′

1
1 : {s1} C1} and case vβ2

2 {v
′β′

2
2 :

{s2} C2}. Then two rules are applicable to them which are CaseMatch
and CaseNoMatch depending whether v1 = v′1 and v2 = v′2 or not. The

5.3. Correctness of Dependency-Provenance 131

evaluation results of each rule will carry the outer annotations +(β1∪β′1)
and +(β2 ∪β′2). We know that vβ1

1 ≡l v
β2
2 and v

′β′
1

1 ≡l v
′β′

2
2 . Then we can

infer the following.

(a) l ∈ β1∩β2, or v1 = v2 and l 6∈ β1∪β2

(b) l ∈ β′1∩β′2, or v′1 = v′2 and l 6∈ β′1∪β′2

Then four possible cases can be derived.

(a) l ∈ β1∩β2 and l ∈ β′1∩β′2.

(b) l ∈ β1∩β2, v′1 = v′2 and l 6∈ β′1∪β′2.

(c) v1 = v2, l 6∈ β1∪β2, and l ∈ β′1∩β′2.

In these three cases, we would not know whether v1 = v′1 or v2 = v′2

or not so to know which of the rules CaseMatch and CaseNoMatch
will be applicable. We notice that l will be in the outer annotations
+(β1 ∪β2) and +(β4 ∪β5) of the evaluation results no matter which
rule is employed to the statements. Then by definition, their evaluation
results will be equal except at l.

(d) v1 = v2, v′1 = v′2, l 6∈ β1∪β2 and l 6∈ β′1∪β′2. Then we have v1 = v′1 and
v2 = v′2, or v1 6= v′1 and v2 6= v′2. In the first case, the rule CaseMatch
will be employed to both statements. Their evaluation results will
be s+(β1∪β′

1)
1 and s

+(β2∪β′
2)

2 . But since s1 ≡l s2, we have s+(β1∪β′
1)

1 ≡l
s

+(β2∪β′
2)

2 by definition. In the second case, the rule CaseNoMatch
will be employed to both statements. Their evaluation results will be
(case vβ1

1 {C1})+(β1∪β′
1) and (case vβ2

2 {C2})+(β2∪β′
2). Since C1 ≡l C2,

we have
(case vβ1

1 {C1})+(β1∪β2) ≡l (case vβ2
2 {C2})+(β2∪β′

2) by definition.

4 Include statement

Assume two declarations of classes include a1 and include a2 such that
include a1 ≡l include a2. Then a1 = a2 by definition. Since we know
their definition environments κ̂1 and κ̂2 are also equal except at l, we have
κ̂1(a1)≡l κ̂2(a2). The definitions of two classes are either both ClassDef((coptc)1,ρ1, s1)
and ClassDef((coptc)2,ρ2, s2) or DeclaredClass(α1) and DeclaredClass(α2). They
satisfy

132 Chapter 5. Dependency Provenance

ClassDef((coptc)1,ρ1, s1) ≡l ClassDef((coptc)2,ρ2, s2) or DeclaredClass(α1) ≡l
DeclaredClass(α2). Then (coptc)1 = (coptc)2, ρ1 ≡l ρ2 and s1 ≡l s2, or α1 = α2

by definition. We know that both class declarations will employ the same
evaluation rule.

In the first case, when (coptc)1 = (coptc)2 = ⊥, the rule IncU will apply to
both class declarations. The applications are as below.

κ̂1(a1) = ClassDef(⊥,ρ1, s1) s′1 = merge(ρ1, ε) β1 baseof κ̂1 α1)

σ̂1, κ̂1, (̂vC)1,include a1
α1−→
′
s σ̂1,κ1[a1 : DeclaredClass(β1)], (̂vC)1,scope (::a1) s′1 s1

include

κ̂2(a2) = ClassDef(⊥,ρ2, s2) s′2 = merge(ρ2, ε) β2 baseof κ̂2 α2

σ̂2, κ̂2, (̂vC)2,include a2
α2−→
′
s σ̂2,κ2[a2 : DeclaredClass(β2)], (̂vC)2,scope (::a2) s′2 s2

include1

Since ρ1≡l ρ2, we have s′1≡l s′2. By induction hypothesis, we have β1 baseof κ̂1

α1 and β2 baseof κ̂2 α2 and we know they are equal except at l. Then we
have β1 = β2 and α1 = α2. Then the updates of κ̂1 and κ̂2 with κ̂1(a1) =
DeclaredClass(β1) and κ̂2(a2) = DeclaredClass(β2) are equal except at l, i.e.
κ1[a1 : DeclaredClass(β1)]≡l κ2[a2 : DeclaredClass(β2)]. Since s1 ≡l s2, s′1 ≡l
s′2 and ::a1 = ::a2, we have scope (::a1) s′1 s1 and scope (::a2) s′2 s2.

When the class a1 and a1 have parent classes, the rule IncPU or i.e. (coptc)1 =
b1 and (coptc)2 = ⊥, the rule IncU or IncPD could apply. However since
κ̂1(a1) ≡l κ̂2(a2) and a1 = a2, we have κ̂1(a1) ≡l κ̂2(a2). Then either IncU
or IncPD will apply to both class declarations. The proofs are similar as
that using the rule IncU. We omit them here.

The second case when both classes have been declared, the rule IncD will
apply. The result skip is equal except at l to itself.

5 Scope statement
Assume two scope statements scope α′1 s1 and scope α′2 s2 such that they
are equal except at l. Then by definition, we have α′1 ≡l α′2 and s1 ≡l s2.
Then they must employ the same rule. When the statements s1 and s2

are not skip and the scope α′1 and α′2 are one of ::, ::nd and ::, the rule
ScopeStep is applicable. The evaluations of two statements are as below.

5.3. Correctness of Dependency-Provenance 133

α′1 ∈ {::, ::a, ::nd} σ̂1, κ̂1, (̂vC)1, s1
α′

1→s′
1
σ̂1, κ̂′1, (̂vC)′1, s′1

σ̂1, κ̂1, (̂vC)1,scope α′1 s1
α1−→s σ̂′1, κ̂

′
1, (̂vC)′1,scope α′1 s

′
1

scope

α′2 ∈ {::, ::a, ::nd} σ̂2, κ̂2, (̂vC)2, s2
α′

2→s1 σ̂2, κ̂′2, (̂vC)′2, s′2
σ̂2, κ̂2, (̂vC)2,scope α′2 s2

α2−→s σ̂′2, κ̂
′
2, (̂vC)′2,scope α′2 s

′
2

scope1

By induction hypothesis, we have σ̂1, κ̂1, (̂vC)1, s1
α′

1→s′
1
σ̂1, κ̂′1, (̂vC)′1, s′1 and

σ̂2, κ̂2, (̂vC)2, s2
α′

2→s1 σ̂2, κ̂′2, (̂vC)′2, s′2. Moreover we know σ̂′1 ≡l σ̂′2, κ̂′1 ≡l κ̂′2,
(̂vC)′1 ≡l (̂vC)′2 and s′1 = s′2. Then we have scope α′1 s′1 ≡l scope α′2 s′2.

When s1 and s1 are skip statements, the rule ScopeDone is applied. The
environments would not be updated. The results of the evaluations are
skip statements and they are equal except at l.

When the scope α′1 and α′2 are the scopes of the defined resource types,
the rule DefScopeStep or DefScopeDone will be applicable. The proofs are
similar as above. We omit them here.

Invariant of Manifest Evaluation

Theorem 5.3.4 (Invariant in Manifest Evaluation). Given σ̂1, κ̂1, (̂vC)1,m1
α1−→

σ̂′1, κ̂
′
1, (̂vC)′1,m′1 and σ̂2, κ̂2, (̂vC)2,m2

α2−→ σ̂′2, κ̂
′
2, (̂vC)′2,m′2 in µPuppet’, if σ̂1≡l σ̂2,

κ̂1 ≡l κ̂2, (̂vC)1 ≡l (̂vC)2, α1 ≡l α2 and m1 ≡l m2 hold, then σ̂′1 ≡l σ̂′2, κ̂′1 ≡l κ̂′2,
(̂vC)′1 ≡l (̂vC)′2 and m′1 ≡l m′2.

The proof of this theorem is also conducted by induction on the evaluation
of every kind of manifest element. Since there are no conditional or primitive
constructs, there will be no double derivations in the proofs. We omit them here.

Invariants of Evaluating Constructs with Outer Annotations

5.3.3.2 Correctness of Dependence-Provenance

Theorem 5.3.5 (Correctness of Dependence-Provenance). Given two manifests
m1 andm2 such thatm1≡lm2, andm1→∗ σ̂1, κ̂1, (̂vC)1,skip andm2→∗ σ̂2, κ̂2, (̂vC)2,skip,
then σ̂1 ≡l σ̂2, κ̂1 ≡l κ̂2, (̂vC)1 ≡l (̂vC)2.

134 Chapter 5. Dependency Provenance

Proof. Assume two manifests m1 and m2 such that m1 ≡l m2. Suppose the
evaluation trains on them as below.

m1→∗ σ̂1, κ̂1, (̂vC)1,skip

m2→∗ σ̂2, κ̂2, (̂vC)2,skip

In every evaluation step we can prove the evaluation outputs follow Theorem 5.3.1,
5.3.2, 5.3.3 and 5.3.4. That is the result manifests respect the equivalence relation
as well as the updated stores, definitions and catalogs. Thus when the evalua-
tion steps stop at skip, the environments satisfy the equivalence relation. In
particular, (̂vC)1 ≡l (̂vC)2.

5.3. Correctness of Dependency-Provenance 135

l ∈ β1∩β2

e+β1
1 ≡l e+β2

2

TopAnnoE
e1 ≡l e2

e+β1
1 ≡l e+β2

2

TopAnnoEI

l ∈ β1∩β2

s+β1
1 ≡l s+β2

2

TopAnnoS
s1 ≡l s2

s+β1
1 ≡l s+β2

2

TopAnnoSI
l ∈ β1∩β2

$x+β1
1 ≡l $x+β2

2

VarI

x1 = x2

$x+β1
1 ≡l $x+β2

2

VarII
l ∈ β1∩β2

($::x1)+β1 ≡l ($::x2)+β2
VarScoI

x1 = x2

($::x1)+β1 ≡l ($::x2)+β2
VarScoII

l ∈ β1∩β2

($::a1::x1)+β1 ≡l ($::a2::x2)+β2
VarClaScoI

a1 = a2 x1 = x2

($::a1::x1)+β1 ≡l ($::a2::x2)+β2
VarClaScoII

l ∈ β1∩β2

(include a)+β1 ≡l (include b)+β2
ClassDelPlus

a= b

(include a)+β1 ≡l (include b)+β2
ClassDelPlusI

l ∈ β1∩β2

(class {a1 :H1})+β1 ≡l (class {a2 :H2})+β2
ClassDelIPlus

a1 = a2 H1 ≡l H2

(class {a1 :H1})+β1 ≡l (class {a2 :H2})+β2
ClassDelIPlusI

l ∈ β1∩β2

(u1 {e1 :H1})+β1 ≡l (u2 {e2 :H2})+β2
DefResTDecPlus

u1 = u2 e1 ≡l e2 H1 ≡l H2

(u1 {e1 :H1})+β1 ≡l (u2 {e2 :H2})+β2
DefResTDecPlusI

Figure 5.10: Equivalence Relation Except at l on the constructs with an outer anno-
tation +β

136 Chapter 5. Dependency Provenance

b{(x+β1
1 ,α1,v

β11
1), . . . ,(x+βn

n ,αn,v
βnn
n)}cl = b{(x′+β′

1
1 ,α′

1,v
′β′

11
1), . . . ,(x′+β′

n
n ,α′

n,v
′β′

nn
n)}cl

{(x+β1
1 ,α1,v

β11
1), . . . ,(x+βn

n ,αn,v
βnn
n)} ≡l {(x

′+β′
1

1 ,α′
1,v

′β′
11

1), . . . ,(x′+β′
n

n ,α′
n,v

′β′
nn

n)}
Sigma

a= a′ d̂≡l d̂′ κ̂≡l κ̂′

a→ d̂, κ̂≡l a′→ d̂′, κ̂′
Kappa

coptc = c′
optc ρ≡l ρ′ s≡l s′

ClassDef(coptc,ρ,s)≡l ClassDef(c′
optc,ρ

′,s′)
ClassDef

α= α′

DeclaredClass(α)≡l DeclaredClass(α′)
Declared

ρ≡l ρ′ s≡l s′

ResourceDef(ρ,s)≡l ResourceDef(ρ′,s′)
ResourceDef

b(vC)1cl = b(vC)2cl

(vC)1 ≡l (vC)2
Catalog

α1 = α2 β1 = β2

α1 parentofκ1 β1 ≡l α2 parentofκ2 β2
ParentOf

α1 = α2 β1 = β2

α1 baseofκ1 β1 ≡l α2 baseofκ2 β2
BaseOf

::≡l ::
TopScope

::nd≡l ::nd
NodeScope

a1 = a2

::a1 ≡l ::a2
ClassScope

α1 ≡l α2

α1 def≡l α2 def
DefResScope

Figure 5.11: Equivalence Relation Except at l on Environments

Chapter 6

Conclusion

Automated configuration management tools have become ubiquitous in config-
uring large infrastructures. However the disadvantage is that these tools cannot
help to troubleshoot the configuration errors that are one of the main causes of
system failures. The large scale of configuration specifications and the distributed
and complex systems make identifying configuration errors more difficult. There
is a lack of analysis tools that target the root causes in the configuration spec-
ifications of configuration errors. Provenance is a dynamic technique developed
in databases to track the origin of the data in query outputs, which is natural
to introduce in the context of configuration languages to explain configuration
errors by the relevant information in the configuration specifications. Rigorous
foundations for configuration languages are needed to improve the reliability of
configurations for critical systems and realise the analysis tools for configuration
errors on configuration management tools. Puppet is a popular configuration
framework, and is already being used in safety-critical domains such as air traffic
control.1

The contributions of this thesis consist of two main parts. The first part is an
operational semantics for a subset of Puppet, called µPuppet, and the interpreter
and the parser for it to verify our definition of µPuppet. The second part is the
formalisation of where-, expression and dependency-provenance, their correctness
characterization and the proofs of their correctness or partial correctness.

µPuppet we identified as a core subset of Puppet language covers the distinc-
tive features of Puppet that are used in most Puppet configurations, including
resource, node, class, and defined resource constructs. Our rules also model

1https://archive.fosdem.org/2011/schedule/event/puppetairtraffic.html.

137

https://archive.fosdem.org/2011/schedule/event/puppetairtraffic.html

138 Chapter 6. Conclusion

Puppet’s idiosyncratic treatment of classes, scope, and inheritance, including
the dynamic treatment of node scope. We presented some simple metatheoretic
properties that justify our characterisation of µPuppet as a ‘declarative’ subset
of Puppet, and we compared µPuppet with the Puppet 4.8 implementation on
a number of examples. We also identified idiosyncrasies concerning evaluation
order and scope where our initial approach differed from Puppet’s actual be-
haviour. Because Puppet is a work in progress, we hope that these observations
will contribute to the evolution and improvement of the Puppet language.

Based on the semantics of µPuppet, we have established three forms of prove-
nance in µPuppet that track the different aspects of historical information of
data values in the catalog back to the manifest. Among them, where-provenance
provides the input location from where an output data value was copied from;
expression-provenance tells the primitive operations by which an output data
value was derived; dependency-provenance collects all the input data values that
could influence the generation of the outputs. Then the correctness proper-
ties of three forms of provenance have been characterised statically. We have
proved the correctness of where- and expression-provenance and partially that of
dependency-provenance against these characterisations. Dependency-provenance
we designed does not satisfy the intended correctness property for the complete
semantics of the language. It does not track the full dependency information for
some unusual value overriding cases. We illustrated the scope of language seman-
tics our dependency-provenance applies and that does not. We have proposed
possible solutions such as constraining the manifests so as to exclude these cases,
or extending dependency-provenance to carry more information in the annota-
tion propagation. This discovery shows the complexity of Puppet language and
provides evidence that could help programming language designers to improve
the language.

The formal foundation of Puppet language we modelled builds up a basis of
explaining the errors of manifests and further developing analysis tools on it.
Three forms of provenance provide specific information about data values in the
catalog, which helps to understand the reasons of configuration errors if some
value is suspected. Besides, these provenance can identify the responsible parties
for the source data values while targeting the relevant input data values. Further
more, provenance is an important step toward specifying security properties or
constraints as the requirements on the configurations since it analyses the relevant

139

raw input information related to an output data value.
To the best of our knowledge, this work is the first attempt of employing

provenance techniques developed in the data base field for improving configura-
tion language security. Due to the limited works on troubleshooting techniques
built for configuration tools, this work presents a solution to targeting the root
causes in the configuration specifications using programming language techniques.

In future work, there are several directions we could investigate. Firstly, we
can refine dependency-provenance to cover the unusual cases, either extending the
dependency information or limiting these cases out for dependency tracking in a
formal way. The correctness definition and the proof of dependency-provenance
should be modified accordingly. The three forms of provenance we have defined
cover most of µPuppet constructs, except hash and array. We can extend them
and the correctness proofs to these constructs. The other direction is to investi-
gate more advanced features of Puppet and extend our three forms of provenance
to those features. Puppet has been equipped with a type-system. One future
direction could be looking into it and studying its relation with three forms of
provenance we defined. We can also implement these forms of provenance and
validate it against real Puppet manifests together with µPuppet interpreter and
parser.

Bibliography

Abadi, M., Banerjee, A., Heintze, N., and Riecke, J. G. (1999). A core calculus
of dependency. In POPL, pages 147–160. ACM Press.

Acar, U. A., Ahmed, A., Cheney, J., and Perera, R. (2013). A core calculus for
provenance. CoRR, abs/1310.6299.

Anderson, P. (2006). System Configuration, volume 14 of Short Topics in System
Administration. SAGE.

Anderson, P. (2008). LCFG: a Practical Tool for System Configuration, volume 17
of Short Topics in System Administration. Usenix Association.

Anderson, P. and Cheney, J. (2012). Toward provenance-based se-
curity for configuration languages. In TaPP. USENIX. On-
line proceedings: http://www.usenix.org/system/files/conference/-

tapp12/tapp12-final15.pdf.

Anderson, P. and Herry, H. (2016). A formal semantics for the SmartFrog con-
figuration language. J. Network Syst. Manage., 24(2):309–345.

Attariyan, M. and Flinn, J. (2008). Using causality to diagnose configuration
bugs. In USENIX 2008 Annual Technical Conference, ATC’08, pages 281–
286, Berkeley, CA, USA. USENIX Association.

Attariyan, M. and Flinn, J. (2010). Automating configuration troubleshooting
with dynamic information flow analysis. In Proceedings of the 9th USENIX
Conference on Operating Systems Design and Implementation, OSDI’10,
pages 237–250, Berkeley, CA, USA. USENIX Association.

Buneman, P., Cheney, J., and Vansummeren, S. (2008). On the expressiveness of
implicit provenance in query and update languages. ACM Trans. Database
Syst., 33(4):28:1–28:47.

141

142 Bibliography

Buneman, P., Khanna, S., and Tan, W. (2001). Why and where: A characteri-
zation of data provenance. In ICDT, number 1973 in LNCS, pages 316–330.
Springer.

Buneman, P., Naqvi, S. A., Tannen, V., and Wong, L. (1995). Principles of
programming with complex objects and collection types. Theor. Comput.
Sci., 149(1):3–48.

Chef (2009). https://www.chef.io/.

Cheney, J., Ahmed, A., and Acar, U. A. (2007). Provenance as depen-
dency analysis. In Proceedings of the 11th International Conference on
Database Programming Languages, DBPL’07, pages 138–152, Berlin, Hei-
delberg. Springer-Verlag.

Cheney, J., Ahmed, A., and Acar, U. a. (2011). Provenance as dependency
analysis. Mathematical. Structures in Comp. Sci., 21(6):1301–1337.

Cheney, J., Chiticariu, L., and Tan, W. C. (2009). Provenance in databases:
Why, how, and where. Foundations and Trends in Databases, 1(4):379–474.

Chugh, R., Hempel, B., Spradlin, M., and Albers, J. (2016). Programmatic and
direct manipulation, together at last. In Proceedings of the 37th ACM SIG-
PLAN Conference on Programming Language Design and Implementation,
PLDI ’16, pages 341–354, New York, NY, USA. ACM.

Cui, Y., Widom, J., and Wiener, J. L. (2000). Tracing the lineage of view data
in a warehousing environment. ACM Trans. Database Syst., 25(2):179–227.

Damianou, N. (2002). A policy framework for management of distributed systems.
PhD thesis, Imperial College.

DeHaan, M. (2012). Ansible. https://www.ansible.com/.

