
CF2
A Configuration Compiler

Paul Anderson <dcspaul@nine3.org>
nine3.org

1 Background
CF2 is a configuration compiler: it evaluates a tex-
tual configuration description and returns a simple data
structure with key-value pairs for the configuration pa-
rameters.

CF2 is a natural successor to LCFG [1, 2]. The LCFG
language has a very simple model which has proven to
be particularly effective, in contrast to some other lan-
guages which have developed much more complex se-
mantics (for example [6]). There is good evidence that
even simple configuration languages are often poorly
understood [8], difficult to use well, and a potential
source of errors. CF2 attempts to retain the simplic-
ity and usability of LCFG’s declarative specifications
while addressing some of the language’s shortcom-
ings. It deliberately avoids adding potentially “power-
ful” features (for example, the inference of ConfSolve
[7]) where they may make the language more difficult
to use.

While the basic LCFG model is sound, the implemen-
tation is old and extremely informal. It suffers from a
number of problems, including:

• There is no formal syntax for the LCFG “lan-
guage” and the compiler relies on the C prepro-
cessor to handle constructions such as condition-
als and file inclusion. This causes a number syn-
tactic quirks (LCFG and C have a different syn-
tax) and makes it impossible for other programs
to parse LCFG specifications.
• All file inclusion happens at the pre-processing

stage, so there is no way of restricting the scope
of a particular file for security purposes.
• The LCFG compiler is intended to to operate in a

centralised environment, compiling an entire site
in one process. This can be extremely slow when
large numbers of machines are involved.
• Because the configurations are completely pre-

compiled on a server, there is no good way of in-
corporating parameters which are know only to
the client at runtime (LCFG contexts are a work-
around for this).

These are some of the issues which CF2 attempts to
address.

2 Introduction
CF2 is a fundamentally a data description language –
it is closer to a data specification such as XML than
a programming language such as Perl, or a functional
language. It consists primarily of a set of key-value
pairs (known as resources) which define the configu-
ration parameters. Records and lists are supported as
well as scalar values, and a number of functions are
provided to transform individual resource values, but
it does not support arbitrary computation. It is the
responsibility of the (separate) deployment engine to
interpret these resources and implement the configu-
ration. Section 3 describes the features available for
defining the resource specifications.

Mutation: The distinguishing feature of CF2 (inher-
ited from LCFG) is what LCFG calls mutation: The
code for a typical program is created by combining
code from many different modules, usually with dif-
ferent authors. Similarly, the resources in a large con-
figuration refer to different aspects of the configura-
tion which are the responsibility of different people.
Many of the resources in these different aspects will
be disjoint and the overall configuration can be created
simply by merging the sets of resources (a union). In
some cases however, the final value of a resource de-
pends in a more complex way on the values specified
for the different aspects – for example: the overall disk
space required is the sum of the disk space required by
each aspect; and the overall set of packages to be in-
stalled is the union of the sets of packages required by
the different aspects. CF2 mutation functions (section
4) provide a way of specifying how multiple values for
a resource are composed to create an overall value.

2.1 Language Formalities
Syntax: CF2 has a formal (LL(1)) grammar (ap-
pendix A). The reference parser uses functional com-
binators generated directly from the BNF by the PFC
parser tool [4]. The parser modules can be used inde-
pendently by a Perl program to produce an AST from
CF2 source. This makes it easy to create other appli-
cations which analyse and process CF2 specifications.

Semantics: There is no formal semantics for CF2.
However, the evaluator follows an operational seman-
tics and the decision to avoid complexities in the lan-
guage means that this is mostly straightforward. Some
potentially useful features have been deliberately ex-
cluded to avoid over-complexity – for example rela-

Revision: 2.5 2023-10-22 15:25:21

CF2 (2)

tive references, which are particularly difficult to in-
terpret in a meaningful way when combined with mu-
tation (see [3]). The one exception is the inline use
of blocks, conditionals, and functions – this has been
included because it is particularly useful, but it has a
difficult semantics and the implementation will reject
some inputs which are technically valid.

2.2 Using the CF2 Compiler
Installation: CF2 is distributed as part of the PTools
package. Installation simply requires downloading and
unpacking the tar file from the PTools web page1. See
the PTools documentation [5] for more details.