Filaretti, D. and Maffeis, S. (2014). An executable formal semantics of PHP. In
ECOOP, pages 567–592.

Fu, W., Perera, R., Anderson, P., and Cheney, J. (2017). mupuppet: A declarative
subset of the puppet configuration language. In 31st European Conference on
Object-Oriented Programming, ECOOP 2017, June 19-23, 2017, Barcelona,
Spain, pages 12:1–12:27.

https://www.chef.io/
https://www.ansible.com/

Bibliography 143

Geerling, J. (2015). Ansible for DevOps: Server and configuration management
for humans. Midwestern Mac, LLC.

Goldsack, P., Guijarro, J., Loughran, S., Coles, A., Farrell, A., Lain, A., Murray,
P., and Toft, P. (2009). The SmartFrog configuration management frame-
work. SIGOPS Oper. Syst. Rev., 43(1):16–25.

Green, T. J., Karvounarakis, G., and Tannen, V. (2007a). Provenance semirings.
In PODS, pages 31–40. ACM.

Green, T. J., Karvounarakis, G., and Tannen, V. (2007b). Provenance semir-
ings. In Proceedings of the Twenty-sixth ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS ’07, pages 31–40, New
York, NY, USA. ACM.

Guha, A., Saftoiu, C., and Krishnamurthi, S. (2010). The essence of JavaScript.
In ECOOP, pages 126–150, Berlin, Heidelberg. Springer-Verlag.

Gunawi, H. S., Hao, M., Leesatapornwongsa, T., Patana-anake, T., Do, T., Adity-
atama, J., Eliazar, K. J., Laksono, A., Lukman, J. F., Martin, V., and Satria,
A. D. (2014). What bugs live in the cloud? a study of 3000+ issues in cloud
systems. In SOCC, pages 7:1–7:14, New York, NY, USA. ACM.

Hatch, T. S. (2011). Saltstack. https://www.ansible.com/.

Imieliński, T. and Lipski, Jr., W. (1984). Incomplete information in relational
databases. J. ACM, 31(4):761–791.

Maffeis, S., Mitchell, J. C., and Taly, A. (2008). An operational semantics for
JavaScript. In APLAS, pages 307–325, Berlin, Heidelberg. Springer-Verlag.

Marschall, M. (2013). Chef Infrastructure Automation Cookbook. Packt Publish-
ing.

Morandat, F., Hill, B., Osvald, L., and Vitek, J. (2012). Evaluating the design of
the R language - objects and functions for data analysis. In ECOOP, pages
104–131.

Nielson, F., Nielson, H. R., and Hankin, C. (1999). Principles of Program Anal-
ysis. Springer-Verlag, Berlin, Heidelberg.

https://www.ansible.com/

144 Bibliography

Oppenheimer, D., Ganapathi, A., and Patterson, D. A. (2003). Why do internet
services fail, and what can be done about it? In Proceedings of the 4th
Conference on USENIX Symposium on Internet Technologies and Systems -
Volume 4, USITS’03, pages 1–1, Berkeley, CA, USA. USENIX Association.

Plotkin, G. D. (2004). A structural approach to operational semantics. J. Log.
Algebr. Program., 60-61:17–139.

Politz, J. G., Martinez, A., Milano, M., Warren, S., Patterson, D., Li, J., Chi-
tipothu, A., and Krishnamurthi, S. (2013). Python: The full monty. In
OOPSLA, pages 217–232, New York, NY, USA. ACM.

Pottier, F. and Conchon, S. (2000). Information flow inference for free. In Pro-
ceedings of the Fifth ACM SIGPLAN International Conference on Functional
Programming (ICFP ’00), Montreal, Canada, September 18-21, 2000., pages
46–57.

Puppet (2016). Puppet 4.8 reference manual. https://docs.puppet.com/

puppet/4.8/index.html.

Rhett, J. (2016). Learning Puppet 4: A guide to configuration management and
automation. O’Reilly Media.

Shambaugh, R., Weiss, A., and Guha, A. (2016). Rehearsal: a configuration
verification tool for Puppet. In PLDI, pages 416–430.

Turnbull, J. (2008). Pulling Strings with Puppet: Configuration Management
Made Easy. Apress.

Ueno, K., Fukasawa, Y., Morihata, A., and Ohori, A. (2014). The essence of
Ruby. In APLAS, pages 78–98.

Vanbrabant, B., Delaet, T., and Joosen, W. (2009). Federated access control and
workflow enforcement in systems configuration. In Proceedings of the 23rd
Conference on Large Installation System Administration, LISA’09, pages 10–
10, Berkeley, CA, USA. USENIX Association.

Vanbrabant, B., Peeraer, J., and Joosen, W. (2011). Fine-grained access control
for the Puppet configuration language. In LISA.

https://docs.puppet.com/puppet/4.8/index.html
https://docs.puppet.com/puppet/4.8/index.html

Bibliography 145

Wang, Y. R. and Madnick, S. E. (1990). A polygon model for heterogeneous
database systems: The source tagging perspective. In Proceedings of the
Sixteenth International Conference on Very Large Databases, pages 519–533,
San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

Weiss, A., Guha, A., and Brun, Y. (2017). Tortoise: Interactive system configura-
tion repair. In Proceedings of the 32Nd IEEE/ACM International Conference
on Automated Software Engineering, ASE 2017, pages 625–636, Piscataway,
NJ, USA. IEEE Press.

Xu, T. and Zhou, Y. (2015). Systems approaches to tackling configuration errors:
A survey. ACM Comput. Surv., 47(4):70:1–70:41.

Yin, Z., Ma, X., Zheng, J., Zhou, Y., Bairavasundaram, L. N., and Pasupathy,
S. (2011). An empirical study on configuration errors in commercial and
open source systems. In Proceedings of the Twenty-Third ACM Symposium
on Operating Systems Principles, SOSP ’11, pages 159–172, New York, NY,
USA. ACM.

Zamboni, D. (2012). Learning CFEngine 3: Automated system administration
for sites of any size. O’Reilly Media.

Appendix A

Semantics of µPuppet

A.1 Glossary

In this section we provide short definitions of certain terms as they are used in
Puppet, for reference while reading this thesis.

agent Client software (Puppet agent) running on each node, responsible for li-
aising with the Puppet master.

catalog A collection of resources, together with ordering constraints forming a
directed acyclic graph among the resources.

class A named collection of resources. Classes can take parameters and their con-
tents can be processed as a result of an include-like declaration (include a)
or a resource-like declaration (class { a : ...}). Declaring a class more
than once has no effect; however, once a class has been declared with pa-
rameters (using a resource-like declaration), it cannot be redeclared (with
possibly different parameters) again.

compile To process a manifest in order to construct the catalog for a given
node. Compilation in Puppet is closer is what is usually called evaluation in
programming languages terminology, because an expression-like form (the
manifest) is “normalised” into a value-like form (the catalog).

compilation error An error that arises during the compilation of a Puppet
manifest; a compilation error in Puppet is what would normally be de-
scribed as a runtime error, since only errors that arise in code that is actu-
ally executed are reported.

147

148 Appendix A. Semantics of µPuppet

data type An expression such as Integer or Integer[1,10] that can be used
for run-time type checking or parameter validation.

declare To assert the existence of, and describe the parameters of, a resource.
When a built-in resource is declared, it is added to the catalog. When a
user-defined resource or class is declared, its body is processed.

define The definition of class or defined resource type is the program construct
that names, lists the parameters, and gives the body of the construct.

environment Group of Puppet nodes that share configuration settings. Useful
for testing.

fact(s) Information about the node that the agent collects, which is passed to
the manifest compiler as the value of a special hash-valued variable $facts.

hash A dictionary consisting of key-value pair bindings; keys may be ‘scalar’
values such as integers and strings.

include-like declaration Syntax for declaring a class using a special function
such as include, contain, require, or hiera_include.

manifest The Puppet source code file(s) containing code in the Puppet config-
uration language, which is compiled to produce a catalog for a given node.

node A computer system (physical or virtual) that is managed by Puppet, iden-
tified by its hostname. Communicates with Puppet master via Puppet
agent software.

node scope The scope of the active node definition, typically containing node-
specific overrides of global definitions.

ordering constraints Constaints on the order in which resources are processed.
These constraints can be defined explicitly using ->, or implicitly using
metaparameters such as require and before. Constraints can also be an-
notated as conveying information among resources, using ˜> or the meta-
parameters notify and subscribe.

package A particular Puppet resource type, representing a package on a node,
abstracting over the particular operating system or package manager in use
on that system.

A.2. Features supported 149

resource A representation of a system component of a node that is managed by
Puppet; for example, a user account, file, package, or webserver. A resource
has a type (such as file or user) and title string. A catalog can contain
at most one resource with a given type and title.

resource collector An expression T<|pred|> that collects all resources of a
given type T whose parameters satisfy a predicate pred. Resource collectors
can also be used to override resource parameter values. Sometimes called
the spaceship operator.

resource-like declaration Syntax for declaring a class that resembles the syn-
tax used to declare resources. Resource-like declarations are the only way
to override the default values of parameters.

resource type The type of a resource. Puppet 4.8 also contains data types that
classify values of expressions.

top scope The root namespace of a Puppet manifests; parent of any node scope.

A.2 Features supported

Figure A.1 and A.2 summarises our coverage of the Puppet 4.8 language.

150 Appendix A. Semantics of µPuppet

Puppet 4.8 feature Modelled?
Built-in operators

Comparison operators (==, !=, >=, <=, >, and <) X

Boolean operators (and, or, !) X

Arithmetic operators (+, -, *, /, %, <<, >>) X

Array and hash operators (*, <<, +, -) 7

Assignment (=) X

Other core features
Conditional forms (if, unless, case, ?) X

Node definitions (node) X

Comments X

Facts and pre-set variables 7

Data types
Strings, Numbers & Booleans X

Arrays X

Hashes X

Regular expressions 7

Sensitive 7

undef 7

Resource references X

Resource data types 7

default X

Data type annotations and values of type Type 7

Resources
Built-in resource types X

Defined resource types (define) X

Multiple resource bodies; per-expression default attributes 7

Set attributes from hash (* =>) 7

Abstract resource types (Resource[...]) 7

Multiple resource titles 7

Add attributes to existing resources 7

Figure A.1: Summary of Puppet 4.8 language coverage

A.3. Operational semantics 151

Puppet 4.8 feature Modelled?
Classes

Class parameters X

Inheritance X

include statement X

Other multiple-usage mechanisms (require, contain, hiera include) 7

Resource-like declarations X

Relationships and ordering
Relationship metaparameters (before, require, notify, subscribe) 7

Chaining arrows (->) 7

require function 7

Advanced constructs
Plugins (Ruby-level functions) 7

Puppet-level functions 7

Templates 7

Iteration functions (each, slice, filter, map, reduce) 7

Lambdas (|...| {...}) 7

Advanced resource features
(defaults, collectors, virtual resources, exported resources) 7

Tags 7

Run stages 7

Figure A.2: Summary of Puppet 4.8 language coverage cont.

A.3 Operational semantics

A.3.1 Environment operations

• The operation lookup returns the first value associated with a parameter in
a hash, or ⊥ if the parameter is not a key in the hash.

lookup : Var ×HashValue→ Value]{⊥}
lookup(x,(y⇒ v,vH)) = lookup(x,vH) if x 6= y

lookup(x,(x⇒ v,vH)) = v

lookup(x,ε) = ⊥

• The function lookupC returns an attribute value of a resource value in a

152 Appendix A. Semantics of µPuppet

catalog vC if the resource has the type t, the title w and the attribute x. It
returns ⊥ if there is no such a resource value.

lookupC : vC×String×String×String→ Value]{⊥}
lookupC((t : {w : y⇒ v,vH} vC), t′,w′,x) = lookupC(vC, t

′,w′,x)
if t 6= t′or w 6= w′

lookupC((t : {w : y⇒ v,vH} vC), t,w,x) = v

lookupC(ε, t,w,x) = ⊥

• The partial function merge takes a list of parameters with optional default
expressions, and a hash mapping parameter names to overriding values, and
returns a statement initialising each parameter to its default or overridden
value.

merge : Params×HashValue→ Stmt
merge(ε,vH) = skip

merge(($x,ρ),vH) = $x= v merge(ρ,vH) if v = lookup(x,vH) 6=⊥
merge(($x= e,ρ),vH) = $x= v merge(ρ,vH) if v = lookup(x,vH) 6=⊥
merge(($x= e,ρ),vH) = $x= e merge(ρ,vH) if lookup(x,vH) =⊥

Note that merge(($x,ρ),vH) is undefined unless x is a key of vH.

• Update σ[(α,x) : v] add a new variable-value pair to a variable environment.
It is defined as follows:

−[(−,−) :−] : Env×Scope×Var ×Value→ Env
σ[(α,x) : v] = λ(α′,y). if α = α′ and x= y then v else σ(α′,y)

where Env = Scope×Var → Value.

• Specialisation σα is the variable environment σ specialised to a particular
scope α, defined as follows:

−− : Var → Value
σα = λx.σ(α,x)

A.3. Operational semantics 153

• Clearing clear(σ,α) makes all variables in scope α undefined, leaving all
other variable bindings unchanged. It is used to clean up α def scopes at
the end of their lifetime. This operation is defined as follows:

clear : Env×Scope→ Env

clear(σ,α) = λ(α′,y).

 σ(α′,y) if α 6= α′

undefined otherwise

• The parent of a scope α in the context of a definition environment κ is
defined as follows:

:: parentofκ ::nd
PNode

β baseofκα def

β parentofκα def
PDefRes

κ(a) = DeclaredClass(α)

αparentofκ ::a
PClass

• The base scope of a scope α in the context of a definition environment κ is
defined as follows:

:: baseofκ ::
BTop

::nd baseofκ ::nd
BNode

αbaseofκ β

αbaseofκ β def
BDefRes

κ(a) = DeclaredClass(β) αbaseofκ β

αbaseofκ ::a
BClass

A.3.2 Expressions (σ,κ,vC, e
α−→ e′)

A.3.2.1 Variables

x ∈ dom(σα)

σ,κ,vC,$x
α−→ σα(x)

LVar

x /∈ dom(σα) σ,κ,vC,$x
β−→ v β parentofκα

σ,κ,vC,$x
α−→ v

PVar

x ∈ dom(σ::)

σ,κ,vC,$::x α−→ σ::(x)
TVar

x ∈ dom(σ::a)

σ,κ,vC,$::a :: x α−→ σ::a(x)
QVar

154 Appendix A. Semantics of µPuppet

A.3.2.2 Arithmetic expressions

σ,κ,vC, e1
α−→ e′1

σ,κ,vC, e1 + e2
α−→ e′1 + e2

ArithLeft
σ,κ,vC, e

α−→ e′

σ,κ,vC, i+ e
α−→ i+ e′

ArithRight

σ,κ,vC, i1 + i2
α−→ i1 +Z i2

ArithValue

Here, +Z stands for the usual integer addition function. The evaluation rules
for −,∗,/ are similar to those for +, and omitted.

A.3.2.3 Comparison expressions

σ,κ,vC, e1
α−→ e′1

σ,κ,vC, e1 > e2
α−→ e′1 > e2

CompLeft
σ,κ,vC, e

α−→ e′

σ,κ,vC,v > e
α−→ v > e′

CompRight

v1 >Z v2

σ,κ,vC,v1 > v2
α−→ true

CompValueI

v1 <=Z v2

σ,κ,vC,v1 > v2
α−→ false

CompValueII

The rules for other comparison operators are similar and omitted.

A.3.2.4 Boolean expressions

σ,κ,vC, e1
α−→ e′1

σ,κ,vC, e1 and e2
α−→ e′1 and e2

AndLeft

σ,κ,vC, e
α−→ e′

σ,κ,vC,falseand e α−→ false
AndRightI

σ,κ,vC, e
α−→ e′

σ,κ,vC,trueand e α−→ trueand e′
AndRightII

σ,κ,vC,trueandtrue α−→ true
AndValue

σ,κ,vC, e
α−→ e′

σ,κ,vC, !e
α−→ !e′

NotSTEP

σ,κ,vC, !true α−→ false
NotValueI

σ,κ,vC, !false α−→ true
NotValueII

The rules for disjunction are analogous and are omitted.

A.3. Operational semantics 155

A.3.2.5 Array

σ,κ,vC,A
α−→ A′

σ,κ,vC, [A] α−→ [A′]
ArrExp

σ,κ,vC,A
α−→ A′

σ,κ,vC,v,A
α−→ v,A

ArrEle

σ,κ,vC, e1
α−→ e′1

σ,κ,vC, e1,A
α−→ e′1,A

ArrEleI

A.3.2.6 Hash

σ,κ,vC,H
α−→H ′

σ,κ,vC,{H}
α−→ {H}

HExp
σ,κ,vC,H

α−→H ′

σ,κ,vC,k⇒ v,H
α−→ k⇒ v,H

HEle

σ,κ,vC, e
α−→ e′

σ,κ,vC,k⇒ e,H
α−→ k⇒ e′,H

HEleI

A.3.2.7 Selectors

The predicate caseMatch abstracts over the details of matching values against
selector cases. Real Puppet checks any default clause last, failing with an
exception if there is no case which matches; for simplicity we omit these details
from the formalism.

σ,κ,vC, e
α−→ e′

σ,κ,vC, e ?{M} α−→ e′ ?{M}
SCon

σ,κ,vC, e1
α−→ e′1

σ,κ,vC,v ?{e1⇒ e,M} α−→ v ?{e′1⇒ e,M}
SEle

caseMatch(v,v1)

σ,κ,vC,v ?{v1⇒ e,M} α−→ e
SChoose

¬caseMatch(v,v1)

σ,κ,vC,v ?{v1⇒ e,M} α−→ v ?{M}
SChooseI

σ,κ,vC,v ?{default⇒ e,M} α−→ e
SDefault

156 Appendix A. Semantics of µPuppet

A.3.2.8 Dereference

σ,κ,vC,d
α−→ d′

σ,κ,vC,d[e] α−→ d′[e]
DeRefExp

σ,κ,vC, e
α−→ e′

σ,κ,vC,v[e] α−→ v[e′]
DeRefIndex

σ,κ,vC, [v0, . . . , vn, . . . ,vm][n] α−→ vn
DeRefArray

k = kn

σ,κ,vC,{k1 = v1, . . . ,kn = vn, . . . ,km = vm}[k] α−→ vn
DeRefHash

σ,κ,vC, e
α−→ e′

σ,κ,vC, t[e]
α−→ t[e′]

RefRes
lookupC(vC, t,w,k) = v

σ,κ,vC, t[w][k] α−→ v
DeRefRes

A.3.3 Resources (σ,κ,H α−→H H
′ and σ,κ,e :H α−→R e

′ :H ′)

σ,κ,vC, e
α−→ e′

σ,κ,vC,x⇒ e,H
α−→H x⇒ e′,H

σ,κ,vC,H
α−→H H

′

σ,κ,vC,x⇒ v,H
α−→H x⇒ v,H ′

σ,κ,vC, e
α−→ e′

σ,κ,vC, e :H α−→R e
′ :H

σ,κ,vC,H
α−→H H

′

σ,κ,vC,v :H α−→R v :H ′

A.3.4 Statements (σ,κ,vC, s
α−→s σ′,κ′,v′C, s

′)

A.3.4.1 Expression statements

An expression can occur as a statement. Its value is ignored.

σ,κ,vC, e
α−→ e′

σ,κ,vC, e
α−→s σ,κ,vC, e

′
ExprStep

σ,κ,vC,v
α−→s σ,κ,vC,skip

Expr

A.3.4.2 Sequential composition

σ,κ,vC, s1
α−→s σ

′,κ′,v′C, s
′
1

σ,κ,vC, s1 s2
α−→s σ

′,κ′,v′C, s
′
1 s2

SeqStep

σ,κ,vC,skip s
α−→s σ,κ,vC, s

SeqSkip

A.3. Operational semantics 157

A.3.4.3 Assignment

σ,κ,vC, e
α−→ e′

σ,κ,vC,$x= e
α−→s σ,κ,vC,$x= e′

AssignStep

x /∈ dom(σα)

σ,κ,vC,$x= v
α−→s σ[(α,x) : v],κ,vC,skip

Assign

A.3.4.4 If

σ,κ,vC, e
α−→ e′

σ,κ,vC,if e {s1} else {s2}
α−→s σ,κ,vC,if e′ {s1} else {s2}

IfStep

σ,κ,vC,if true {s1} else {s2}
α−→s σ,κ,vC, s1

IfT

σ,κ,vC,if false {s1} else {s2}
α−→s σ,κ,vC, s2

IfF

A.3.4.5 Unless

σ,κ,vC, e
α−→ e′

σ,κ,vC,unless e {s} α−→s σ,κ,vC,unless e′ {s}
UnlessStep

σ,κ,vC,unless true {s} α−→s σ,κ,vC, skip
UnlessT

σ,κ,vC,unless false {s} α−→s σ,κ,vC, s
UnlessF

A.3.4.6 Case

As with selectors, the predicate caseMatch abstracts over the details of pattern-
matching. Again, in real Puppet the default case is always checked last, regard-
less of the order of the cases.

158 Appendix A. Semantics of µPuppet

σ,κ,vC, e
α−→ e′

σ,κ,vC,case e {C} α−→s σ,κ,vC,case e′ {C}
CaseStep1

σ,κ,vC, e
α−→ e′

σ,κ,vC,case v {e : {s} C} α−→s σ,κ,vC,case v {e′ : {s} C}
CaseStep2

caseMatch(v,v1)

σ,κ,vC,case v {v1 : {s} C} α−→s σ,κ,vC, s
CaseMatch

¬caseMatch(v,v1)

σ,κ,vC,case v {v1 : {s} C} α−→s σ,κ,vC,case v {C}
CaseNoMatch

σ,κ,vC,case v {ε} α−→s σ,κ,vC,skip
CaseDone

A.3.4.7 Resource declarations

σ,κ,vC, e :H α−→R e
′ :H ′

σ,κ,vC, t {e :H} α−→s σ,κ,vC, t {e′ :H ′}
ResStep

σ,κ,vC,vR
α−→s σ,κ,vC vR,skip

ResDecl

A.3.4.8 Defined resource types

σ,κ,vC,{e :H} α−→R {e′ :H ′}

σ,κ,vC,u {e :H} α−→s σ,κ,vC,u {e′ :H ′}
DefStep

κ(u) = ResourceDef(ρ,s) s′ = merge(ρ,vH)

σ,κ,vC,u {w : vH}
α−→s σ,κ,vC,scope (α def) {$title= w s′ s}

Def

A.3. Operational semantics 159

A.3.4.9 Include

κ(a) = ClassDef(⊥,ρ,s) s′ = merge(ρ,ε) β baseofκα

σ,κ,vC,include a α−→s σ,κ[a : DeclaredClass(β)],vC,scope (::a) s′ s
IncU

κ(a) = DeclaredClass(β)

σ,κ,vC,include a α−→s σ,κ,vC,skip
IncD

κ(a) = ClassDef(b,ρ,s) κ(b) = ClassDef(copt,ρ′, s′)

σ,κ,vC,include a α−→s σ,κ,vC,include b include a
IncPU

κ(a) = ClassDef(b,ρ,s) κ(b) = DeclaredClass(β) s′ = merge(ρ,ε)

σ,κ,vC,include a α−→s σ,κ[a : DeclaredClass(::b)],vC,scope (::a) {s′ s}
IncPD

A.3.4.10 Resource-like class declarations

κ(a) = ClassDef(copt,ρ,S) σ,κ,vC,H
α−→H H

′

σ,κ,vC,class {a :H} α−→s σ,κ,vC,class {a :H ′}
CDecStep

κ(a) = ClassDef(⊥,ρ,s) s′ = merge(ρ,vH) β baseofκα

σ,κ,vC,class {a : vH}
α−→s σ,κ[a : DeclaredClass(β)],vC,scope (::a) s′ s

CDecU

κ(a) = ClassDef(b,ρ,s) κ(b) = ClassDef(copt,ρ′, s′)

σ,κ,vC,class {a : vH}
α−→s σ,κ,vC,include b class {a : vH}

CDecPU

κ(a) = ClassDef(b,ρ,s) κ(b) = DeclaredClass(β) s′ = merge(ρ,vH)

σ,κ,vC,class {a : vH}
α−→s σ,κ[a : DeclaredClass(::b)],vC,scope (::a) {s′ s}

CDecPD

160 Appendix A. Semantics of µPuppet

A.3.4.11 Scope

α ∈ {::, ::a, ::nd} σ,κ,vC, s
α→s σ

′,κ′,v′C, s
′

σ,κ,vC,scope α s
α′
−→s σ

′,κ′,v′C,scope α s′
ScopeStep

σ,κ,vC, s
α def−−−→s σ

′,κ′,v′C, s
′

σ,κ,vC,scope (α def) s α−→s σ
′,κ′,v′C,scope (α def) s′

DefScopeStep

α ∈ {::, ::a, ::nd}

σ,κ,vC,scope α skip β−→s σ,κ,vC,skip
ScopeDone

σ,κ,vC,scope (α def) skip α−→s clear(σ,α def),κ,vC,skip
DefScopeDone

A.3.5 Manifests (σ,κ,vC,m
N−→m σ′,κ′,v′C,m

′)

A.3.5.1 Top-Level Statements

σ,κ,vC, s
::−→s σ

′,κ′,v′C, s
′

σ,κ,vC, s
N−→m σ′,κ′,v′C, s

′
TopScope

A.3.5.2 Sequential Composition

σ,κ,vC,m1
N−→m σ′,κ′,v′C,m

′
1

σ,κ,vC,m1 m2
N−→m σ′,κ′,v′C,m

′
1 m2

MSeqStep

σ,κ,vC,skip m
N−→m σ,κ,vC,m

MSeqSkip

A.3.5.3 Node Definitions

The predicate nodeMatch abstracts over the details of matching values against
node specifications.

nodeMatch(N,Q)

σ,κ,vC,nodeQ {s} N−→m σ,κ,vC,scope (::nd) s
NodeMatch

¬nodeMatch(N,Q)

σ,κ,vC,nodeQ {s} N−→m σ,κ,vC,skip
NodeNoMatch

A.3. Operational semantics 161

A.3.5.4 Defined resource types

u /∈ dom(κ)

σ,κ,vC,define u (ρ) {s} N−→m σ,κ[u : ResourceDef(ρ,s)],vC,skip
RDef

A.3.5.5 Class Definitions

a /∈ dom(κ)

σ,κ,vC,class a {s} N−→m σ,κ[a : ClassDef(⊥, ε,s)],vC,skip
CDef

a /∈ dom(κ)

σ,κ,vC,class a inherits b {s} N−→m σ,κ[a : ClassDef(b,ε,s)],vC,skip
CDefI

a /∈ dom(κ)

σ,κ,vC,class a (ρ) {s} N−→m σ,κ[a : ClassDef(⊥,ρ,s)],vC,skip
CDefP

a /∈ dom(κ)

σ,κ,vC,class a (ρ) inherits b {s} N−→m σ,κ[a : ClassDef(b,ρ,s)],vC,skip
CDefPI

Appendix B

Where Provenance

B.1 Propagation of Annotations in the Evaluation

B.1.1 Expressions

Variables

x ∈ dom(σα)

σ̂, κ̂, v̂C,$x
α−→ σα(x)

LVar

x /∈ dom(σα) σ̂, κ̂, v̂C,$x
β−→ vβ β parentofκα

σ̂, κ̂, v̂C,$x
α−→ vβ

PVar

x ∈ dom(σ::)

σ̂, κ̂, v̂C,$::x α−→ σ::(x)
TVar

x ∈ dom(σ::a)

σ̂, κ̂, v̂C,$::a :: x α−→ σ::a(x)
QVar

B.1.2 Resources

The rule RName propagates the evaluation of a resource name expression e to
the rule evaluating expression e. Then e will be evaluated to an annotated data
value vβ. For every attribute and expression pair in a resource, the rule Rbody-
Exp evaluate e. When e is evaluated to an annotated data value vβ, the rule
RbodyStep will evaluate the next attribute and expression pair in the resource
body.

163

164 Appendix B. Where Provenance

σ̂, κ̂, v̂C, e
α−→ e′

σ̂, κ̂, v̂C,x⇒ e,H
α−→H x⇒ e′,H

RbodyExp

σ̂, κ̂, v̂C,H
α−→H H

′

σ̂, κ̂, v̂C,x⇒ vβ,H
α−→H x⇒ vβ,H ′

RbodyStep

σ̂, κ̂, v̂C, e
α−→ e′

σ̂, κ̂, v̂C, e :H α−→R e
′ :H

RName
σ̂, κ̂, v̂C,H

α−→H H
′

σ̂, κ̂, v̂C,v
β :H α−→R v

β :H ′
Rbody

B.1.3 Statements

Expression statements An expression can occur as a statement. Its value is
ignored.

σ̂, κ̂, v̂C, e
α−→ e′

σ̂, κ̂, v̂C, e
α−→s σ̂, κ̂, v̂C, e

′
ExprStep

σ̂, κ̂, v̂C,v
β α−→s σ̂, κ̂, v̂C,skip

Expr

Sequential composition

σ̂, κ̂, v̂C, s1
α−→s σ̂′, κ̂′, v̂′C, s

′
1

σ̂, κ̂, v̂C, s1 s2
α−→s σ̂′, κ̂′, v̂′C, s

′
1 s2

SeqStep

σ̂, κ̂, v̂C,skip s
α−→s σ̂, κ̂, v̂C, s

SeqSkip

Assignment

Unless

σ̂, κ̂, v̂C, e
α−→ e′

σ̂, κ̂, v̂C,unless e {s} α−→s σ̂, κ̂, v̂C,unless e′ {s}
UnlessStep

σ̂, κ̂, v̂C,unless trueβ {s} α−→s σ̂, κ̂, v̂C, skip
UnlessT

σ̂, κ̂, v̂C,unless falseβ {s} α−→s σ̂, κ̂, v̂C, s
UnlessF

B.1. Propagation of Annotations in the Evaluation 165

Case As with selectors, the predicate caseMatch abstracts over the details of
pattern-matching. Again, in real Puppet the default case is always checked
last, regardless of the order of the cases.

σ̂, κ̂, v̂C, e
α−→ e′

σ̂, κ̂, v̂C,case e {C} α−→s σ̂, κ̂, v̂C,case e′ {C}
CaseStep1

σ̂, κ̂, v̂C, e
α−→ e′

σ̂, κ̂, v̂C,case vβ {e : {s} C} α−→s σ̂, κ̂, v̂C,case vβ {e′ : {s} C}
CaseStep2

caseMatch(v,v1)

σ̂, κ̂, v̂C,case vβ {vβ1
1 : {s} C} α−→s σ̂, κ̂, v̂C, s

CaseMatch

¬caseMatch(v,v1)

σ̂, κ̂, v̂C,case vβ {vβ1
1 : {s} C} α−→s σ̂, κ̂, v̂C,case vβ {C}

CaseNoMatch

σ̂, κ̂, v̂C,case vβ {ε} α−→s σ̂, κ̂, v̂C,skip
CaseDone

σ̂, κ̂, v̂C,case vβ {default : {s} C} α−→s σ̂, κ̂, v̂C, s}
CaseDefault

Resource declarations

σ̂, κ̂, v̂C, e :H α−→R e
′ :H ′

σ̂, κ̂, v̂C, t {e :H} α−→s σ̂, κ̂, v̂C, t {e′ :H ′}
ResStep

σ̂, κ̂, v̂C, v̂R
α−→s σ̂, κ̂, v̂C v̂R,skip

ResDecl

Defined resource types

σ̂, κ̂, v̂C,{e :H} α−→R {e′ :H ′}

σ̂, κ̂, v̂C,u {e :H} α−→s σ̂, κ̂, v̂C,u {e′ :H ′}
DefStep

κ̂(u) = ResourceDef(ρ,s) s′ = merge(ρ,vH)

σ̂, κ̂, v̂C,u {wβ : vH}
α−→s σ̂, κ̂, v̂C,scope (α def) {$title= wβ s′ s}

Def

166 Appendix B. Where Provenance

Include

κ̂(a) = ClassDef(⊥,ρ,s) s′ = merge(ρ,ε) β baseof κ̂α

σ̂, κ̂, v̂C,include a α−→′s σ̂,κ[a : DeclaredClass(β)], v̂C,scope (::a) s′ s
IncU

κ̂(a) = DeclaredClass(β)

σ̂, κ̂, v̂C,include a α−→s σ̂, κ̂, v̂C,skip
IncD

κ̂(a) = ClassDef(b,ρ,s) κ̂(b) = ClassDef(copt,ρ′, s′)

σ̂, κ̂, v̂C,include a α−→s σ̂, κ̂, v̂C,include b include a
IncPU

κ(a) = ClassDef(b,ρ,s) κ(b) = DeclaredClass(β) s′ = merge(ρ,ε)

σ̂, κ̂, v̂C,include a α−→s σ,κ[a : DeclaredClass(::b)], v̂C,scope (::a) {s′ s}
IncPD

B.1.3.0.1 Resource-like class declarations

κ̂(a) = ClassDef(copt,ρ,S) σ̂, κ̂, v̂C,H
α−→H H

′

σ̂, κ̂, v̂C,class {a :H} α−→s σ̂, κ̂, v̂C,class {a :H ′}
CDecStep

κ̂(a) = ClassDef(⊥,ρ,s) s′ = merge(ρ,vH) β baseof κ̂α

σ̂, κ̂, v̂C,class {a : vH}
α−→s σ̂,κ[a : DeclaredClass(β)], v̂C,scope (::a) s′ s

CDecU

κ̂(a) = ClassDef(b,ρ,s) κ̂(b) = ClassDef(copt,ρ′, s′)

σ̂, κ̂, v̂C,class {a : vH}
α−→s σ̂, κ̂, v̂C,include b class {a : vH}

CDecPU

κ̂(a) = ClassDef(b,ρ,s) κ(b) = DeclaredClass(β) s′ = merge(ρ,vH)

σ̂, κ̂, v̂C,class {a : vH}
α−→s σ̂,κ[a : DeclaredClass(::b)], v̂C,scope (::a) {s′ s}

CDecPD

B.1. Propagation of Annotations in the Evaluation 167

Scope

α ∈ {::, ::a, ::nd} σ̂, κ̂, v̂C, s
α→s σ

′,κ′,v′C, s
′

σ̂, κ̂, v̂C,scope α s
α′
−→s σ

′,κ′,v′C,scope α s′
ScopeStep

σ̂, κ̂, v̂C, s
α def−−−→s σ̂′, κ̂′, v̂′C, s

′

σ̂, κ̂, v̂C,scope (α def) s α−→s σ̂′, κ̂′, v̂′C,scope (α def) s′
DefScopeStep

α ∈ {::, ::a, ::nd}

σ̂, κ̂, v̂C,scope α skip β−→s σ̂, κ̂, v̂C,skip
ScopeDone

σ̂, κ̂, v̂C,scope (α def) skip α−→s clear(σ̂,α def), κ̂, v̂C,skip
DefScopeDone

B.1.4 Manifests

Top-Level Statements

σ̂, κ̂, v̂C, s
::−→s σ̂′, κ̂′, v̂′C, s

′

σ̂, κ̂, v̂C, s
N−→m σ̂′, κ̂′, v̂′C, s

′
TopScope

Sequential Composition

σ̂, κ̂, v̂C,m1
N−→m σ̂′, κ̂′, v̂′C,m

′
1

σ̂′, κ̂′, v̂′C,m1 m2
N−→m σ̂′, κ̂′, v̂′C,m

′
1 m2

MSeqStep

σ̂′, κ̂′, v̂′C,skip m
N−→m σ̂′, κ̂′, v̂′C,m

MSeqSkip

Node Definitions The predicate nodeMatch abstracts over the details of match-
ing values against node specifications.

nodeMatch(N,Q)

σ̂, κ̂, v̂C,nodeQ {s} N−→m σ̂, κ̂, v̂C,scope (::nd) s
NodeMatch

¬nodeMatch(N,Q)

σ̂, κ̂, v̂C,nodeQ {s} N−→m σ̂, κ̂, v̂C,skip
NodeNoMatch

168 Appendix B. Where Provenance

Defined resource types

u /∈ dom(κ̂)

σ̂, κ̂, v̂C,define u (ρ) {s} N−→m σ̂, κ̂[u : ResourceDef(ρ,s)], v̂C,skip
RDef

Class Definitions

a /∈ dom(κ̂)

σ̂, κ̂, v̂C,class a {s} N−→m σ, κ̂[a : ClassDef(⊥, ε,s)], v̂C,skip
CDef

a /∈ dom(κ̂)

σ̂, κ̂, v̂C,class a inherits b {s} N−→m σ, κ̂[a : ClassDef(b,ε,s)], v̂C,skip
CDefI

a /∈ dom(κ̂)

σ̂, κ̂, v̂C,class a (ρ) {s} N−→m σ, κ̂[a : ClassDef(⊥,ρ,s)], v̂C,skip
CDefP

a /∈ dom(κ̂)

σ̂, κ̂, v̂C,class a (ρ) inherits b {s} N−→m σ̂, κ̂[a : ClassDef(b,ρ,s)], v̂C,skip
CDefPI

B.2 Proofs of the invariant in Expression Evaluation

Theorem B.2.1 (Invariant for expressions). If σ̂, κ̂, v̂C, e
α−→ e′ then labels(e′)⊆

labels(e)∪ labels(σ̂)∪ labels(κ̂)∪ labels(v̂C).

Proof. Prove by induction.

1 Variables
x ∈ dom(σα)

σ̂, κ̂, v̂C,$x
α−→ σα(x)

LVar

x /∈ dom(σα)σ̂, κ̂, v̂C,$x
β−→ vlβ parentofκα

σ̂, κ̂, v̂C,$x
α−→ vl

PVar

x ∈ dom(σ::)

σ̂, κ̂, v̂C,$::x α−→ σ::(x)
TVar

The proof is similar as case LVar.

B.2. Proofs of the invariant in Expression Evaluation 169

x ∈ dom(σ::a)

σ̂, κ̂, v̂C,$::a :: x α−→ σ::a(x)
QVar

The proof is similar as case LVar.

2 Comparison expressions

σ̂, κ̂, v̂C, e1
α−→ e′1

σ̂, κ̂, v̂C, e1 > e2
α−→ e′1 > e2

CompLeft

σ̂, κ̂, v̂C, e
α−→ e′

σ̂, κ̂, v̂C,v
β > e

α−→ vβ > e′
CompRight

v1 >Z v2

σ̂, κ̂, v̂C,v
β1
1 > vβ2

2
α−→ true⊥

CompValueI

By definition, we have labels(vβ1
1 >vβ2

2) = labels(vβ1
1)∪labels(vβ2

2) = {vβ1
1 ,vβ2

2 }
and labels(true⊥) = ∅. Then ∅⊆{vβ1

1 ,vβ2
2 }∪labels(σ̂), i.e. labels(true⊥)⊆

labels(vβ1
1 > vβ2

2)∪ labels(σ̂). The invariant holds for the evaluation step
σ̂, κ̂, v̂C,v

a1
1 > vβ2

2
α−→ true⊥.

v1 <=Z v2

σ̂, κ̂, v̂C,v
β1
1 > vβ2

2
α−→ false⊥

CompValueII

The proof is similar as the rule CompValueI.

3 Boolean expressions

σ̂, κ̂, v̂C, e1
α−→ e′1

σ̂, κ̂, v̂C, e1 and e2
α−→ e′1 and e2

AndLeft

σ̂, κ̂, v̂C, e
α−→ e′

σ̂, κ̂, v̂C,falseβ and e α−→ false⊥
AndRightI

σ̂, κ̂, v̂C, e
α−→ e′

σ̂, κ̂, v̂C,truel and e α−→ trueβ and e′
AndRightII

σ̂, κ̂, v̂C,trueβ1 andtrueβ2 α−→ true⊥
AndValue

σ̂, κ̂, v̂C, e
α−→ e′

σ̂, κ̂, v̂C, !e
α−→ !e′

NotSTEP

By definition, we have labels(!e) = labels(e) and labels(!e′) = labels(e′). By
induction hypothesis, we know the invariant holds for σ̂, κ̂, v̂C, e

α−→ e′, i.e.

170 Appendix B. Where Provenance

labels(e′) ⊆ labels(e)∪ labels(σ̂). Then labels(!e′) ⊆ labels(!e)∪ labels(σ̂).
That is the invariant holds for this evaluation step σ̂, κ̂, v̂C, !e

α−→!e′.

B.3 Proofs of Invariant in Statement Evaluation

Theorem B.3.1 (Invariant of Statement Evaluation). When evaluating a state-
ment s in µPuppet such that σ̂, κ̂, v̂C, s

α−→s σ̂′, κ̂′, v̂′C, s
′, the subsumption on the

sets of annotated data values

labels(σ̂)∪ labels(κ̂)∪ labels(v̂C)∪ labels(s)⊇

labels(σ̂′)∪ labels(κ̂′)∪ labels(v̂′C)∪ labels(s′)

holds.

Proof. Prove by induction.