From Perl: The CF2::Configmodule can be used
to compile the configuration from within a Perl pro-
gram and make the resources available as autoloaded
methods:

use CF2::Config;
my $cfg = new CF2::Config(’./foo’)

? $@ : die $@;
print $cfg->SomeResource

Perl programs using the PTools framework [5] need
only declare a Config command line option (usually
with -c) to specify the name of the configuration. The
global method Conf can then be used to compile the
configuration on demand and access the resource val-
ues.

print Conf->SomeResource

CF2 lists appear in the compiled configuration as Perl
lists, and the blocks appear as CF2::Config objects
which can be accessed using the autoloaded methods
or hash references:

print Conf->Users->[0]
print Conf->UIDs->john
print Conf->UIDs->{’jane’}

From The Command Line: CF2 specifications can
be compiled from the command line:

Ô ptools cf2 compile ./foo.cf2

The default output is fully evaluated but still in CF2
format.

The -Deval option is useful to display a trace of the
evaluation:

Ô ptools cf2 compile ./foo.cf2 -Deval

1https://www.nine3.org/dcspaul/ptools.html

3 Resource Reference
A resource represents one configuration parameter. It
consists of a name and an associated value. A basic
resource definition uses the => (assign) operator to de-
clare the resource and assign a value to it:

Directory => ’/home/foo’
UID => 37

The resource assignments may be separated by new-
lines or commas. Comments can be included using //:

// this is a comment
// comments are ignored
Size => 123 // disk size

If a resource is declared more than once in the same
file, the declarations must have the same value – this
is not normally useful and the command line option
-Wdup can be used to warn about duplicate assign-
ments.

Resource names are standard identifiers, possibly in-
cluding unicode characters. Values are expressions in-
volving the following terms:

3.1 Scalars
Three types of simple scalar value are supported:

Strings & Literals: Strings are enclosed in single
quotes. Quote characters and newlines in strings can
be escaped with the backslash character. Simple al-
phanumeric strings may be specified as literals without
quotes:

String => ’two\nlines’
Literal => simple123

The literals true and false represent boolean val-
ues (see below) so these must always be quoted if they
are intended as string values.

Numbers: Numbers are straightforward integer or
decimal values with an optional preceding minus sign:

OneTwoThree => 123
Decimal => -45.67

Notice that numbers are treated differently from the
equivalent string values in some instances: for exam-
ple:

X => ’1’ > ’02’
Y => 1 > 02

X will be true because of the lexical comparison, and
Y will be false because of the numeric comparison:

Paul Anderson 2023-10-22 15:25:21

https://www.nine3.org/dcspaul/ptools.html

(3)

X => true
Y => false

Booleans: Booleans are represented as true or
false. Again, these are treated differently from the
corresponding strings in certain circumstances:

X => true || false
Y => ’true’ || ’false’

X will be true, but the second line will generate an
error because the || operator cannot be applied to
strings.

3.2 Undefined Values
A resource value may be explicitly marked as unde-
fined:

PathName => ?

This indicates that the value must be defined some-
where else in the configuration (probably in a differ-
ent file). All other definitions will take priority over
the default value, so this will only appear in the final
configuration – where it generates an error – if no non-
default value is supplied elsewhere.

3.3 Lists
A list may contain elements of any type:

Users => [john,jane]
Mixed => [3,[4,x],’foo bar’]

3.4 Blocks
A block is an unordered collection of resources:

MailService => {
Port => 25
Packages => [sendmail]

}

The resource names must be unique within the block.

Sometimes it is useful to specify a single resource
value in a nested block hierarchy2:

Users => {
Students => {
John => {

UID => 123
}

}
}

2This is particularly common when the block is to be merged
with some other block (see 4).

The nested blocks here are rather clumsy and the fol-
lowing shorthand (an implicit block) can be used:

Users.Students.John.UID => 123

This is simply a syntactic shorthand for the previous
example.