1 Expression statements
σ̂, κ̂, v̂C, e

α−→ e′

σ̂, κ̂, v̂C, e
α−→s σ̂, κ̂, v̂C, e

′
ExprStep

By induction hypothesis σ̂, κ̂, v̂C, e
α−→ e′, we know that the invariant

holds on σ̂, κ̂, v̂C, e
α−→ e′, i.e. labels(e′) ⊆ labels(e)∪ labels(σ̂). Then

we have labels(e′) ⊆ labels(e)∪ labels(σ̂). Since σ̂, κ̂ and v̂C, have
not changed before and after the evaluation step, we have labels(e′)∪
labels(σ̂)∪ labels(κ̂)∪ labels(v̂C) ⊆ labels(e)∪ labels(σ̂)∪ labels(κ̂)∪
labels(v̂C). That is the invariant holds for the evaluation step σ̂, κ̂, v̂C, e

α−→s

σ̂, κ̂, v̂C, e
′.

σ̂, κ̂, v̂C,v
β α−→s σ̂, κ̂, v̂C,skip

Expr

2 Sequential composition
σ̂, κ̂, v̂C, s1

α−→s σ̂′, κ̂′, v̂′C, s
′
1

σ̂, κ̂, v̂C, s1 s2
α−→s σ̂′, κ̂′, v̂′C, s

′
1 s2

SeqStep

By induction hypothesis, the invariant holds for this evaluation step
σ̂, κ̂, v̂C, s1

α−→s σ̂
′, κ̂′, v̂′C, s

′
1, i.e. labels(s′1)∪labels(σ̂′)∪labels(σ̂′)∪labels(v̂C

′)⊆
labels(s1)∪ labels(σ̂)∪ labels(κ̂)∪ labels(v̂C). By definition, we have

B.3. Proofs of Invariant in Statement Evaluation 171

labels(s1s2) = labels(s1) ∪ labels(s2) and labels(s′1s2) = labels(s′1) ∪
labels(s2). Then we have labels(s′1)∪labels(s2)⊆ labels(s1)∪labels(σ̂)∪
labels(s2)∪labels(κ̂)∪labels(v̂C), i.e. labels(s′1s2)∪labels(σ̂′)∪labels(κ̂′)∪
labels(v̂C

′) ⊆ labels(s1s2)∪ labels(σ̂)∪ labels(κ̂)∪ labels(v̂C). The in-
variant for the evaluation σ̂, κ̂, v̂C, s1 s2

α−→s σ̂
′, κ̂′, v̂′C, s

′
1 s2 holds. This

rule is proved with respected to the invariant.

σ,κ,vC,skip s
α−→s σ,κ,vC, s

SeqSkip

By definition, labels(skip s) = labels(skip)∪labels(s) = ∅∪labels(s) =
labels(s). Then we have labels(s)⊆ labels(s), i.e. labels(s)⊆ labels(skip s).
Since σ̂,κ̂ and v̂C have not changed before and after the evaluation,
we have labels(s)∪ labels(σ̂)∪ labels(κ̂)∪ labels(v̂C)⊆ labels(skip s)∪
labels(σ̂)∪ labels(κ̂)∪ labels(v̂C). Then the invariant holds for the eval-
uation σ̂, κ̂, v̂C,skip s α−→s σ̂, κ̂, v̂C, s. This rule holds with respected to
the invariant.

3 Assignment
σ̂, κ̂, v̂C, e

α−→ e′

σ̂, κ̂, v̂C,$x= e
α−→s σ̂, κ̂, v̂C,$x= e′

AssignStep

By induction hypothesis, we know the invariant holds for σ̂, κ̂, v̂C, e
α−→

e′, i.e. labels(e′) ⊆ labels(e)∪ labels(σ̂)∪ labels(κ̂)∪ labels(v̂C). By
definition, we have labels($x = e) = labels(e) and labels($x = e′) =
labels(e′). Since labels(e′)⊆ labels(e)∪labels(σ̂)∪labels(κ̂)∪labels(v̂C)
and the environments have not changed before and after the evalua-
tion, we have labels(e′)∪ labels(σ̂)∪ labels(κ̂)∪ labels(v̂C)⊆ labels(e)∪
labels(σ̂)∪labels(κ̂)∪labels(v̂C), i.e. labels($x= e′)∪labels(σ̂)∪labels(κ̂)∪
labels(v̂C) ⊆ labels($x = e)∪ labels(σ̂)∪ labels(κ̂)∪ labels(v̂C). Then
the invariant holds for the evaluation step σ̂, κ̂, v̂C,$x= e

α−→s σ̂, κ̂, v̂C,$x=
e′. This induction rule holds w.r.t. the invariant.

x /∈ dom(σα)

σ̂, κ̂, v̂C,$x= vβ
α−→s σ̂[(α,x) : vβ], κ̂, v̂C,skip

Assign

By definition, labels($x = vβ) = labels($x)∪ labels(vβ) = ∅∪ {vβ} =
{vβ}, labels(skip) = ∅ and labels(σ̂[(α,x) : vβ]) = labels(σ̂)∪ {vβ}.
Since κ̂, v̂C did not change before and after the evaluation, we have
labels(σ̂)∪{vβ}∪ labels(κ̂)∪ labels(v̂C)⊆ labels(σ̂)∪{vβ}∪ labels(κ̂)∪
labels(v̂C), i.e. labels(σ̂[(α,x) : vβ])∪labels(skip)∪labels(κ̂)∪labels(v̂C)⊆

172 Appendix B. Where Provenance

labels(σ̂)∪ labels($x= vβ)∪ labels(κ̂)∪ labels(v̂C). Thus the invariant
holds for the evaluation step σ̂, κ̂, v̂C,$x= vβ

α−→s σ̂[(α,x) : vβ], κ̂, v̂C,skip.
This rule holds w.r.t the invariant.

4 If
σ̂, κ̂, v̂C, e

α−→ e′

σ̂, κ̂, v̂C,if e {s1} else {s2}
α−→s σ̂, κ̂, v̂C,if e′ {s1} else {s2}

IfStep

By induction hypothesis, we know the invariant holds for σ̂, κ̂, v̂C, e
α−→

e′, i.e. labels(e′)⊆ labels(e)∪ labels(σ̂)∪ labels(κ̂). By the definition,
labels(if e {s1} else {s2}) = labels(e)∪ labels(s1)∪ labels(s2) and
labels(if e′ {s1} else {s2}) = labels(e′)∪ labels(s1)∪ labels(s2). We
have labels(s′)⊆ labels(s)∪ labels(σ̂)∪ labels(κ̂)∪ labels(v̂C). Since σ̂,
κ̂ and v̂C have not changed before and after the evaluation, labels(e′)∪
labels(s1)∪ labels(s2)∪ labels(σ̂)∪ labels(κ̂)∪ labels(v̂C) ⊆ labels(e)∪
labels(s1)∪ labels(s2)∪ labels(σ̂)∪ labels(κ̂)∪ labels(v̂C), i.e.
labels(if e′ {s1} else {s2})∪ labels(σ̂)∪ labels(κ̂)∪ labels(v̂C)⊆
labels(if e {s1} else {s2})∪ labels(σ̂)∪ labels(κ̂)∪ labels(v̂C). Then
the invariant holds for the evaluation step
σ̂, κ̂, v̂C,if e {s1} else {s2}

α−→s σ̂, κ̂, v̂C,if e′ {s1} else {s2}. Then
the induction rule holds w.r.t. the invariant.

σ̂, κ̂, v̂C,if trueβ {s1} else {s2}
α−→s σ̂, κ̂, v̂C, s1

IfT
By definition, we

have labels(if trueβ {s1} else {s2}) = labels(trueβ)∪ labels(s1)∪
labels(else {s2}) = {trueβ}∪labels(s1)∪labels(s2). Then labels(s2)∪
labels(σ̂)∪ labels(κ̂)∪ labels(v̂C) ⊆ {trueβ}∪ labels(s1)∪ labels(s2)∪
labels(σ̂)∪labels(κ̂)∪labels(v̂C), i.e. labels(s2)∪labels(σ̂)∪labels(κ̂)∪
labels(v̂C)⊆ labels(if trueβ {s1} else {s2})∪ labels(σ̂)∪ labels(κ̂)∪
labels(v̂C). Then the invariant holds for the evaluation step
σ̂, κ̂, v̂C,if trueβ {s1} else {s2}

α−→s σ̂, κ̂, v̂C, s2. Then the induction
rule holds w.r.t. the invariant.

σ̂, κ̂, v̂C,if falseβ {s1} else {s2}
α−→s σ̂, κ̂, v̂C, s2

IfF

The proof is similar as above.

5 Unless
σ̂, κ̂, v̂C, e

α−→ e′

σ̂, κ̂, v̂C,unless e {s} α−→s σ̂, κ̂, v̂C,unless e′ {s}
UnlessStep

B.3. Proofs of Invariant in Statement Evaluation 173

By induction hypothesis, we know the invariant holds for σ̂, κ̂, v̂C, e
α−→

e′, i.e. labels(e′) ⊆ labels(e)∪ labels(σ̂)cuplabels(κ̂)∪ labels(v̂C). By
definition, we have
labels(unless e {s}) = labels(e)∪labels(s) and labels(unless e′ {s}) =
labels(e′)∪labels(s). We have labels(e′)⊆ labels(e)∪labels(σ̂)∪labels(κ̂)∪
labels(v̂C). Since σ̂, κ̂, and v̂C, have not changed before and after
the evaluation, we have labels(e′)∪ labels(s)∪ labels(σ̂)∪ labels(κ̂)∪
labels(v̂C)⊆ labels(e)∪labels(s)∪labels(σ̂)∪labels(κ̂)∪labels(v̂C), i.e.
labels(unless e′ {s})∪ labels(σ̂)∪ labels(κ̂)∪ labels(v̂C)⊆
labels(unless e {s})∪ labels(σ̂)∪ labels(κ̂)∪ labels(v̂C). Then the in-
variant holds for the evaluation σ̂, κ̂, v̂C,

unless e {s} α−→s σ̂, κ̂, v̂C,unless e′ {s}. Then the induction rule holds
w.r.t. the invariant.

σ̂, κ̂, v̂C,unless trueβ {s} α−→s σ̂, κ̂, v̂C, skip
UnlessT

By definition, we know labels(unless trueβ {s}) = labels(truea)∪
labels(s) = {trueβ}∪ labels(s) and labels(skip) = ∅. Then we have
∅∪ labels(σ̂)∪ labels(κ̂)∪ labels(v̂C)⊆{trueβ}∪ labels(s)∪ labels(σ̂)∪
labels(κ̂)∪labels(v̂C) i.e. labels(skip)∪labels(σ̂)∪labels(κ̂)∪labels(v̂C)⊆
labels(unless trueβ {s})∪ labels(σ̂)∪ labels(κ̂)∪ labels(v̂C), i.e. the
invariant holds for the evaluation step σ̂, κ̂, v̂C,unless trueβ {s} α−→s

σ̂, κ̂, v̂C, skip. Then this induction rule holds w.r.t. the invariant.

σ̂, κ̂, v̂C,unless falseβ {s} α−→s σ̂, κ̂, v̂C, s
UnlessF

The proof is similar as above.

6 Case
σ̂, κ̂, v̂C, e

α−→ e′

σ̂, κ̂, v̂C,case e {C} α−→s σ̂, κ̂, v̂C,case e′ {C}
CaseStep1

By inductive hypothesis, we know the invariant holds for the eval-
uation step σ̂, κ̂, v̂C, e

α−→ e′, i.e. labels(e′) ⊆ labels(e) ∪ labels(σ̂) ∪
labels(κ̂)∪ labels(v̂C). By the definition of labels(case e {C}), we
know labels(case e {C}) = labels(e)∪ labels(C) and
similarly labels(case e′ {C}) = labels(e′)∪labels(C). We have labels(e′)⊆
labels(e)∪labels(σ̂)∪labels(κ̂)∪labels(v̂C). Then labels(e′)∪labels(C)∪
labels(σ̂)∪ labels(κ̂)∪ labels(v̂C) ⊆ labels(e)∪ labels(C)∪ labels(σ̂)∪
labels(κ̂)∪ labels(v̂C), i.e. labels(case e′ {C})∪ labels(σ̂)∪ labels(κ̂)∪

174 Appendix B. Where Provenance

labels(v̂C) ⊆ labels(case e {C})∪∪labels(σ̂)∪ labels(κ̂)∪ labels(v̂C).
Then the invariant holds for the evaluation step σ̂, κ̂, v̂C,case e {C} α−→s

σ̂, κ̂, v̂C,case e′ {C}. The induction rule holds w.r.t. the invariant.
σ̂, κ̂, v̂C, e

α−→ e′

σ̂, κ̂, v̂C,case vβ {e : {s} C} α−→s σ̂, κ̂, v̂C,case vβ {e′ : {s} C}
CaseStep2

caseMatch(v,v1)

σ̂, κ̂, v̂C,case vβ {vβ1
1 : {s} C} α−→s σ̂, κ̂, v̂C, s

CaseMatch

By definition, we have labels(case vβ {va′
1 : {S} C}) = labels(va)∪

labels(vβ
′

1)∪labels(s)∪labels(C). Since labels(s)∪labels(σ̂)∪labels(κ̂)∪
labels(v̂C)⊆ labels(vβ)∪labels(vβ

′

1)∪labels(s)∪labels(C)∪labels(σ̂)∪
labels(κ̂)∪labels(v̂C), i.e. labels(s)∪labels(σ̂)∪labels(κ̂)∪labels(v̂C)⊆
labels(vβ)∪labels(case vβ {va′

1 : {S}C})∪labels(σ̂)∪labels(κ̂)∪labels(v̂C),
the invariant holds for the evaluation step σ̂, κ̂, v̂C,case vβ {vβ

′

1 : {S}C} α−→s

σ̂, κ̂, v̂C,S. This induction rule holds w.r.t. the invariant.
¬caseMatch(v,v1)

σ̂, κ̂, v̂C,case vβ {vβ1
1 : {s} C} α−→s σ̂, κ̂, v̂C,case vβ {C}

CaseNoMatch

Omitted.

σ̂, κ̂, v̂C,case vβ {ε} α−→s σ̂, κ̂, v̂C,skip
CaseDone

By definition, we know labels(case vβ {}) = labels(vβ) and labels(skip) =
∅. Since labels(σ̂)∪ labels(κ̂)∪ labels(v̂C)∪∅⊆ labels(vβ)∪ labels(σ̂)∪
labels(κ̂)∪ labels(v̂C), we have labels(skip)∪ labels(σ̂)∪ labels(κ̂)∪
labels(v̂C)⊆ labels(case vβ {})∪labels(σ̂)∪labels(κ̂)∪labels(v̂C). Then
the invariant holds for the evaluation step σ̂, κ̂, v̂C,case vβ { } α−→s

σ̂, κ̂, v̂C,skip. This induction rule holds w.r.t. the invariant.

7 Resource declarations
σ̂, κ̂, v̂C, e :H α−→R e

′ :H ′

σ̂, κ̂, v̂C, t {e :H} α−→s σ̂, κ̂, v̂C, t {e′ :H ′}
ResStep

σ̂, κ̂, v̂C, v̂R
α−→s σ̂, κ̂, v̂C v̂R,skip

ResDecl

8 Defined resource types
σ̂, κ̂, v̂C,{e :H} α−→R {e′ :H ′}

σ̂, κ̂, v̂C,u {e :H} α−→s σ̂, κ̂, v̂C,u {e′ :H ′}
DefStep

Omitted.

B.3. Proofs of Invariant in Statement Evaluation 175

κ̂(u) = ResourceDef(ρ,s)s′ = merge(ρ,vH)

σ̂, κ̂, v̂C,u {w : vH}
α−→s σ̂, κ̂, v̂C,scope (α def) {$title= w s′ s}

Def

By definition, labels(u {w : vH}) = {w}∪ labels(vH) and
labels(scope (α def) {$title=w s′ s) = labels(v̂H)∪labels(s)∪labels(s′).
We know labels(ResourceDef(ρ,s))⊆ labels(κ̂) , i.e. labels(ρ)∪labels(s)⊆
labels(κ̂). We also have labels(s′)⊆ labels(ρ)∪ labels(vH) by the def-
inition of function merge. Then labels(s′) ∪ labels(s)∪ labels(σ̂)∪
labels(κ̂)∪ labels(v̂C) ⊆ labels(vH)∪ labels(σ̂)∪ labels(κ̂)∪ labels(v̂C),
i.e. labels(scope def s′ s)∪labels(σ̂)∪labels(v̂C)∪labels(κ̂)⊆ labels(u {w :
vH})∪ labels(σ̂)∪ labels(κ̂)∪ labels(v̂C). Then the invariant holds for
the evaluation step σ̂, κ̂, v̂C,u {w : vH}

α−→s σ̂, κ̂, v̂C,scope (α def) {$title=
w s′ s}. Then this rule holds w.r.t. the invariant.

9 Include
κ̂(a) = ClassDef(⊥,ρ,s)s′ = merge(ρ,ε)β baseof κ̂α

σ̂, κ̂, v̂C,include a α−→′s σ̂, κ̂[a : DeclaredClass(β)], v̂C,scope (::a) s′ s
IncU

By definition, we have labels(include a) = ∅ and labels(scope (::a) s′ s) =
labels(s)∪ labels(s′). By the definition of labels(κ̂), we have
labels(ClassDef(⊥,ρ,s))⊆ labels(κ̂) , i.e. labels(ρ)∪labels(s)⊆ labels(κ̂),
and labels(κ̂(a→ DeclaredClass(⊥))) =
labels(κ̂)\ labels(ClassDef(⊥,ρ,S)) = labels(κ̂)\(labels(ρ)∪ labels(s)).
Then labels(κ̂)\(labels(ρ)∪labels(s))∪labels(ρ)∪labels(s)∪labels(σ̂)∪
labels(v̂C)⊆∅∪labels(σ̂)∪labels(κ̂)∪labels(v̂C), i.e. labels(a→DeclaredClass(⊥))∪
labels(scope (:: a) ρ s)∪labels(σ̂)∪labels(κ̂)∪labels(v̂C)⊆ labels(include a)∪
labels(σ̂)∪ labels(κ̂)∪ labels(v̂C). Then the invariant holds for the eval-
uation step σ̂, κ̂, v̂C,include a α−→′s σ̂, κ̂[a : DeclaredClass(β)], v̂C,scope (::a) s′ s.
Then this inference rule holds w.r.t. the invariant.

κ̂(a) = DeclaredClass(β)

σ̂, κ̂, v̂C,include a α−→s σ̂, κ̂, v̂C,skip
IncD

By definition, we know labels(include a) = ∅ and labels(skip) = ∅.
Since ∅∪ labels(σ̂)∪ labels(κ̂)∪ labels(v̂C)⊆ ∅∪ labels(σ̂)∪ labels(κ̂)∪
labels(v̂C), we have labels(skip)∪ labels(σ̂)∪ labels(κ̂)∪ labels(v̂C)⊆
labels(include a)∪ labels(σ̂)∪ labels(κ̂)∪ labels(v̂C). Then the invari-

176 Appendix B. Where Provenance

ant holds for the evaluation step
σ̂, κ̂, v̂C,include a

α−→s σ̂, κ̂, v̂C,skip. This induction rule holds w.r.t.
the invariant.
κ̂(a) = ClassDef(b,ρ,s)κ̂(b) = ClassDef(copt,ρ′, s′)

σ̂, κ̂, v̂C,include a α−→s σ̂, κ̂, v̂C,include b include a
IncPU

By definition, we have labels(include a) = ∅ and labels(include b include a) =
∅. Since ∅∪labels(σ̂)∪labels(κ̂)∪labels(v̂C)⊆∅∪labels(σ̂)∪labels(κ̂)∪
labels(v̂C), we have labels(include b include a)∪labels(σ̂)∪labels(κ)∪
labels(v̂C)⊆ labels(include a)∪ labels(σ̂)∪ labels(κ)∪ labels(v̂C), i.e.
the invariant holds for the evaluation step
σ̂, κ̂, v̂C,include a α−→s σ̂, κ̂, v̂C,include b include a. Then this infer-
ence rule holds w.r.t. the invariant.

κ(a) = ClassDef(b,ρ,s)κ(b) = DeclaredClass(β)s′ = merge(ρ,ε)

σ̂, κ̂, v̂C,include a α−→s σ,κ[a : DeclaredClass(::b)], v̂C,scope (::a) {s′ s}
IncPD

By definition, we have labels(include a) = ∅ and labels(scope (::a) {s′ s}) =
labels(s)∪ labels(s′). By the definition of labels(κ̂), we know
labels(ClassDef(b,ρ,s))⊆ labels(κ̂) , i.e. labels(ρ)∪labels(s)⊆ labels(κ̂),
and labels(κ̂(a→DeclaredClass(b))) = labels(κ̂)\labels(ClassDef(b,ρ,s)) =
labels(κ̂)\(labels(ρ)∪labels(s)). Then labels(κ̂)\(labels(ρ)∪labels(s))∪
labels(s′)∪labels(s)∪labels(σ̂)∪labels(v̂C)⊆∅∪labels(σ̂)∪labels(κ̂)∪
labels(v̂C), i.e.
labels(κ̂(a→DeclaredClass(b)))∪labels(scope (::a) {s′ s})∪labels(σ̂)∪
labels(v̂C)⊆ labels(include a)∪labels(σ̂)∪labels(κ̂)∪labels(v̂C). Then
the invariant holds for the evaluation step σ̂, κ̂, v̂C,include a α−→s σ̂, κ̂(a→
DeclaredClass(b)), v̂C,scope (::a) {s′ s}. Then this rule holds w.r.t. the
invariant.

10 Resource-like class declarations
κ̂(a) = ClassDef(copt,ρ,s)σ̂, κ̂, v̂C,H

α−→H H
′

σ̂, κ̂, v̂C,class {a :H} α−→s σ̂, κ̂, v̂C,class {a :H ′}
CDecStep

By induction hypothesis, the invariable labels(H ′)⊆ labels(H)∪labels(σ̂)∪
labels(κ̂) holds. By definition, labels(class {a : H}) = labels(H) and
labels(class {a : H ′}) = labels(H ′). We have labels(H ′)⊆ labels(H)∪
labels(σ̂)∪labels(κ̂). Then labels(class {a : H ′})∪labels(σ̂)∪labels(κ̂)∪
labels(v̂C)⊆ labels(class {a : H})∪ labels(σ̂)∪ labels(κ̂)∪ labels(v̂C),
i.e. the invariant holds for the evaluation step σ̂, κ̂, v̂C,class {a :

B.3. Proofs of Invariant in Statement Evaluation 177

H} α−→s σ̂, κ̂, v̂C,class {a : H ′}. Then this rule holds w.r.t. the in-
variant.

κ̂(a) = ClassDef(⊥,ρ,s)s′ = merge(ρ,vH)β baseof κ̂α

σ̂, κ̂, v̂C,class {a : vH}
α−→s σ̂,κ[a : DeclaredClass(β)], v̂C,scope (::a) s′ s

CDecU

By the definition, labels(class {a : vH}) = labels(vH) and labels(scope

(:: a) s′ s) = labels(s′)∪ labels(s). we know labels(ClassDef(⊥,ρ,s))⊆
labels(κ̂) , i.e. labels(ρ)∪ labels(s)⊆ labels(κ̂),
and labels(κ̂(a→DeclaredClass(⊥))) = labels(κ̂)\labels(ClassDef(⊥,ρ,s)) =
labels(κ̂)\ (labels(ρ)∪ labels(s)). We also have labels(s′)⊆ labels(ρ)∪
labels(v̂H) by the definition of function merge. Then (labels(κ̂) \
(labels(ρ)∪ labels(s)))∪ labels(s′)∪ labels(s)∪ labels(σ̂)∪ labels(v̂C)⊆
labels(vH)∪labels(σ̂)∪labels(κ̂)∪labels(v̂C), i.e. labels(a→DeclaredClass(⊥))∪
labels(scope (:: a) s′ s)∪ labels(σ̂)∪ labels(v̂C) ⊆ labels(class {a :
vH})∪ labels(σ̂)∪ labels(κ̂)∪ labels(v̂C). Then the invariant holds for
the evaluation step σ̂, κ̂, v̂C ` class {a : vH}

α−→s σ̂, κ̂(a→DeclaredClass(⊥)), v̂C `
scope (:: a) s′ s. This rule holds w.r.t. the invariant.

κ̂(a) = ClassDef(b,ρ,s)κ̂(b) = ClassDef(copt,ρ′, s′)

σ̂, κ̂, v̂C,class {a : vH}
α−→s σ̂, κ̂, v̂C,include b class {a : vH}

CDecPU

By definition, labels(class {a : vH}) = labels(vH) and labels(include b

class {a : vH}) = ∅ ∪ labels(vH) = labels(vH). Since labels(vH) ∪
labels(σ̂)∪ labels(κ̂)∪ labels(v̂C) ⊆ labels(vH)∪ labels(σ̂)∪ labels(κ̂)∪
labels(v̂C), labels(include b class {a : vH})∪ labels(σ̂)∪ labels(κ̂)∪
v̂C ⊆
labels(class {a : vH})∪ labels(σ̂)∪ labels(κ̂)∪ labels(v̂C), i.e. the
invariant holds for the evaluation step σ̂, κ̂, v̂C,class {a : vH}

α−→s

σ̂, κ̂, v̂C,include b class {a : vH}. Then this rule holds w.r.t. the
invariant.

κ̂(a) = ClassDef(b,ρ,s)κ(b) = DeclaredClass(β)s′ = merge(ρ,vH)

σ̂, κ̂, v̂C,class {a : vH}
α−→s σ̂,κ[a : DeclaredClass(::b)], v̂C,scope (::a) {s′ s}

CDecPD

The proof is similar as case above.

11 Scope

178 Appendix B. Where Provenance

α ∈ {::, ::a, ::nd}σ̂, κ̂, v̂C, s
α→s σ

′,κ′,v′C, s
′

σ̂, κ̂, v̂C,scope α s
α′
−→s σ

′,κ′,v′C,scope α s′
ScopeStep

By induction hypothesis, we know the invariant for this evaluation
σ̂, κ̂, v̂C, s

α→s σ̂
′, κ̂′, v̂′C, s

′ holds, i.e. labels(s′)∪ labels(σ̂′)∪ labels(κ′)∪
labels(v′C)⊆ labels(s)∪ labels(σ̂)∪ labels(κ̂)∪ labels(v̂C). By definition
labels(scope α s) = labels(s) and labels(scope α s′) = labels(s′). We
have labels(scope α s′)∪ labels(σ̂′)∪ labels(κ′)∪ labels(v′C)⊆
labels(scope α s)∪ labels(σ̂)∪ labels(κ̂)∪ labels(v̂C). That is the in-
variant holds for the evaluation σ̂, κ̂, v̂C,scope α s α′

−→s σ̂
′, κ̂′, v̂′C,scope α s′.

Then the induction rule holds w.r.t. the invariant.

σ̂, κ̂, v̂C, s
α def−−−→s σ̂′, κ̂′, v̂′C, s

′

σ̂, κ̂, v̂C,scope (α def) s α−→s σ̂′,scope′ (α def) s′
DefScopeStep

The proof is similar as case above.

α ∈ {::, ::a, ::nd}

σ̂, κ̂, v̂C,scope α skip β−→s σ̂, κ̂, v̂C,skip
ScopeDone

By definition, labels(scope α skip) = labels(skip) = ∅ and labels(skip) =
∅. Since ∅∪labels(σ̂′)∪labels(κ̂′)∪labels(v̂′C)⊆∅∪labels(σ̂)∪labels(κ̂)∪
labels(v̂C), labels(skip)∪ labels(σ̂′)∪ labels(κ̂′)∪ labels(v̂′C)⊆
labels(scope α skip)∪ labels(σ̂)∪ labels(κ̂)∪ labels(v̂C). The invari-
ant holds for the evaluation σ̂, κ̂, v̂C,scope α skip β−→s σ̂, κ̂, v̂C,skip.
Then this induction rule holds w.r.t. the invariant.

σ̂, κ̂, v̂C,scope (α def) skip α−→s clear(σ̂,α def), κ̂, v̂C,skip
DefScopeDone

By definition, labels(scope def skip) = labels(skip) = ∅, labels(skip) =
∅ and labels(clear(σ̂,α def)) = labels(σ̂)\ labels(α defx,v) for any x.
Then labels(clear(σ̂,α def))⊆ labels(σ̂). Then we have
labels(clear(σ̂,α def))∪labels(κ̂)∪labels(v̂C)∪∅⊆ labels(σ̂)∪labels(κ̂)∪
labels(v̂C) ∪ ∅, i.e. labels(clear(σ̂,α def)) ∪ labels(κ̂) ∪ labels(v̂C) ∪
labels(skip) ⊆ labels(σ̂)∪ labels(κ̂)∪ {v̂C ∪ labels(scope def skip).
Then the invariant holds for the evaluation σ̂, κ̂, v̂C,scope def skip α−→s

B.3. Proofs of Invariant in Statement Evaluation 179

clear(σ̂,α def), κ̂, v̂C,skip. This induction rule holds w.r.t. the invari-
ant.

B.3.1 Proofs of the invariant in Manifest Evaluation

Proof. Prove by induction.

1 Top-Level Statements
σ̂, κ̂, v̂C, s

::−→s σ̂′, κ̂′, v̂′C, , s
′

σ̂, κ̂, v̂C, s
N−→m σ̂′, κ̂′, v̂′C, , s

′
TopScope

By induction hypothesis, we have the invariant labels(s′)∪ labels(σ̂′)∪
labels(κ̂′)∪labels(v̂′C)⊆ labels(s)∪labels(σ̂)∪labels(κ̂)∪labels(v̂C) holds.
We have labels(s′)∪ labels(σ̂′)∪ labels(κ̂′)∪ labels(v̂′C) ⊆ labels(s)∪
labels(σ̂)∪ labels(κ̂)∪ labels(v̂C). Then the invariant holds for the
evaluation step σ̂, κ̂, v̂C, s

N−→p σ̂
′, κ̂′, v̂′C, s

′. Then this rule holds w.r.t.
the invariant.

2 Sequential Composition
σ̂, κ̂, v̂C,m1

N−→m σ̂′, κ̂′, v̂′C,m
′
1

σ̂′, κ̂′, v̂′C,m1 m2
N−→m σ̂′, κ̂′, v̂′C,m

′
1 m2

MSeqStep

By induction hypothesis, we have the invariant labels(m′1)⊆ labels(m1)∪
labels(σ̂)∪ labels(κ̂) holds. By definition, labels(m1m2) = labels(m1)∪
labels(m2) and labels(m′1m2) = labels(m′1)∪labels(m2). Since labels(m′1)∪
labels(σ̂′)∪labels(κ̂′)∪labels(v̂′C)⊆ labels(m1)∪labels(σ̂)∪labels(κ̂)∪
labels(v̂C), labels(m′1)∪labels(m2)∪labels(σ̂′)∪labels(κ̂′)∪labels(v̂′C)⊆
labels(m1)∪labels(m2)∪labels(σ̂)∪labels(κ̂)∪labels(v̂C), i.e. labels(m′1m2)∪
labels(σ̂′)∪labels(κ̂′)∪labels(v̂′C)⊆ labels(m1m2)∪labels(σ̂)∪labels(κ̂)∪
labels(v̂C). Then the invariant holds for the evaluation step σ̂, κ̂, v̂C,m1 m2

N−→m

σ̂′, κ̂′, v̂′C,m
′
1 m2. Then this rule holds w.r.t. the invariant.

180 Appendix B. Where Provenance

σ̂′, κ̂′, v̂′C,skip m
N−→m σ̂′, κ̂′, v̂′C,m

MSeqSkip

By definition, labels(skip m) = labels(skip)∪ labels(m) = labels(m).
Since labels(m)∪labels(σ̂)∪labels(κ̂)∪labels(v̂C)⊆ labels(m)∪labels(σ̂)∪
labels(κ̂)∪labels(v̂C), we have labels(m)∪labels(σ̂)∪labels(κ̂)∪labels(v̂C)⊆
labels(skip m)∪ labels(σ̂)∪ labels(κ̂)∪ labels(v̂C). That is the invari-
ant holds for the evaluation step σ̂, κ̂, v̂C,skip m N−→m σ̂, κ̂, v̂C,m. This
rule holds w.r.t. the invariant.

3 Node Definitions
nodeMatch(N,Q)

σ̂, κ̂, v̂C,nodeQ {s} N−→m σ̂, κ̂, v̂C,scope (::nd) s
NodeMatch

By definition, labels(nodeQ {s}) = labels(s) and labels(scope

(:: nd) s) = labels(s). Since labels(s)∪labels(σ̂)∪labels(κ̂)∪labels(v̂C)⊆
labels(s)∪labels(σ̂)∪labels(κ̂)∪labels(v̂C), we have labels(nodem {s})∪
labels(σ̂)∪ labels(κ̂)∪ labels(v̂C)⊆ labels(scope (:: nd) s)∪ labels(σ̂)∪
labels(κ̂)∪ labels(v̂C). That is the invariant holds for the evaluation
step σ̂, κ̂, v̂C,node m {s} N−→p σ̂, κ̂, v̂C,scope (:: nd) s. This rule holds
w.r.t. the invariant.

¬nodeMatch(N,Q)

σ̂, κ̂, v̂C,nodeQ {s} N−→m σ̂, κ̂, v̂C,skip
NodeNoMatch

By definition, labels(node Q {s}) = labels(s) and labels(skip) = ∅.
Since labels(s)∪labels(σ̂)∪labels(κ̂)∪labels(v̂C)⊆ labels(s)∪labels(σ̂)∪
labels(κ̂)∪ labels(v̂C), we have labels(skip)∪ labels(σ̂)∪ labels(κ̂)∪
labels(v̂C)⊆ labels(nodeQ {s})∪labels(σ̂)∪labels(κ̂)∪labels(v̂C). That
is the invariant holds for the evaluation step σ̂, κ̂, v̂C,

node Q {s} N−→m σ̂, κ̂, v̂C,scope (:: nd) s. This rule holds w.r.t. the
invariant.

4 Defined resource types

B.3. Proofs of Invariant in Statement Evaluation 181

u /∈ dom(κ̂)

σ̂, κ̂, v̂C,define u (ρ) {s} N−→m σ̂, κ̂[u : ResourceDef(ρ,s)], v̂C,skip
RDef

5 Class Definitions
a /∈ dom(κ̂)

σ̂, κ̂, v̂C,class a {s} N−→m σ, κ̂[a : ClassDef(⊥, ε,s)], v̂C,skip
CDef

By definition, labels(class a {s}) = labels(s) and labels(skip) = ∅.
Since κ̂(a) =⊥, labels(⊥) = ∅. Then labels(κ̂(a→ClassDef(⊥, ε,s))) =
labels(κ̂)∪labels(ClassDef(⊥, ε,s)) = labels(κ̂)∪labels(s). Since labels(κ̂)∪
labels(s) ∪ labels(σ̂) ∪ labels(v̂C) ⊆ labels(s) ∪ labels(σ̂) ∪ labels(κ̂) ∪
labels(v̂C), we have labels(skip)∪ labels(κ̂(a→ ClassDef(⊥, ε,s)))∪
labels(σ̂)∪ labels(v̂C) ⊆ labels(class a {s})∪ labels(σ̂)∪ labels(κ̂)∪
labels(v̂C). That is the invariant holds for the evaluation step
σ̂, κ̂, v̂C,class a {s} N−→p σ̂, κ̂(a → ClassDef(⊥, ε,s)),vC,skip. This
rule holds w.r.t. the invariant.

a /∈ dom(κ̂)

σ̂, κ̂, v̂C,class a inherits b {s} N−→m σ, κ̂[a : ClassDef(b,ε,s)], v̂C,skip
CDefI

By definition, we have labels(class a inherits b {s}) = labels(s) and
labels(skip) = ∅. Since κ̂(a) = ⊥, labels(⊥) = ∅. Then labels(κ̂(a→
ClassDef(b,ε,s))) = labels(κ̂)∪labels(ClassDef(b,ε,s))) = labels(κ̂)∪labels(s).
Since labels(κ̂)∪labels(s)∪labels(σ̂)∪labels(v̂C)⊆ labels(s)∪labels(σ̂)∪
labels(κ̂)∪labels(v̂C), we have labels(skip)∪labels(κ̂(a→ClassDef(b,ε,s)))∪
labels(σ̂)∪ labels(v̂C)⊆ labels(class a inherits b {s})∪ labels(σ̂)∪
labels(κ)∪ labels(v̂C). That is the invariant holds for the evaluation
step σ̂, κ̂, v̂C,class a inherits b {s} N−→p σ̂, κ̂(a→ClassDef(b,ε,s)),vC,skip.
This rule holds w.r.t. the invariant.

a /∈ dom(κ̂)

σ̂, κ̂, v̂C,class a (ρ) {s} N−→m σ, κ̂[a : ClassDef(⊥,ρ,s)], v̂C,skip
CDefP

By definition, labels(class a (ρ) {s}) = labels(ρ)∪labels(s) and labels(skip) =
∅. Since κ̂(a) =⊥, labels(⊥) = ∅. Then labels(κ̂(a→ClassDef(⊥,ρ,s))) =

182 Appendix B. Where Provenance

labels(κ̂)∪ labels(ClassDef(⊥,ρ,s)) = labels(κ̂)∪ labels(s)∪ labels(ρ).
Since labels(κ̂)∪labels(s)∪labels(ρ)∪labels(σ̂)∪labels(v̂C)⊆ labels(s)∪
labels(ρ)∪ labels(σ̂)∪ labels(κ̂)∪ labels(v̂C), we have labels(skip)∪
labels(κ̂(a→ClassDef(⊥,ρ,s)))∪labels(σ̂)∪labels(v̂C)⊆ labels(class a (ρ) {s})∪
labels(σ̂)∪ labels(κ̂)∪ labels(v̂C). That is the invariant holds for the
evaluation step
σ̂, κ̂, v̂C,class a (ρ) {s} N−→p σ̂, κ̂(a→ ClassDef(⊥,ρ,s)),vC,skip . This

rule holds w.r.t. the invariant.

a /∈ dom(κ̂)

σ̂, κ̂, v̂C,class a (ρ) inherits b {s} N−→m σ̂, κ̂[a : ClassDef(b,ρ,s)], v̂C,skip
CDefPI

The proof is similar as case above.

Appendix C

Expression Provenance

C.1 Propagation of Annotations in the Evaluation

C.1.1 Expressions

C.1.1.1 Selector

σ̂, κ̂, v̂C, e
α−→ e′

σ̂, κ̂, v̂C, e ?{M} α−→ e′ ?{M}
SCon

σ̂, κ̂, v̂C, e1
α−→ e′1

σ̂, κ̂, v̂C,v
β ?{e1⇒ e,M} α−→ vβ ?{e′1⇒ e,M}

SEle

caseMatch(v,v1)

σ̂, κ̂, v̂C,v
β ?{vβ1

1 ⇒ e,M} α−→ e
SChoose

¬caseMatch(v,v1)

σ̂, κ̂, v̂C,v
β ?{vβ1

1 ⇒ e,M} α−→ vβ ?{M}
SChooseI

σ̂, κ̂, v̂C,v
β ?{default⇒ e,M} α−→ e

SDefault

C.1.2 Resources

A resource is evaluated in the context of a variable environment. Evaluation of a
resource may not change the environment.

183

184 Appendix C. Expression Provenance

σ̂, κ̂, v̂C, e
α−→ e′

σ̂, κ̂, v̂C,x⇒ e,H
α−→H x⇒ e′,H

RbodyExp

σ̂, κ̂, v̂C,H
α−→H H

′

σ̂, κ̂, v̂C,x⇒ vβ,H
α−→H x⇒ vβ,H ′

RbodyStep

σ̂, κ̂, v̂C, e
α−→ e′

σ̂, κ̂, v̂C, e :H α−→R e
′ :H

RName
σ̂, κ̂, v̂C,H

α−→H H
′

σ̂, κ̂, v̂C,v
β :H α−→R v

β :H ′
Rbody

C.1.3 Statements

The form of the rules of evaluating annotated statements is the same as in where-
provenance. We omit them here.

C.1.4 Manifests

The form of the rules of evaluating annotated manifests is the same as in where-
provenance. We omit them here.

C.2 Proofs for Invariants in Expression Evaluation

Theorem C.2.1 (Invariant in Expression Evaluation). For any σ̂, κ̂, v̂C, e
α−→ e′,

if µ |= σ̂, µ |= κ̂, µ |= v̂C and µ |= e, then µ |= e′.

Proof. Prove by induction.

1 Variables
x ∈ dom(σα)

σ̂, κ̂, v̂C,$x
α−→ σα(x)

LVar

We know by definition labels(σ̂α(x))⊆ labels(σ̂) for some x. Suppose
µ |= σ̂, µ |= κ̂, µ |= v̂C and µ |= $x. Then ∀vβ ∈ labels(σ̂) µ |= β v

v ∧µ |= κ̂∧µ |= v̂C ∧µ |= $x→ ∀v′β′ ∈ labels(σ̂α(x)) µ |= β′ v v′, i.e.
µ |= σ̂∧µ |= κ̂∧µ |= v̂C∧µ |= $x→ µ |= σ̂α(x). Then if µ |= $x, µ |= σ̂,

C.2. Proofs for Invariants in Expression Evaluation 185

µ |= κ̂ and µ |= v̂C then µ |= σ̂α(x).

x /∈ dom(σα)σ̂, κ̂, v̂C,$x
β−→ vββ parentofκα

σ̂, κ̂, v̂C,$x
α−→ vβ

PVar

x ∈ dom(σ::)

σ̂, κ̂, v̂C,$::x α−→ σ::(x)
TVar

The proof is similar as LVar.

x ∈ dom(σ::a)

σ̂, κ̂, v̂C,$::a :: x α−→ σ::a(x)
QVar

The proof is similar as LVar.