3.5 References
A reference ($) can be used in resource values to refer
to other (top-level) resources:

Domain => ’foo.com’
WebDomain => $Domain

3.6 Selectors
A selector (.) can be used to reference individual re-
sources from a block. The selector can be applied di-
rectly to the block, but it is usually only useful when
applied to a reference:

Ports => {
http => 80
ssl => 443

}
SSLPort => $Ports.ssl

Selectors can also be applied to lists:

Ports => [80, 443]
FirstPort => $Ports.0

Note that brackets must be used if multiple numeric
selectors are specified, to prevent the selectors being
interpreted as a decimal number:

Lists => [[1,2], [3,4,5]]
Two => $Lists.(0).1

3.7 Expressions
The operators shown in figure 1 can be used to com-
bine resource values. The groups are listed in priority
order and sub-expressions can be grouped using brack-
ets. The second and third columns in the table show the
supported argument and result types.

For example:

Port => 25
Memory => 6
CPU => slow
TCPPort => $Port ++ ’/tcp’
BigMachine => $Memory>4 && $CPU==fast

Revision: 2.5 2023-10-22 15:25:21

CF2 (4)

X || Y bool bool Logical ’or’
X && Y bool bool Logical ’and’
X < Y scalar bool Numerical or lexical

comparison
X <= Y scalar bool Numerical or lexical

comparison
X == Y scalar bool Numerical or lexical

comparison
X != Y scalar bool Numerical or lexical

comparison
X >= Y scalar bool Numerical or lexical

comparison
X > Y scalar bool Numerical or lexical

comparison
X ++ Y scalar scalar Concatenation
X + Y number number Addition
X - Y number number Subtraction
X * Y number number Multiplication
X / Y number number Division
- X number number Unary minus
! X bool bool Boolean negation

Figure 1: CF2 operators

3.8 Conditionals
Conditionals are supported. These are normally used
in a resource value:

BigMachine => true
StandardSize => 50
Size => if ($BigMachine)

then $StandardSize+100
else $StandardSize

The condition must be enclosed in brackets and eval-
uate to a boolean value. The else clause is optional
and will return an undefined value if not present. Only
one of the conditional branches will be evaluated.

Conditionals may also be used inline. In this case, the
result of the conditional evaluation must be a block and
the resulting resources are merged with the block con-
taining the conditional statement:

Type => server
if ($Type == server)

then { Foo => ’something’ }
else { Bar => ’something else’ }

Evaluates to:

Type => server
Foo => something

Inline conditionals are only necessary in the somewhat

unusual case where different sets of resource names
need to be defined in the two different branches – hence
the rather contrived example. It is recommended that
they are only used in this situation. The resources re-
turned from the conditional statement must not conflict
with any references that appear in the condition, or in
any other inline statement.

3.9 Import
Resources may be imported from another file:

I => import(f1)

Where f1 contains:

Y => 3
Z => 4

This evaluates to a block containing all of the resources
in the imported file:

I => {
Y => 3
Z => 4

}

The argument specifies the configuration file to be in-
cluded. This is normally a literal string, but it may be
any expression which evaluates to a string. The com-
piler searches for the file in a number of locations:

• If file starts with a /, it is treated as an absolute
pathname.

• If file starts with ./, it is interpreted relative to
the current directory.

• If file has the form project:path, the path is
interpreted relative to the configuration directory
of the specified project. The project defaults to the
current project if omitted. The path defaults to the
configuration directory of the specified project if
omitted.

• If none of the above are true:
– The current working directory is searched.
– The environment variable CF2PATH is used

as a (colon-separated) path of directories to
search.

– The directory of the importing file is then
searched.

• Finally, the configuration directory for the current
project is searched.

In all cases, a default extension of .cf2 is assumed.

The import statement may also be used inline. For ex-
ample:

Paul Anderson 2023-10-22 15:25:21

(5)

File => ’f1’
import($File)

Where f1 contains:

Y => 3
Z => 4

Which evaluates to:

File => f1
Y => 3
Z => 4

In this case, the resources from the imported file are
merged with any other resources in the block con-
taining the import statement. Resources defined in
the importing block will override any resources with
the same name in the imported file (the order of the
import statements is not significant). Imported re-
sources must not conflict with any references which
appear in the argument or in any other inline state-
ment – for example the file f1 must not contain a
(re)definition of the File resource.