2 Arithmetic expressions
σ̂, κ̂, v̂C, e1

α−→ e′1

σ̂, κ̂, v̂C, e1 + e2
α−→ e′1 + e2

ArithLeft

The proof is similar as the rule ArithRight.

3 Comparison expressions
σ̂, κ̂, v̂C, e1

α−→ e′1

σ̂, κ̂, v̂C, e1 > e2
α−→ e′1 > e2

CompLeft

σ̂, κ̂, v̂C, e
α−→ e′

σ̂, κ̂, v̂C,v
l > e

α−→ vl > e′
CompRight

v1 >Z v2

σ̂, κ̂, v̂C,v
β1
1 > vβ2

2
α−→ true⊥

CompValueI

We know labels(vβ1
1 > vβ2

2) = labels(vβ1
1)∪ labels(vβ1

1) = {vβ1
1 ,vβ2

2 } and
labels(trueβ1>β2) = {trueβ1>β2} by definition. Suppose µ |= σ̂ and
µ |= vβ1

1 > vβ2
2 , i.e. ∀vβ ∈ {vβ1

1 ,vβ2
2 } µ |= β v v. That is µ |= β1 v v1

186 Appendix C. Expression Provenance

and µ |= β2 v v2. Since we know v1 > v2, by inference rule we have

µ |= β1 v v1 µ |= β2 v v2 v1 > v2
µ |= β1 > β2 v v1 >N v2

. Then we have µ |= σ̂∧µ |= κ̂∧µ |= v̂C∧µ |= κ∧µ |= β1v v1∧µ |= β2v

v2→ µ |= β1 > β2 v v1 >N v2. That is µ |= σ̂∧µ |= κ̂∧µ |= v̂C∧∀vβ ∈
{vβ1

1 ,vβ2
2 } µ |= a v v→ ∀vβ ∈ labels(trueβ1>β2) µ |= β1 > β2 v true,

i.e. µ |= σ̂∧µ |= κ̂∧µ |= v̂C∧∀vβ
′ ∈ labels(vβ1

1 >vβ2
2) µ |= βv v→∀vβ ∈

labels(trueβ1>β2) µ |= β1 > β2 v true. That is µ |= σ̂∧µ |= κ̂∧µ |=
v̂C∧µ |= vB1

1 > vβ2
2 → µ |= trueβ1>β2 . Then if µ |= σ̂ and µ |= vβ1

1 > vβ2
2

then µ |= trueβ1>β2 .

v1 <=Z v2

σ̂, κ̂, v̂C,v
β1
1 > vβ2

2
α−→ false⊥

CompValueII

4 Boolean expressions
σ̂, κ̂, v̂C, e1

α−→ e′1

σ̂, κ̂, v̂C, e1 and e2
α−→ e′1 and e2

AndLeft

σ̂, κ̂, v̂C, e
α−→ e′

σ̂, κ̂, v̂C,falseβ and e α−→ false⊥
AndRightI

σ̂, κ̂, v̂C, e
α−→ e′

σ̂, κ̂, v̂C,trueβ and e α−→ truel and e′
AndRightII

σ̂, κ̂, v̂C,trueβ1 andtrueβ2 α−→ true⊥
AndValue

σ̂, κ̂, v̂C, e
α−→ e′

σ̂, κ̂, v̂C, !e
α−→ !e′

NotSTEP

By induction hypothesis, we have if µ |= e, µ |= κ̂, µ |= v̂C and µ |= σ̂

then µ |= e′. We have labels(!e) = labels(e) and labels(!e′) = labels(e′)
by definition. Since if µ |= e∧µ |= σ̂∧µ |= κ̂∧µ |= v̂C then µ |= e′, we
have ∀vβ ∈ labels(e) µ |= β v v∧µ |= σ̂→∀v′β′ ∈ labels(e′) µ |= β′v v′.

C.2. Proofs for Invariants in Expression Evaluation 187

Then ∀vβ ∈ labels(!e) µ |= β v v∧µ |= σ̂→∀v′β′ ∈ labels(!e′) µ |= β′ v

v′, i.e. µ |=!e∧µ |= σ̂ ∧µ |= κ̂∧µ |= v̂C → µ |=!e′. That is if µ |= σ̂,
µ |= κ̂, µ |= v̂C and µ |=!e then µ |=!e′.

σ̂, κ̂, v̂C, !truel α−→ false⊥
NotValueI

σ̂, κ̂, v̂C, !falsel α−→ true⊥
NotValueII

5 Selectors
σ̂, κ̂, v̂C, e

α−→ e′

σ̂, κ̂, v̂C, e ?{M} α−→ e′ ?{M}
SCon

The proof is similar as SEle.
σ̂, κ̂, v̂C, e1

α−→ e′1

σ̂, κ̂, v̂C,v
β ?{e1⇒ e,M} α−→ vβ ?{e′1⇒ e,M}

SEle

By induction hypothesis, we have if µ |= σ̂, µ |= κ̂, µ |= v̂C and µ |= e1

then µ |= e′1. That is µ |= σ̂ ∧∀vβ ∈ labels(e) µ |= β v v → ∀v′β′ ∈
labels(e′) µ |= β′v v′. We know labels(vβ ? {e1⇒ e,M}) = labels(vβ)∪
labels(e1)∪labels(e)∪labels(M) by definition. Similarly, labels(vβ ? {e′1⇒
e,M}) = labels(vβ)∪ labels(e′1)∪ labels(e)∪ labels(M). Suppose µ |=
vβ ?{e1⇒ e,M}. That is ∀v′β′ ∈ labels(vβ ?{e1⇒ e,M}) µ |= β′ v v′,
i.e. ∀v′β′ ∈ labels(vβ)∪ labels(e1)∪ labels(e)∪ labels(M) µ |= β′ v v′.

Then µ |= σ̂∧µ |= κ̂∧µ |= v̂C∧∀vβ ∈ labels(vβ)∪ labels(e1)∪ labels(e)∪
labels(M) µ |= βv v→∀vβ ∈ labels(vβ)∪labels(e1)∪labels(e′)∪labels(M) µ |=
β v v, i.e. µ |= σ̂∧µ |= κ̂∧µ |= v̂C∧∀vβ ∈ labels(vβ ? {e1⇒ e,M}) µ |=
β v v→∀vβ ∈ labels(vβ ? {e′1⇒ e,M}) µ |= β v v. That is µ |= σ̂∧µ |=
κ̂∧µ |= v̂C∧µ |= vβ ? {e1⇒ e,M}→ µ |= vβ ? {e′1⇒ e,M}.

¬caseMatch(v,v1)

σ̂, κ̂, v̂C,v
β ?{vβ1

1 ⇒ e,M} α−→ vβ ?{M}
SChooseI

The proof is similar as the rule SChoose.

188 Appendix C. Expression Provenance

σ̂, κ̂, v̂C,v
β ?{default⇒ e,M} α−→ e

SDefault

Suppose µ |= σ̂, µ |= κ̂, µ |= v̂C and µ |= vβ ?{default⇒ e,M}. That
is µ |= σ̂, µ |= κ̂, µ |= v̂C and ∀vβ1

1 ∈ labels(vβ ?{default⇒ e,M}) µ |=
β1 v v1. We know
labels(vβ ?{default⇒ e,M}) = labels(vβ)∪ labels(e)∪ labels(M) by
definition. Then we have if µ |= σ̂∧µ |= κ̂∧µ |= v̂C∧∀vβ1

1 ∈ labels(vβ)∪
labels(e)∪ labels(M) µ |= β1 v v1 then ∀vβ2

2 ∈ labels(e) µ |= β2 v v2,
i.e. µ |= σ̂∧µ |= κ̂∧µ |= v̂C∧∀vβ1

1 ∈ labels(vβ ?{default⇒ e,M})→
∀vβ2

2 ∈ labels(e) µ |= β2v v2. That is µ |= σ̂∧µ |= κ̂∧µ |= v̂C∧vβ ?{default⇒
e,M}→µ |= e. We have if µ |= σ̂, µ |= κ̂, µ |= v̂C and µ |= vβ ?{default⇒
e,M} then µ |= e.

C.2.1 Proofs for Invariants in Resource Evaluation

Proof. Prove by induction.

Case 1
σ̂, κ̂, v̂C,R

α−→R′

σ̂, κ̂, v̂C,R
α−→s σ̂, κ̂, v̂C,R

′

By induction hypothesis, we know if µ |= σ̂, µ |= κ̂ and µ |= v̂C then
µ |= R′. That is µ |= σ̂∧µ |= κ̂∧µ |= v̂C→ µ |= R′, i.e. µ |= σ̂∧∀vβ ∈
labels(R) µ |= β v v→∀v′β′ ∈ labels(R′) µ |= β′ v v′. Suppose µ |= κ̂,
µ |= v̂C and µ |= R, i.e. ∀vβ ∈ labels(R) µ |= β v v. Then we have
if µ |= σ̂ ∧µ |= κ̂∧µ |= v̂C ∧∀vβ ∈ labels(R) µ |= β v v ∧µ |= κ then
µ |= σ̂∧µ |= κ̂∧µ |= v̂C∧∀vβ ∈ labels(R) µ |= β v v∧µ |= κ→∀v′β′ ∈
labels(R′) µ |= β′ v v′→∀v′β′ ∈ labels(R′) µ |= β′ v v′. Then we have
if µ |= σ̂, µ |= κ̂, µ |= v̂C and µ |=R then µ |=R′.

Case 2 σ̂, κ̂, v̂C, v̂R
α−→s σ̂, κ̂, v̂R v̂C,skip

We have labels(skip) = ∅ by definition. Suppose µ |= σ̂, µ |= κ̂, µ |= v̂C

and µ |= v̂R. We know ∀vβ ∈ ∅ µ |= β v v is true. Then we have
µ |= σ̂∧µ |= κ̂∧µ |= v̂C ∧µ |= v̂R → ∀vβ ∈ ∅ µ |= β v v, i.e. µ |= σ̂∧

C.3. Proof of Invariant in Statement Evaluation 189

µ |= κ̂∧ µ |= v̂C ∧ µ |= v̂R → ∀vβ ∈ labels(skip) µ |= β v v. That is
µ |= σ̂∧µ |= κ̂∧µ |= v̂C∧µ |= v̂R→∀vβ ∈ labels(skip) µ |= β v v, i.e.
µ |= σ̂∧µ |= κ̂∧µ |= v̂C∧µ |= v̂R→ µ |= skip. Then if µ |= σ̂, ∧µ |= κ̂,
µ |= v̂C and µ |= v̂R then µ |= skip

C.3 Proof of Invariant in Statement Evaluation

Theorem C.3.1 (Invariant in Statement Evaluation). For any σ̂, κ̂, v̂C, s
α−→s

σ̂′, κ̂′, v̂′C ` s′, if µ |= σ̂, µ |= κ̂, µ |= v̂C and µ |= s then µ |= σ̂′, µ |= κ̂′, µ |= v̂′C

and µ |= s′.

Proof. Prove by induction.

1 Expression statements
σ̂, κ̂, v̂C, e

α−→ e′

σ̂, κ̂, v̂C, e
α−→s σ̂, κ̂, v̂C, e

′
ExprStep

By induction hypothesis, we know if µ |= σ̂, µ |= κ̂, µ |= v̂C and µ |= e

then µ |= e′. That is µ |= σ̂∧µ |= κ̂∧µ |= v̂C∧∀vβ ∈ labels(e) µ |= β v

v→∀v′β′ ∈ labels(e′) µ |= β′ v v′. Suppose µ |= σ̂, µ |= κ̂, µ |= v̂C and
µ |= e, i.e. µ |= σ̂, µ |= κ̂ and ∀vβ ∈ labels(e) µ |= β v v. Then µ |=
σ̂∧µ |= κ̂∧µ |= v̂C∧∀vβ ∈ labels(e) µ |= β v v→ µ |= σ̂∧µ |= κ̂∧µ |=
v̂C∧∀vβ ∈ labels(e) µ |= βv v→∀v′β′ ∈ labels(e′) µ |= β′v v′→∀v′β′ ∈
labels(e′) µ |= β′ v v′, i.e. µ |= σ̂∧µ |= κ̂∧µ |= v̂C∧µ |= e → µ |= e.
Since σ̂, κ̂ and v̂C have not changed before and after the evaluation, we
have µ |= σ̂∧µ |= κ̂∧µ |= v̂C∧µ |= e → µ |= σ̂∧µ |= κ̂∧µ |= v̂C∧µ |= e.
That is if µ |= σ̂, µ |= κ̂, µ |= v̂C and µ |= e then µ |= σ̂, µ |= κ̂, µ |= v̂C

and µ |= e′.

σ̂, κ̂, v̂C,v
β α−→s σ̂, κ̂, v̂C,skip

Expr

2 Sequential composition

190 Appendix C. Expression Provenance

σ,κ,vC, s1
α−→s σ

′,κ′,v′C, s
′
1

σ,κ,vC, s1 s2
α−→s σ

′,κ′,v′C, s
′
1 s2

SeqStep

By induction hypothesis, we know if µ |= σ̂, µ |= κ̂, µ |= v̂C and µ |= s1

then µ |= σ̂, µ |= κ̂, µ |= v̂C and µ |= s′1. That is µ |= σ̂∧µ |= κ̂∧µ |=
v̂C∧∀vβ ∈ labels(s1) µ |= β v v→ µ |= σ̂∧µ |= κ̂∧µ |= v̂C∧µ |= v̂C∧
∀v′β′ ∈ labels(s′1) µ |= β′ v v′. By definition, we have labels(s1s2) =
labels(s1)∪labels(s2) and similarly labels(s′1s2) = labels(s′1)∪labels(s2).
Suppose µ |= σ̂, µ |= κ̂, µ |= v̂C and µ |= s1s2, i.e. µ |= σ̂, µ |= κ̂, µ |= v̂C

and ∀vβ ∈ labels(s1s2) µ |= β v v.

Then we have µ |= σ̂∧µ |= κ̂∧µ |= v̂C∧µ |= v̂C∧∀vβ ∈ labels(s1s2) µ |=
β v v→ µ |= σ̂∧µ |= κ̂∧µ |= v̂C∧∀vβ ∈ (labels(s1)∪ labels(s2)) µ |=
β v v→ µ |= σ̂′∧µ |= κ̂′∧µ |= v̂C

′∧∀v′β′ ∈ (labels(s′1)∪ labels(s2)) µ |=
β′ v v′→ µ |= σ̂∧′ µ |= κ̂′∧µ |= v̂C

′∧∀v′β′ ∈ labels(s′1s2) µ |= β′ v v′,
i.e. µ |= σ̂∧µ |= κ̂∧µ |= v̂C∧µ |= s1s2→ µ |= s′1s2. That is if µ |= σ̂,
µ |= κ̂, µ |= v̂C and µ |= s1s2 then µ |= σ̂′, µ |= κ̂′, µ |= v̂′C and µ |= s′1s2.

σ,κ,vC,skip s
α−→s σ,κ,vC, s

SeqSkip

By definition, we have labels(skip s) = labels(skip)∪ labels(s) = ∅∪
labels(s) = labels(s). Suppose µ |= σ̂, µ |= κ̂, µ |= v̂C and µ |= skip s,
i.e. µ |= σ̂, µ |= κ̂, µ |= v̂C and ∀vβ ∈ labels(skip s) µ |= β v v.

Then µ |= σ̂∧µ |= κ̂∧µ |= v̂C∧∀vβ ∈ labels(skip s) µ |= β v v→ µ |=
σ̂∧µ |= κ̂∧µ |= v̂C∧∀vβ ∈ labels(s) µ |= β v v, i.e. µ |= σ̂∧µ |= κ̂∧µ |=
v̂C∧µ |= skip s→ µ |= σ̂∧µ |= κ̂∧µ |= v̂C∧µ |= s.

That is if µ |= σ̂, µ |= κ̂, µ |= v̂C and µ |= skip s then µ |= σ̂′, µ |=
κ̂′, µ |= v̂′C and µ |= s. The invariant holds for this evaluation step
σ̂, κ̂, v̂C,skip s α−→s σ̂, κ̂, v̂C, s.

3 Assignment
σ̂, κ̂, v̂C, e

α−→ e′

σ̂, κ̂, v̂C,$x= e
α−→s σ̂, κ̂, v̂C,$x= e′

AssignStep

By induction hypothesis, we know if µ |= σ̂, µ |= κ̂, µ |= v̂C and µ |= e

C.3. Proof of Invariant in Statement Evaluation 191

then µ |= e′. That is µ |= σ̂ ∧µ |= κ̂∧µ |= v̂C ∧∀vβ ∈ labels(e) µ |=
β v v→∀v′β′ ∈ labels(e′) µ |= β′ v v′. Suppose µ |= σ̂, µ |= κ̂, µ |= v̂C

and µ |= $x = e. By definition, we have labels($x = e) = labels(e) =
labels(e) and labels($x = e′) = labels(e′) = labels(e′). Then we have
µ |= σ̂ ∧µ |= κ̂∧µ |= v̂C ∧∀vβ ∈ labels($x = e) µ |= β v v → µ |= σ̂ ∧
µ |= κ̂∧ µ |= v̂C ∧∀vβ ∈ labels(e) µ |= β v v → µ |= σ̂ ∧ µ |= κ̂∧ µ |=
v̂C∧∀v′β

′ ∈ labels(e′) µ |= β′ v v′→ µ |= σ̂∧µ |= κ̂∧µ |= v̂C∧∀v′β
′ ∈

labels($x= e′) µ |= β′ v v′. That is µ |= σ̂∧µ |= κ̂∧µ |= v̂C∧µ |= $x=
e→ µ |= σ̂∧µ |= κ̂∧µ |= v̂C∧µ |= $x= e′.

x /∈ dom(σα)

σ̂, κ̂, v̂C,$x= vβ
α−→s σ̂[(α,x) : vβ], κ̂, v̂C,skip

Assign

By definition, we have labels($x = vβ) = labels($x)∪ labels(vβ) = ∅∪
{vβ}= {vβ}, labels(skip) = ∅ and lvaσ̂[(α,x) : vβ] = labels(σ̂)∪{vβ}.
Suppose µ |= σ̂, µ |= κ̂, µ |= v̂C and µ |= $x= vβ. Then µ |= σ̂∧µ |= κ̂∧
µ |= v̂C∧∀vβ ∈ labels($x= vβ) µ |= β v v→∀v′β′ ∈ labels(σ̂) µ |= β′ v

v′∧µ |= κ̂∧µ |= v̂C∧∀vβ ∈ labels(vβ) µ |= β v v→ ∀vβ ∈ (labels(σ̂∪
labels(vβ))) µ |= β′ v v′∧µ |= κ̂∧µ |= v̂C∧true, i.e. µ |= σ̂∧µ |= κ̂∧
µ |= v̂C∧µ |= $x= vβ→ µ |= σ̂[(α,x) : vβ]∧µ |= κ̂∧µ |= v̂C∧µ |= skip.

4 If
σ̂, κ̂, v̂C, e

α−→ e′

σ̂, κ̂, v̂C,if e {s1} else {s2}
α−→s σ̂, κ̂, v̂C,if e′ {s1} else {s2}

IfStep

By induction hypothesis, we know if µ |= σ̂, µ |= κ̂, µ |= v̂C and µ |= e

then µ |= e′. That is µ |= σ̂∧µ |= κ̂∧µ |= v̂C∧∀vβ ∈ labels(e) µ |= β v

v→∀v′β′ ∈ labels(e′) µ |= β′ v v′.

By definition, we have labels(if e {s1} else {s2}) = labels(e)∪labels(s1)∪
labels(s2) and labels(if e′ {s1} else {s2}) = labels(e′)∪ labels(s1)∪
labels(s2).

Suppose µ |= σ̂, µ |= κ̂, µ |= v̂C and µ |= if e {s1} else {s2}, i.e. µ |= σ̂,
µ |= κ̂, µ |= v̂C and ∀v′β′ ∈ labels(µ |= if e {s1} else {s2}) µ |= β′ v v′.
Then µ |= σ̂∧µ |= κ̂∧µ |= v̂C∧∀v′β

′ ∈ labels(if e′ {s1} else {s2}) µ |=

192 Appendix C. Expression Provenance

β′v v′→µ |= σ̂∧µ |= κ̂∧µ |= v̂C∧∀v′β
′ ∈ labels(e)∪labels(s1)∪labels(s2) µ |=

β′ v v′ → µ |= σ̂ ∧ µ |= κ̂ ∧ µ |= v̂C ∧ ∀v′β
′ ∈ labels(e′) ∪ labels(s1) ∪

labels(s2) µ |= β′v v′. i.e. if µ |= σ̂∧µ |= κ̂∧µ |= v̂C∧µ |= if e {s1} else {s2}
then µ |= σ̂∧µ |= κ̂∧µ |= v̂C∧µ |= if e′ {s1} else {s2}.

σ̂, κ̂, v̂C,if trueβ {s1} else {s2}
α−→s σ̂, κ̂, v̂C, s1

IfT

By definition, we have labels(if trueβ {s1} else {s2}) = labels(trueβ)∪
labels(s1)∪labels(s2). Suppose µ |= σ̂, µ |= κ̂, µ |= v̂C and µ |= if trueβ {s1} else {s2}.
Then that is µ |= σ̂∧µ |= κ̂∧µ |= v̂C∧∀vβ ∈ labels(if trueβ {s1} else {s2})µ |=
βv v→µ |= σ̂∧µ |= κ̂∧µ |= v̂C∧∀vβ ∈{trueβ}∪labels(s1)∪labels(s2) µ |=
β v v→ µ |= σ̂∧µ |= κ̂∧µ |= v̂C∧∀vβ ∈ labels(s1) µ |= β v v. That is
µ |= σ̂∧µ |= κ̂∧µ |= v̂C∧µ |= if trueβ {s1} else {s2}→ µ |= σ̂∧µ |=
κ̂∧µ |= v̂C∧µ |= s1.

σ̂, κ̂, v̂C,if falseβ {s1} else {s2}
α−→s σ̂, κ̂, v̂C, s2

IfF

Similar as above.

5 Unless
σ̂, κ̂, v̂C, e

α−→ e′

σ̂, κ̂, v̂C,unless e {s} α−→s σ̂, κ̂, v̂C,unless e′ {s}
UnlessStep

The proof is similar as IfStep.

σ̂, κ̂, v̂C,unless trueβ {s} α−→s σ̂, κ̂, v̂C, skip
UnlessT

The proof is similar as IfT.

σ̂, κ̂, v̂C,unless falseβ {s} α−→s σ̂, κ̂, v̂C, s
UnlessF

The proof is similar as IfT.

6 Case
σ̂, κ̂, v̂C, e

α−→ e′

σ̂, κ̂, v̂C,case e {C} α−→s σ̂, κ̂, v̂C,case e′ {C}
CaseStep1

C.3. Proof of Invariant in Statement Evaluation 193

Similar as IfStep.

σ̂, κ̂, v̂C, e
α−→ e′

σ̂, κ̂, v̂C,case vβ {e : {s} C} α−→s σ̂, κ̂, v̂C,case vβ {e′ : {s} C}
CaseStep2

caseMatch(v,v1)

σ̂, κ̂, v̂C,case vβ {vβ1
1 : {s} C} α−→s σ̂, κ̂, v̂C, s

CaseMatch

By definition, we have labels(case vβ {vβ
′

1 : {s} C}) = labels(vβ)∪
labels(vβ

′

1)∪ labels(s)∪ labels(C). Suppose µ |= σ̂, µ |= κ̂, µ |= v̂C and
µ |= case vβ {vβ

′

1 : {s} C}. Then µ |= σ̂ ∧ µ |= κ̂∧ µ |= v̂C ∧ ∀vβ ∈
labels(case vβ {vβ

′

1 : {s} C}) µ |= β v v→ µ |= σ̂∧µ |= κ̂∧µ |= v̂C ∧
∀vβ ∈ labels(vβ)∪ labels(vβ1

1)∪ labels(s)∪ labels(C) µ |= β v v→ µ |=
σ̂∧µ |= κ̂∧µ |= v̂C∧∀vβ ∈ labels(s) µ |= β v v i.e. µ |= σ̂∧µ |= κ̂∧µ |=
v̂C∧µ |= case vβ {vβ1

1 : {s} C}→ µ |= σ̂∧µ |= κ̂∧µ |= v̂C∧µ |= s.

¬caseMatch(v,v1)

σ̂, κ̂, v̂C,case vβ {vl11 : {s} C} α−→s σ̂, κ̂, v̂C,case vβ {C}
CaseNoMatch

The proof is similar as case above.

σ̂, κ̂, v̂C,case vβ {ε} α−→s σ̂, κ̂, v̂C,skip
CaseDone

We have labels(case vβ {ε}) = labels(vβ) and labels(skip) = ∅ and
labels(skip) = ∅ by definition. Suppose µ |= σ̂, µ |= κ̂, µ |= v̂C and µ |=
case vβ {}. Since ∀vβ ∈ labels(skip) µ |= β v v, we have ∀vβ ∈ ∅ µ |=
β v v = true. Then µ |= σ̂ ∧µ |= κ̂∧µ |= v̂C ∧∀vβ ∈ labels(vβ) µ |=
β v v→ µ |= σ̂ ∧µ |= κ̂∧µ |= v̂C → µ |= σ̂ ∧µ |= κ̂∧µ |= v̂C ∧∀v′β

′ ∈
labels(skip) µ |= β′ v v′. That is µ |= σ̂ ∧ µ |= κ̂ ∧ µ |= v̂C ∧ µ |=
case vβ {ε}→ µ |= σ̂∧µ |= κ̂∧µ |= v̂C∧µ |= skip.

7 Resource declarations
σ̂, κ̂, v̂C, e :H α−→R e

′ :H ′

σ̂, κ̂, v̂C, t {e :H} α−→s σ̂, κ̂, v̂C, t {e′ :H ′}
ResStep

Omitted.

194 Appendix C. Expression Provenance

σ̂, κ̂, v̂C, v̂R
α−→s σ̂, κ̂, v̂C v̂R,skip

ResDecl

Omitted.

8 Defined resource types
σ̂, κ̂, v̂C,{e :H} α−→R {e′ :H ′}

σ̂, κ̂, v̂C,u {e :H} α−→s σ̂, κ̂, v̂C,u {e′ :H ′}
DefStep

Omitted
κ̂(u) = ResourceDef(ρ,s)s′ = merge(ρ,vH)

σ̂, κ̂, v̂C,u {w : vH}
α−→s σ̂, κ̂, v̂C,scope (α def) {$title= w s′ s}

Def

We have labels(u {w : vH}) = labels(w)∪ labels(vH) and
labels(scope (α def) {$title=w s′ s) = labels(w)∪labels(s)∪labels(s′)
by definition. We know also labels(ResourceDef(ρ,s)) = labels(ρ)∪
labels(s)⊆ labels(κ) by definition. By the definition of functionmerge,
we know labels(s) ⊆ labels(ρ)∪ labels(vH). Suppose µ |= σ̂, µ |= κ̂,
µ |= v̂C and µ |= u {w : vH}.

Then µ |= σ̂ ∧ µ |= κ̂ ∧ µ |= v̂C ∧ ∀vβ ∈ labels(u {w : vH}) µ |= β v

v→ µ |= σ̂∧∀vβ ∈ labels(κ̂) µ |= β v v∧µ |= v̂C∧∀v′β
′ ∈ labels(vH)∪

{w} µ |= β′ v v′→ µ |= σ̂∧∀vβ ∈ labels(κ)\ labels(ResourceDef(ρ,s))∪
labels(ResourceDef(ρ,s)) µ |= β v v∧µ |= v̂C∧∀v′β

′ ∈ labels(vH) µ |=
β′v v′→ µ |= σ̂∧µ |= κ̂∧µ |= v̂C∧∀v′β

′ ∈ labels(s)∪ labels(s) µ |= β′v

v′→ µ |= σ̂∧µ |= κ̂∧µ |= v̂C∧∀v′β
′ ∈ labels(scope (α def) {$title =

w s′ s}) µ |= β′ v v′. That is µ |= σ̂ ∧µ |= κ̂∧µ |= v̂C ∧µ |= u {w :
vH}→ µ |= σ̂∧µ |= κ̂∧µ |= v̂C∧µ |= scope (α def) {$title= w s′ s}.

9 Include
κ̂(a) = ClassDef(⊥,ρ,s)s′ = merge(ρ,ε)β baseof κ̂α

σ̂, κ̂, v̂C,include a α−→′s σ̂,κ[a : DeclaredClass(β)], v̂C,scope (::a) s′ s
IncU

By definition, we have labels(include a) = ∅ and labels(scope (::
a) s′ s) = labels(s)∪ labels(s′). We also know that labels(κ(a)) =

C.3. Proof of Invariant in Statement Evaluation 195

labels(ClassDef(⊥,ρ,s)) = labels(ρ)∪ labels(s),
labels(DeclaredClass(⊥)) = ∅ and labels(κ̂(a → DeclaredClass(⊥))) =
labels(κ̂)\ labels(ClassDef(⊥,ρ,s)) by definition.
Suppose µ |= σ̂, µ |= κ̂, µ |= v̂C and µ |= include a. Then µ |= σ̂∧µ |=
κ̂ ∧ µ |= v̂C ∧ ∀vβ ∈ labels(include a) µ |= β v v → µ |= σ̂ ∧ ∀vβ ∈
labels(κ̂) µ |= β v v∧µ |= v̂C∧∀v′β

′ ∈ labels(include a) µ |= β′ v v′→
µ |= σ̂∧∀vβ ∈ labels(κ̂(a→DeclaredClass(⊥)))∪labels(ClassDef(⊥,ρ,s))µ |=
β v v∧µ |= v̂C ∧∀v′β

′ ∈ ∅ µ |= β′ v v′→ µ |= σ̂∧∀vβ ∈ labels(κ̂(a→
DeclaredClass(⊥)))∪ labels(s)∪ labels(s′)µ |= β v v∧µ |= v̂C∧true→
µ |= σ̂∧µ |= κ̂(a→ DeclaredClass(⊥))∧µ |= scope (:: a) s′ s∧µ |= v̂C.
That is µ |= σ̂∧µ |= κ̂∧µ |= v̂C∧µ |= include a→ µ |= σ̂∧µ |= κ̂(a→
DeclaredClass(⊥))∧µ |= v̂C∧µ |= scope (:: a) s′ s.

κ̂(a) = DeclaredClass(β)

σ̂, κ̂, v̂C,include a α−→s σ̂, κ̂, v̂C,skip
IncD

By definition, we have labels(include a) = ∅ and labels(skip) = ∅.
Since ∀vβ ∈ labels(include a) µ |= β v v, we have ∀vβ ∈ ∅ µ |= β v

v = true. Similarly, ∀vβ ∈ labels(skip) µ |= β v v = true. Sup-
pose µ |= σ̂, µ |= κ̂, µ |= v̂C and µ |= include a. Then µ |= σ̂ ∧µ |=
κ̂∧µ |= v̂C∧∀vβ ∈ labels(include a) µ |= β v v→ µ |= σ̂∧µ |= κ̂∧µ |=
v̂C∧true→ µ |= σ̂∧µ |= κ̂∧µ |= v̂C∧∀v′β

′ ∈ labels(skip) µ |= β′ v v′.
That is µ |= σ̂∧µ |= κ̂∧µ |= v̂C∧µ |= include a→ µ |= σ̂∧µ |= κ̂∧µ |=
v̂C∧µ |= skip.

κ̂(a) = ClassDef(b,ρ,s)κ̂(b) = ClassDef(copt,ρ′, s′)

σ̂, κ̂, v̂C,include a α−→s σ̂, κ̂, v̂C,include b include a
IncPU

The proof is similar as case IncU.

κ(a) = ClassDef(b,ρ,s)κ(b) = DeclaredClass(β)s′ = merge(ρ,ε)

σ̂, κ̂, v̂C,include a α−→s σ,κ[a : DeclaredClass(::b)], v̂C,scope (::a) {s′ s}
IncPD

The proof is similar as IncU.

196 Appendix C. Expression Provenance

10 Resource-like class declarations
κ̂(a) = ClassDef(copt,ρ,S)σ̂, κ̂, v̂C,H

α−→H H
′

σ̂, κ̂, v̂C,class {a :H} α−→s σ̂, κ̂, v̂C,class {a :H ′}
CDecStep

Omitted.

κ̂(a) = ClassDef(⊥,ρ,s)s′ = merge(ρ,vH)β baseof κ̂α

σ̂, κ̂, v̂C,class {a : vH}
α−→s σ̂,κ[a : DeclaredClass(β)], v̂C,scope (::a) s′ s

CDecU

By definition, we have labels(class {a : vH}) = labels(vH),
labels(ClassDef(⊥,ρ,s)) = labels(ρ)∪ labels(s) and
labels(scope(:: a) s′ s) = labels(s′)∪ labels(s). We also know
labels(ClassDef(⊥,ρ,s)) = labels(ρ)∪ labels(s)⊆ labels(κ) and
labels(κ(a→ DeclaredClass(⊥))) = labels(κ̂) \ labels(ClassDef(⊥,ρ,s))
by definition. By the definition of functionmerge, we know labels(s′)⊆
labels(ρ)∪ labels(vH).

Suppose µ |= σ̂, µ |= κ̂, µ |= v̂C and µ |= class {a : vH}. Then
µ |= σ̂∧µ |= κ̂∧µ |= v̂C∧∀vβ ∈ labels(class {a : vH}) µ |= β v v→
µ |= σ̂ ∧∀vβ ∈ labels(κ̂) µ |= β v v ∧µ |= v̂C ∧∀v′β

′ ∈ labels(vH) µ |=
β′ v v′→ µ |= σ̂∧∀vβ ∈ labels(κ̂(a→ DeclaredClass(⊥)))∪
labels(ClassDef(⊥,ρ,s))µ |= β v v ∧ µ |= v̂C ∧ ∀v′β

′ ∈ labels(vH) µ |=
β′ v v′→ µ |= σ̂∧∀vβ ∈ labels(κ̂(a→ DeclaredClass(⊥)))∪ labels(ρ)∪
labels(s)µ |= β v v ∧ µ |= v̂C ∧∀v′β

′ ∈ labels(vH) µ |= β′ v v′ → µ |=
σ̂ ∧µ |= κ̂(a→ DeclaredClass(⊥))∧∀v′β′ ∈ labels(s′)∪ labels(s)∧µ |=
v̂C → µ |= σ̂ ∧µ |= κ̂(a→ DeclaredClass(⊥))∧∀v′β′ ∈ labels(scope (::
a) s′ s)∧µ |= v̂C. That is, if µ |= σ̂∧µ |= κ̂∧µ |= v̂C∧µ |= class {a :
vH} then µ |= σ̂∧µ |= κ̂(a→DeclaredClass(⊥))∧µ |= v̂C∧µ |= scope (::
a) s′ s.

κ̂(a) = ClassDef(b,ρ,s)κ̂(b) = ClassDef(copt,ρ′, s′)

σ̂, κ̂, v̂C,class {a : vH}
α−→s σ̂, κ̂, v̂C,include b class {a : vH}

CDecPU

We have labels(class {a : vH}) = labels(vH) and labels(include b

class {a : vH}) = ∅ ∪ labels(vH) = labels(vH) by definition. Sup-
pose µ |= σ̂, µ |= κ̂, µ |= v̂C and µ |= class {a : vH}. Then µ |=

C.3. Proof of Invariant in Statement Evaluation 197

σ̂∧µ |= κ̂∧µ |= v̂C∧∀vβ ∈ labels(class {a : vH}) µ |= β v v→ µ |=
σ̂∧µ |= κ̂∧µ |= v̂C∧∀vβ ∈ labels(vH) µ |= β v v→ µ |= σ̂∧µ |= κ̂∧µ |=
v̂C ∧ ∀vβ ∈ labels(include b class {a : vH}) µ |= β v v → ∀vβ ∈
labels(class {a : vH}) µ |= β v v →. That is µ |= σ̂ ∧µ |= κ̂∧µ |=
v̂C∧µ |= class {a : vH}→ µ |= σ̂∧µ |= κ̂(a→DeclaredClass(⊥))∧µ |=
v̂C∧µ |= include b class {a : vH}.

κ̂(a) = ClassDef(b,ρ,s)κ(b) = DeclaredClass(β)s′ = merge(ρ,vH)

σ̂, κ̂, v̂C,class {a : vH}
α−→s σ̂,κ[a : DeclaredClass(::b)], v̂C,scope (::a) {s′ s}

CDecPD

The proof is similar as CDecU.

11 Scope
α ∈ {::, ::a, ::nd}σ̂, κ̂, v̂C, s

α→s σ
′,κ′,v′C, s

′

σ̂, κ̂, v̂C,scope α s
α′
−→s σ

′,κ′,v′C,scope α s′
ScopeStep

By induction hypothesis, we know if µ |= σ̂, µ |= κ̂, µ |= v̂C and µ |= s

then µ |= σ̂′, µ |= κ̂′, µ |= v̂C
′ and µ |= s′. By definition we have

labels(scope α s) = labels(s) and similarly labels(scope α s′) = labels(s′).
Suppose µ |= σ̂, µ |= κ̂, µ |= v̂C and µ |= scope α s. Since µ |= σ̂∧µ |=
κ̂∧µ |= v̂C∧∀vβ ∈ labels(scope α s) µ |= β v v→ µ |= σ̂∧µ |= κ̂∧µ |=
v̂C∧∀vβ ∈ labels(s)→ µ |= σ̂′∧µ |= κ̂′∧µ |= v̂C

′∧∀v′β′ ∈ labels(s′) µ |=
β′v v′→ µ |= σ̂′∧µ |= κ̂′∧µ |= v̂C

′∧∀v′β′ ∈ labels(scope α s′) µ |= β′v

v′, i.e. µ |= σ̂∧µ |= κ̂∧µ |= v̂C∧µ |= scope α s→ µ |= σ̂′∧µ |= κ̂′∧µ |=
v̂C
′∧µ |= scope α s′.

σ̂, κ̂, v̂C, s
α def−−−→s σ̂′, κ̂′, v̂′C, s

′

σ̂, κ̂, v̂C,scope (α def) s α−→s σ̂′,scope′ (α def) s′
DefScopeStep

The proof is similar as the rule ScopeStep.

α ∈ {::, ::a, ::nd}

σ̂, κ̂, v̂C,scope α skip β−→s σ̂, κ̂, v̂C,skip
ScopeDone

198 Appendix C. Expression Provenance

We have labels(scope α skip) = labels(skip) = ∅ by definition. Sup-
pose µ |= σ̂, µ |= κ̂, µ |= v̂C and µ |= scope α skip, i.e. µ |= σ̂, µ |= κ̂,
µ |= v̂C and ∀vβ ∈ labels(scope α skip) µ |= β v v. Then we have
µ |= σ̂ ∧µ |= κ̂∧µ |= v̂C ∧∀vβ ∈ labels(scope α skip) µ |= β v v →
µ |= σ̂∧µ |= κ̂∧µ |= v̂C∧∀vβ ∈ labels(skip), i.e. µ |= σ̂∧µ |= κ̂∧µ |=
v̂C∧µ |= scope α skip→ µ |= σ̂∧µ |= κ̂∧µ |= v̂Cµ |= skip. That is
if µ |= σ̂, µ |= κ̂, µ |= v̂C and µ |= scope α skip then µ |= σ̂, µ |= κ̂,
µ |= v̂C and µ |= skip.

σ̂, κ̂, v̂C,scope (α def) skip α−→s clear(σ̂,α def), κ̂, v̂C,skip
DefScopeDone

By definition, we have labels(clear(σ̂,α def)) = labels(σ̂)\labels({(α′ defx,v′) |
(α′ def x,v′)∈ σ̂,α=α′}). We also have labels(scope (α def) skip) =
labels(skip) = ∅. Suppose µ |= σ̂, µ |= κ̂, µ |= v̂C and µ |= scope (α def) skip.
Then ∀v′β′ ∈ labels(σ̂) µ |= β′ v v′∧µ |= κ̂∧µ |= v̂C∧
∀vβ ∈ labels(scope (α def) skip) µ |= βv v→∀v′β′ ∈ labels(clear(σ̂,α def) µ |=
β′v v′∧µ |= κ̂∧µ |= v̂C∧∀vβ ∈ labels(skip) µ |= βv v, i.e. µ |= σ̂∧µ |=
κ̂∧ µ |= v̂C ∧ µ |= scope (α def) skip → µ |= clear(σ̂,α def)∧ µ |=
κ̂∧µ |= v̂C∧µ |= skip.

C.4 Proof of Invariant in Manifest Evaluation

Theorem C.4.1 (Invariant in Manifest Evaluation). For any σ̂, κ̂, v̂C,m
N−→m

σ̂′, κ̂′, v̂′C `m′, if µ |= σ̂, µ |= κ̂, µ |= v̂C and µ |= m then µ |= σ̂′, µ |= κ̂′, µ |= v̂′C

and µ |=m′.