Notice that files imported with an inline statement have
the ability to modify any resource in the importing
block. If the import statement is used at the top-level
of the configuration, this includes any resource in the
configuration. For this reason, non-inline import state-
ments are usually preferable (see section 5).

3.10 Private Resources
It is sometimes useful to prevent certain resources from
appearing in the output configuration. For example,
a large file of common resources may have been im-
ported only in order to extract one particular value -
the private qualifier can then be used to hide the
unwanted resources. This example outputs only the re-
source v whose value is the same as the resource Res
from the file bigfile:

private BigBlock => import(bigfile)
v => $BigBlock.Res

The Private (-p) command line option can be used
to override the private qualifier and output all of the
resources (including the private ones).

3.11 External Functions
External functions can be written in Perl as separate
modules and loaded dynamically when they are refer-
enced from the configuration:

private V => [a,b]
T => upcase(typeof($V))

Figure 2 shows the functions provided with the stan-
dard distribution, and section 6 explains how to create
custom external functions.

defined(X) Return true if X is defined
downcase(X) Return lower case version of

string X
fail(X) Fail compilation with mes-

sage X
join(X,Y) Join list of strings Y with

separator X
max(X) Return maximum element of

list X
min(X) Return minimum element of

list X
sum(X) Return sum of elements of

list X
topdir() Return path of top-level

project directory
typeof(X) Return type of X
upcase(X) Return upper case version of

string X
warn(X) Display warning message X

Figure 2: CF2 standard functions

Functions returning a block may also be used inline.
In this case, the resulting resources are merged with
the block containing the function call statement3.

3.12 Macros
Macros provide the ability to define functions written
in CF2:

private Root => ’/home/cf2’
def fullPath(x) = $Root ++ ’/’ ++ $x
TestPath => fullPath(test)
LivePath => fullPath(live)

evaluates to:

TestPath => ’/home/cf2/test’
LivePath => ’/home/cf2/live’

Macros support an arbitrary number of arguments.
Definitions must appear before any usage in the same
file.

4 Mutations
As described in the introduction (section 2), large con-
figurations are created by importing separate files con-

3None of the standard functions currently return a block.

Revision: 2.5 2023-10-22 15:25:21

CF2 (6)

taining the resources for different aspects of the con-
figuration. Typically, some resources will be specified
in more than one file, and CF2 uses a mutation function
to combine these different values and produce a single
value for the final configuration.

Two standard functions are provided for the common
cases (assignment and merging), and external func-
tions can be used to implement less common, or cus-
tom mutation functions.

4.1 Assignment
Assignment (=>) is the primary mutation operator. If
multiple values are defined for the same resource, then
the value in the importing file will override any values
specified in the imported files:

import(f1)
X => 1
Y => 2

Where f1 contains:

Y => 3
Z => 4

Produces the following output:

Y => 2
Z => 4
X => 1

The value for Y in f2 is ignored (and not evaluated).

If there is no value specified in the importing file,
and different values are specified in unrelated imported
files, then an error is generated and the conflict must be
resolved explicitly (see section 4.4).

The assignment operator overrides all types of resource
value, including lists and blocks. Note that values in an
overridden block are not “merged”:

import(f2)
X => 1
Y => { A=>10, B=>20 }

Where f2 contains:

Y => { A=>30, C=>40 }
Z => 5

Produces the following output:

Y => {
A => 10
B => 20

}
Z => 5
X => 1

This has two important properties: (1) resource val-
ues declared in a file always override values in any im-
ported file, and (2) the order of the resource definitions
and import statements is not significant.

4.2 Merge
The merge operator (∼>) is used to merge the re-
sources of the imported block with the resources of
the importing block (it is only valid when applied to
blocks). Compare this with the previous example:

import(f2)
X ∼> 1
Y ∼> { A=>10, B=>20 }

Where f2 contains:

Y => { A=>30, C=>40 }
Z => 5

Which yields:

Y => {
A => 10
C => 40
B => 20

}
Z => 5
X => 1

Notice that the merge operation is not recursive: The
block element Y.A has the value 10 from the import-
ing file and the value (30) from the imported file is
ignored. To merge these instead of overriding them,
the importing file should specify A∼>10 rather than
A=>10.