Proof. Prove by induction.

1 Top-Level Statements
σ̂, κ̂, v̂C, s

::−→s σ̂′, κ̂′, v̂′C, , s
′

σ̂, κ̂, v̂C, s
N−→m σ̂′, κ̂′, v̂′C, , s

′
TopScope

C.4. Proof of Invariant in Manifest Evaluation 199

By induction hypothesis, we have if µ |= σ̂, µ |= κ̂, µ |= v̂C and µ |= s

then µ |= σ̂, µ |= κ̂, µ |= v̂C and µ |= s′, i.e. µ |= σ̂ ∧ µ |= κ̂∧ µ |=
v̂C ∧ ∀vβ ∈ labels(s) µ |= β v v → µ |= σ̂ ∧ µ |= κ̂∧ µ |= v̂C ∧ ∀v′β

′ ∈
labels(s′) µ |= β′ v v′. Since labels(s) = labels(s) and labels(s′) =
labels(s′), µ |= σ̂∧µ |= κ̂∧µ |= v̂C∧∀vβ ∈ labels(s) µ |= β v v→ µ |=
σ̂∧µ |= κ̂∧µ |= v̂C∧∀v′β

′ ∈ labels(s′) µ |= β′ v v′, i.e. µ |= σ̂∧µ |= κ̂∧
µ |= v̂C∧ s→ µ |= σ̂∧µ |= κ̂∧µ |= v̂C∧ s′ for σ̂, κ̂, v̂C, s

N−→p σ̂
′,κ′,v′C, s

′

as a program statement evaluation.

2 Sequential Composition

σ̂, κ̂, v̂C,m1
N−→m σ̂′, κ̂′, v̂′C,m

′
1

σ̂′, κ̂′, v̂′C,m1 m2
N−→m σ̂′, κ̂′, v̂′C,m

′
1 m2

MSeqStep

By induction hypothesis, we have if µ |= σ̂, µ |= κ̂, µ |= v̂C and µ |=m1

then µ |= σ̂, µ |= κ̂, µ |= v̂C and µ |= m′1. We have labels(m1m2) =
labels(m1)∪ labels(m2) and labels(m′1m2) = labels(m′1)∪ labels(m2)
by definition. Suppose µ |=m1m2, i.e. ∀vβ ∈ labels(m1m2) µ |= β v v.

Then µ |= σ̂∧µ |= κ̂∧µ |= v̂C∧∀vβ ∈ labels(m1m2) µ |= β v v→ µ |=
σ̂∧µ |= κ̂∧µ |= v̂C∧∀vβ ∈ labels(m1)∪ labels(m2) µ |= β v v→ µ |=
σ̂∧µ |= κ̂∧µ |= v̂C∧∀v′β

′ ∈ labels(m′1)∪ labels(m2) µ |= β′ v v′→ µ |=
σ̂∧µ |= κ̂∧µ |= v̂C∧∀v′β

′ ∈ labels(m′1m2) µ |= β′ v v′, i.e. µ |= σ̂∧µ |=
κ̂∧µ |= v̂C∧µ |=m1m2→ µ |= σ̂∧µ |= κ̂∧µ |= v̂C∧µ |=m′1m2.

σ̂′, κ̂′, v̂′C,skip m
N−→m σ̂′, κ̂′, v̂′C,m

MSeqSkip

We know labels(skip) = labels(skip)∪ labels(m) = labels(m) by def-
inition. Suppose µ |= σ̂, µ |= κ̂, µ |= v̂C and µ |= skip m, i.e. µ |= σ̂,
µ |= κ̂, µ |= v̂C and ∀vβ ∈ labels(skip m) µ |= β v v. Then µ |= σ̂∧µ |=
κ̂∧µ |= v̂C∧∀vβ ∈∈ labels(skip m) µ |= β v v→ µ |= σ̂∧µ |= κ̂∧µ |=
v̂C ∧∀vβ ∈∈ labels(m) µ |= β v v, i.e. µ |= σ̂∧µ |= κ̂∧µ |= v̂C ∧µ |=
skip m→ µ |= σ̂∧µ |= κ̂∧µ |= v̂C∧µ |=m.

3 Node Definitions

200 Appendix C. Expression Provenance

nodeMatch(N,Q)

σ̂, κ̂, v̂C,nodeQ {s} N−→m σ̂, κ̂, v̂C,scope (::nd) s
NodeMatch

By definition, we know labels(nodeQ {s}) = labels(S) and
labels(scope (:: nd) s) = labels(s). Suppose µ |= σ̂, µ |= κ̂, µ |= v̂C and
µ |= nodeQ {s}. Then µ |= σ̂∧µ |= κ̂∧µ |= v̂C∧∀vβ ∈ labels(nodeQ {s}) µ |=
β v v → µ |= σ̂ ∧µ |= κ̂∧µ |= v̂C ∧∀vβ ∈ labels(s) µ |= β v v → µ |=
σ̂ ∧µ |= κ̂∧µ |= v̂C ∧∀vβ ∈ labels(scope (:: nd) s) µ |= β v v. That
is µ |= σ̂ ∧µ |= κ̂∧µ |= v̂C ∧µ |= node Q {s} → µ |= σ̂ ∧µ |= κ̂∧µ |=
v̂C∧∀vβ ∈ µ |= scope (:: nd) s.

¬nodeMatch(N,Q)

σ̂, κ̂, v̂C,nodeQ {s} N−→m σ̂, κ̂, v̂C,skip
NodeNoMatch

By definition, we know labels(nodeQ {s}) = labels(s) and
labels(skip) = ∅. We know that ∀vβ ∈ labels(skip) µ |= β v v→∀vβ ∈
∅ µ |= βv v= true. Suppose µ |= σ̂, µ |= κ̂, µ |= v̂C and µ |= nodeQ {s}.
Then µ |= σ̂∧µ |= κ̂∧µ |= v̂C∧µ |= nodeQ {s}→ µ |= σ̂∧µ |= κ̂∧µ |=
v̂C∧true→ µ |= σ̂∧µ |= κ̂∧µ |= v̂C∧∀vβ ∈ labels(skip) µ |= β v v.
Then µ |= σ̂∧µ |= κ̂∧µ |= v̂C∧µ |= nodeQ {s}→ µ |= σ̂∧µ |= κ̂∧µ |=
v̂C∧∀vβ ∈ µ |= skip.

4 Defined resource types
u /∈ dom(κ̂)

σ̂, κ̂, v̂C,define u (ρ) {s} N−→m σ̂, κ̂[u : ResourceDef(ρ,s)], v̂C,skip
RDef

The proof is similar as CDef.

5 Class Definitions
a /∈ dom(κ̂)

σ̂, κ̂, v̂C,class a {s} N−→m σ, κ̂[a : ClassDef(⊥, ε,s)], v̂C,skip
CDef

We have labels(class a {s}) = labels(s) and labels(skip) = ∅ by def-
inition. We also know labels(κ(a→ ClassDef(⊥, ε,s))) = labels(κ̂)∪

C.4. Proof of Invariant in Manifest Evaluation 201

labels(ClassDef(⊥,ρ,s)) = labels(κ̂)∪ labels(ρ)∪ labels(s) and
labels(κ(a) =⊥) = ∅ by definition.

Suppose µ |= σ̂, µ |= κ̂, µ |= v̂C and µ |= class a {s}. We also know
∀vβ ∈ skip µ |= β v v→∀vβ ∈ ∅ µ |= β v v = true. Then µ |= σ̂∧µ |=
κ̂∧µ |= v̂C∧µ |= class a {s} → µ |= σ̂∧µ |= κ̂∧µ |= v̂C∧µ |= ∀vβ ∈
labels(class a {s}) µ |= β v v → µ |= σ̂ ∧ µ |= ∀vβ ∈ labels(κ̂) µ |=
β v v∧µ |= v̂C∧µ |= ∀vβ ∈ labels(s) µ |= β v v→ µ |= σ̂∧µ |= ∀vβ ∈
labels(κ̂)∪labels(s) µ |= βv v∧true→µ |= σ̂∧µ |= κ̂(a→ClassDef(⊥, ε,s))∧
µ |= v̂C∧µ |= skip. Then µ |= σ̂∧µ |= κ̂∧µ |= v̂C∧µ |= class a {s}→
µ |= σ̂∧µ |= κ̂(a→ ClassDef(⊥, ε,s))∧µ |= v̂C∧µ |= skip

a /∈ dom(κ̂)

σ̂, κ̂, v̂C,class a inherits b {s} N−→m σ, κ̂[a : ClassDef(b,ε,s)], v̂C,skip
CDefI

The proof is similar as CDef.

a /∈ dom(κ̂)

σ̂, κ̂, v̂C,class a (ρ) {s} N−→m σ, κ̂[a : ClassDef(⊥,ρ,s)], v̂C,skip
CDefP

The proof is similar as CDef.

a /∈ dom(κ̂)

σ̂, κ̂, v̂C,class a (ρ) inherits b {s} N−→m σ̂, κ̂[a : ClassDef(b,ρ,s)], v̂C,skip
CDefPI

The proof is similar as CDef.

Appendix D

Dependency Provenance

D.1 Propagation of Annotations in the Evaluation

D.1.1 Expressions

D.1.1.1 Boolean expressions

σ̂, κ̂, v̂C, e1
α−→ e′1

σ̂, κ̂, v̂C, e1 and e2
α−→ e′1 and e2

AndLeft

σ̂, κ̂, v̂C, e
α−→ e′

σ̂, κ̂, v̂C,falseβ and e α−→ falseβ
AndRightI

σ̂, κ̂, v̂C, e
α−→ e′

σ̂, κ̂, v̂C,trueβ and e α−→ trueβ and e′
AndRightII

σ̂, κ̂, v̂C,trueβ1 andtrueβ2 α−→ trueβ1∪β2
AndValue

σ̂, κ̂, v̂C, e
α−→ e′

σ̂, κ̂, v̂C, !e
α−→ !e′

NotSTEP
σ̂, κ̂, v̂C, !trueβ α−→ falseβ

NotValueI

σ̂, κ̂, v̂C, !falseβ α−→ trueβ
NotValueII

203

204 Appendix D. Dependency Provenance

D.1.2 Statements

D.1.2.1 Sequential composition

σ̂, κ̂, v̂C, s1
α−→s σ̂

′, κ̂′, v̂′C, s
′
1

σ̂, κ̂, v̂C, s1 s2
α−→s σ̂

′, κ̂′, v̂′C, s
′
1 s2 σ̂, κ̂, v̂C,skip s α−→s σ̂, κ̂, v̂C, s

D.1.2.2 Resource

σ̂, κ̂, v̂C,R
α−→R′

σ̂, κ̂, v̂C,R
α−→s σ̂, κ̂, v̂C,R

′ σ̂, κ̂, v̂C,vR
α−→s σ̂,κ,vR vC,skip

D.1.2.3 Expression

σ̂, κ̂, v̂C, e
α−→ e′

σ̂, κ̂, v̂C, e
α−→s σ̂, κ̂, v̂C, e

′
ExprStep

σ̂, κ̂, v̂C,v
β α−→s σ̂, κ̂, v̂C,skip

Expr

D.1.2.4 Assignment

σ̂, κ̂, v̂C, e
α−→ e′

σ̂, κ̂, v̂C,$x= e
α−→s σ̂, κ̂, v̂C,$x= e′

AssignStep

x /∈ dom(σα)

σ̂, κ̂, v̂C,$x= vβ
α−→s σ̂[(α,x) : vβ], κ̂, v̂C,skip

Assign

D.1.2.5 Unless

σ̂, κ̂, v̂C, e
α−→ e′

σ̂, κ̂, v̂C,unless e {s} α−→s σ̂, κ̂, v̂C,unless e′ {s}
UnlessStep

σ̂, κ̂, v̂C,unless trueβ {s} α−→s σ̂, κ̂, v̂C, skip
UnlessT

σ̂, κ̂, v̂C,unless falseβ {s} α−→s σ̂, κ̂, v̂C, s
+β

UnlessF

D.1. Propagation of Annotations in the Evaluation 205

D.1.2.6 Include

κ̂(a) = ClassDef(⊥,ρ,s) s′ = merge(ρ,ε) β baseofκα

σ̂, κ̂, v̂C,include a α−→′s σ̂,κ[a : DeclaredClass(β)], v̂C,scope (::a) s′ s
IncU

κ̂(a) = DeclaredClass(β)

σ̂, κ̂, v̂C,include a α−→s σ̂, κ̂, v̂C,skip
IncD

κ̂(a) = ClassDef(b,ρ,s) κ̂(b) = ClassDef(copt,ρ′, s′)

σ̂, κ̂, v̂C,include a α−→s σ̂, κ̂, v̂C,include b include a
IncPU

κ(a) = ClassDef(b,ρ,s) κ(b) = DeclaredClass(β) s′ = merge(ρ,ε)

σ̂, κ̂, v̂C,include a α−→s σ,κ[a : DeclaredClass(::b)], v̂C,scope (::a) {s′ s}
IncPD

D.1.2.7 Defined resource type

σ̂, κ̂, v̂C,{e :H} α−→R {e′ :H ′}

σ̂, κ̂, v̂C,u {e :H} α−→s σ̂, κ̂, v̂C,u {e′ :H ′}
DefStep

κ̂(u) = ResourceDef(ρ,s) s′ = merge(ρ,vH)

σ̂, κ̂, v̂C,u {wβ : vH}
α−→s σ̂, κ̂, v̂C,scope (α def) {$title= wβ s′ s}

Def

D.1.2.8 Resource declaration

σ̂, κ̂, v̂C, e :H α−→R e
′ :H ′

σ̂, κ̂, v̂C, t {e :H} α−→s σ̂, κ̂, v̂C, t {e′ :H ′}
ResStep

σ̂, κ̂, v̂C, v̂R
α−→s σ̂, κ̂, v̂C v̂R,skip

ResDecl

206 Appendix D. Dependency Provenance

D.1.2.9 Resource-like-class-declaration

κ̂(a) = ClassDef(copt,ρ,S) σ̂, κ̂, v̂C,H
α−→H H

′

σ̂, κ̂, v̂C,class {a :H} α−→s σ̂, κ̂, v̂C,class {a :H ′}
CDecStep

κ̂(a) = ClassDef(⊥,ρ,s) s′ = merge(ρ,vH) β baseofκα

σ̂, κ̂, v̂C,class {a : vH}
α−→s σ̂,κ[a : DeclaredClass(β)], v̂C,scope (::a) s′ s

CDecU

κ̂(a) = ClassDef(b,ρ,s) κ̂(b) = ClassDef(copt,ρ′, s′)

σ̂, κ̂, v̂C,class {a : vH}
α−→s σ̂, κ̂, v̂C,include b class {a : vH}

CDecPU

κ̂(a) = ClassDef(b,ρ,s) κ̂(b) = DeclaredClass(β) s′ = merge(ρ,vH)

σ̂, κ̂, v̂C,class {a : vH}
α−→s σ̂,κ[a : DeclaredClass(::b)], v̂C,scope (::a) {s′ s}

CDecPD

Scope

α ∈ {::, ::a, ::nd} σ̂, κ̂, v̂C, s
α→s σ

′,κ′,v′C, s
′

σ̂, κ̂, v̂C,scope α s
α′
−→s σ

′,κ′,v′C,scope α s′
ScopeStep

σ̂, κ̂, v̂C, s
α def−−−→s σ̂′, κ̂′, v̂′C, s

′

σ̂, κ̂, v̂C,scope (α def) s α−→s σ̂′, κ̂′, v̂′C,scope (α def) s′
DefScopeStep

α ∈ {::, ::a, ::nd}

σ̂, κ̂, v̂C,scope α skipβ β−→s σ̂, κ̂, v̂C,skipβ
ScopeDone

σ̂, κ̂, v̂C,scope (α def) skipβ α−→s clear(σ̂,α def), κ̂, v̂C,skipβ
DefScopeDone

D.1.3 Manifests

Statement

σ̂, κ̂, v̂C, s
::−→s σ̂′, κ̂′, v̂′C, s

′

σ̂, κ̂, v̂C, s
N−→m σ̂′, κ̂′, v̂′C, s

′
TopScope

D.1. Propagation of Annotations in the Evaluation 207

Sequential Composition

σ̂, κ̂, v̂C,m1
N−→m σ̂′, κ̂′, v̂′C,m

′
1

σ̂′, κ̂′, v̂′C,m1 m2
N−→m σ̂′, κ̂′, v̂′C,m

′
1 m2

MSeqStep

σ̂′, κ̂′, v̂′C,skipβ m
N−→m σ̂′, κ̂′, v̂′C,m

MSeqSkip

Node Definition

nodeMatch(N,Q)

σ̂, κ̂, v̂C,nodeQ {s} N−→m σ̂, κ̂, v̂C,scope (::nd) s
NodeMatch

¬nodeMatch(N,Q)

σ̂, κ̂, v̂C,nodeQ {s} N−→m σ̂, κ̂, v̂C,skip
NodeNoMatch

nodeMatch(N,N) = true

nodeMatch(N,N ′) = false (N 6=N ′)

nodeMatch(N,(N ′,Ns)) =

 true if N =N ′

nodeMatch(N,Ns) if N 6=N ′

nodeMatch(N,r) =

 true if N ∈ L(r)
false if N /∈ L(r)

Defined resource type

u /∈ dom(κ̂)

σ̂, κ̂, v̂C,define u (ρ) {s} N−→m σ̂, κ̂[u : ResourceDef(ρ,s)], v̂C,skip
RDef

208 Appendix D. Dependency Provenance

Class definition

a /∈ dom(κ̂)

σ̂, κ̂, v̂C,class a {s} N−→m σ, κ̂[a : ClassDef(⊥, ε,s)], v̂C,skip
CDef

a /∈ dom(κ̂)

σ̂, κ̂, v̂C,class a inherits bβ {s} N−→m σ, κ̂[a : ClassDef(bβ, ε,s)], v̂C,skip
CDefI

a /∈ dom(κ̂)

σ̂, κ̂, v̂C,class a (ρ) {s} N−→m σ, κ̂[a : ClassDef(⊥,ρ,s)], v̂C,skip
CDefP

a /∈ dom(κ̂)

σ̂, κ̂, v̂C,class a (ρ) inherits bβ {s} N−→m σ̂, κ̂[a : ClassDef(bβ,ρ,s)], v̂C,skip
CDefPI

	Introduction
	Background
	System Configurations and Configuration Management Tools
	Configuration Management Tools
	Configuration Languages
	Puppet

	Operational Semantics
	Syntax
	Semantics

	Provenance
	Lineage, Why-provenance and Where provenance
	How Provenance
	Dependency Provenance

	Language-based and Information Flow Security
	Synthesis-Based System Repair

	Semantics of Puppet
	Introduction
	Puppet
	Puppet: key concepts

	Puppet
	Abstract syntax
	Operational Semantics

	Metatheory
	Implementation and Evaluation
	Test cases and results
	Unsupported features

	Related work
	Conclusions

	Where and Expression Provenance
	Methodology
	Where-Provenance
	Annotated Compact Grammar
	Propagation of Evaluation in the Evaluation
	Correctness of Where-provenance

	Expression-Provenance
	Annotated Compact Grammar
	Propagation of Annotations in the Evaluation
	Correctness of Expression-Provenance

	Dependency Provenance
	Background
	Annotations and Propagation of Annotations
	Annotated Compact Grammar
	Propagation of Annotations in Puppet Evaluation

	Correctness of Dependency-Provenance
	Limitation of Method
	Equivalence Relation
	Correctness of Dependency Provenance

	Conclusion
	Bibliography
	Semantics of Puppet
	Glossary
	Features supported
	Operational semantics
	Environment operations
	Expressions (, , vC,e e')
	Resources (,, H HH' and ,, e:H R e':H')
	Statements (,,vC, s s ',',vC' , s')
	Manifests (,,vC, m Nm ',',vC' , m')

	Where Provenance
	Propagation of Annotations in the Evaluation
	Expressions
	Resources
	Statements
	Manifests

	Proofs of the invariant in Expression Evaluation
	Proofs of Invariant in Statement Evaluation
	Proofs of the invariant in Manifest Evaluation

	Expression Provenance
	Propagation of Annotations in the Evaluation
	Expressions
	Resources
	Statements
	Manifests

	Proofs for Invariants in Expression Evaluation
	Proofs for Invariants in Resource Evaluation

	Proof of Invariant in Statement Evaluation
	Proof of Invariant in Manifest Evaluation

	Dependency Provenance
	Propagation of Annotations in the Evaluation
	Expressions
	Statements
	Manifests