The order in which the block elements are merged is
the same as the assignment operator, so the resulting
value is independent of the order of any import state-
ments or resource definitions.

4.3 External Mutation Functions
In addition to the standard mutation functions, some
external functions can be used as mutation operators
(see figure 3). For example max:

Paul Anderson 2023-10-22 15:25:21

(7)

import(f1)
Y ∼(max)> 2
Z ∼(max)> 5

Where f2 contains:

Y => 3
Z => 4

Which yields:

Y => 3
Z => 5

max(X) Return maximum all all val-
ues

min(X) Return minimum of all val-
ues

sum(X) Return sum of all values
Figure 3: CF2 mutation functions

It is also possible to create custom mutation functions
(see section 6), although this is slightly more complex
than creating a normal external function.

If the mutation function is commutative, and all in-
stances of the resource specify the same mutation func-
tion, then a value can be computed for the mutation
even if the different values appear in unrelated im-
ported files which cannot be prioritised:

import(f3)
import(f4)

Where f3 contains:

X ∼(sum)> 4

And f4 contains:

X ∼(sum)> 3

Produces the following output:

X => 7

4.4 Resolving Conflicts
The order in which resources appear in a configuration
file is not significant. Mutations defined in a particu-
lar source file have a higher priority than those defined
in any imported file, and CF2 will sort the mutations
for each resource based on their priority. If it is not
possible to determine the relative priority of two muta-
tions, and the mutation functions are not commutative,
then CF2 will return an error. This usually indicates
that there is some kind of ambiguity in the specification
which needs to be manually clarified. For example:

Services => {
import(database)
import(webserver)

}

Where database contains:

OsVersion => 23
MoreDBResources => ...

And webserver contains:

OsVersion => 24
MoreWebResources => ...

This fails with the error “cannot determine mutation
order”.

This suggests that the database and web service config-
urations require different versions of the OS. The res-
olution of this conflict depends on whether there is a
common value which is acceptable, and how it should
be determined. Some possibilities include:

Specifying an Explicit Version: The importing
file can explicitly override the imported values:

Services => {
OsVersion => 27
import(database)
import(webserver)

}

Which produces:

Services => {
OsVersion => 27
MoreDBResources => ...
MoreWebResources => ...

}

This may not be ideal because if the webserver or
database file is updated (to say, version 30), then the
overall configuration value may no longer be sufficient.

Selecting the Highest Version: The imported
files can be changed to specify a minimum value for
the OS version:

Services => {
import(database2)
import(webserver2)

}

Where database2 contains:

OsVersion ∼(max)> 23
MoreDBResources => ...

And webserver2 contains:

Revision: 2.5 2023-10-22 15:25:21

CF2 (8)

OsVersion ∼(max)> 24
MoreWebResources => ...

Which produces:

Services => {
OsVersion => 24
MoreDBResources => ...
MoreWebResources => ...

}

Prioritising a Specific Service: If the imported
files expose their individual versions, the importing file
can explicitly select the version corresponding to a par-
ticular service:

Services => {
OsVersion => $Services.WebOsVersion
import(database3)
import(webserver3)

}

Where database2 contains:

private DBOsVersion => 23
OsVersion => $DBOsVersion
MoreDBResources => ...

And webserver2 contains:

private WebOsVersion => 24
OsVersion => $WebOsVersion
MoreWebResources => ...

Which produces:

Services => {
OsVersion => 24
MoreDBResources => ...
MoreWebResources => ...

}

This is preferable to assigning a specific version in the
importing file because it will track any changes to the
imported (database) file.

Performing an Arbitrary Computation: Using
the two service files from the previous example, the
importing file can use arbitrary logic to determine the
overall value:

private VW => $Services.WebOsVersion
private VD => $Services.DBOsVersion
if ($VW != $VD) then {
warn(’Mismatch ’++$VW++’ <> ’++$VD)
private V => max([$VW,$VD])

} else {
private V => $vw

}

Services => {
OsVersion => $V
import(database3)
import(webserver3)

}

Which generates the specified warning and produces
the following output:

Services => {
OsVersion => 24
MoreDBResources => ...
MoreWebResources => ...

}

5 Security
CF2 provides a number of features to improve the se-
curity of configurations with multiple contributors:

• Responsibility for a set of configuration parame-
ters can be delegated to a particular user (by giv-
ing them access to a specific file) with complete
control over which parameters from that file are
used as part of the final configuration.

• Sensitive resources such as passwords can be
incorporated at compile-time from a secure
database so that they do not appear in the con-
figuration source which may be widely available,
for example in a version control system.

• Digital signatures can be required and verified on
imported files.

5.1 Delegation
A typical configuration is created by importing many
files containing the resources for various different as-
pects of the system. These are usually authored by dif-
ferent people. In some languages (such as LCFG), an
imported file can modify any resource in the configu-
ration. In CF2, imported files can only affect resources
in the imported block. This provides a mechanism to
delegate specific aspects of the configuration with the
authority to modify only selected resources – provided
that the imports are appropriately structured.

Paul Anderson 2023-10-22 15:25:21

(9)

For example: imagine that we would like to delegate
responsibility for setting the background colour of the
login screen – Login.Colour. We could enable this
by delegating control of a file (delegated) and in-
cluding this in the main configuration:

import(delegated)

Where delegated contains (for example):

Login.Colour => green

However, the main configuration will contain other,
critical resources – for example:

RootUsers ∼> {jane=>...,john=>...}
import(delegated2)

And there is nothing to stop the owner of the dele-
gated file modifying resources anywhere in the con-
figuration:

Login.Colour => green
RootUsers ∼> { hacker => ... }

Which results in:

RootUsers => {
hacker => ...
jane => ...
john => ...

}
Login => { Colour => green }

So, it is usually preferable to import the contents of the
delegated file into an isolated resource and to reference
the required values from elsewhere in the configura-
tion:

RootUsers ∼> {jane=>...,john=>...}
private Delegated => import(delegated2)
Login.Colour => $Delegated.Login.Colour

Using the same delegated file as previously:

Login.Colour => green
RootUsers ∼> { hacker => ... }

Resulting in:

RootUsers => {
jane => ...
john => ...

}
Login => { Colour => green }

Which ignores all of the imported resources except
those specifically referenced.

5.2 Sensitive Resources
Some resource values in a configuration often include
sensitive data such as passwords. Whilst this data
needs to be present in the compiled configuration, it
is usually undesirable to have these values exposed in
plaintext in the configuration source. CF2 has the abil-
ity to create a block of resources automatically by im-
porting key/value pairs from an encrypted database.
Other resources can then reference values from this
block so that the source itself does not contain any sen-
sitive information.

The encrypted database must be stored in KDBX for-
mat4. CF2 provides no facilities itself for creating and
managing the database because there are several good
clients available (e.g. KeePassXC5) as well as API li-
braries (e.g. File::KDBX6).

Resources can be imported from a KDBX file simply
by specifying the path with an appropriate extension
in an import statement (if the extension is omitted, the
include will search for a CF2 or a KDBX file). For
example:

private MyPwds => import(’mydb.kdbx’)
FredsPwd => $MyPwds.fred.Password

This example requires only a single value to be ex-
tracted from the KeePass file so the imported block is
marked as private to prevent the other values ap-
pearing in the output configuration.

The password for the database itself must be supplied
manually at compile time, or stored in the OSX key-
chain. If an OSX keychain entry is used, this should
have the service name cf2.keepassx and the user
(account) name should be the same as the database
name (with no path or extension). If there is no OSX
keychain entry, then the -P option should be specified
and the compiler will prompt for the password.

Each KeePass entry maps directly into a CF2 resource
block with the following keys: Title, Password,
UserName, URL and Notes. If the KeePass entry
contains additional custom fields, these will also be in-
cluded in the block. Note that the the title of the KeeP-
ass entry (and any custom field names) need to be valid
CF2 identifiers - if this is not the case, then the illegal
characters will be replaced with the Unicode dingbat
H. For example:

4https://keepass.info/help/kb/kdbx_4.html
5https://keepassxc.org
6https://metacpan.org/pod/File::KDBX

Revision: 2.5 2023-10-22 15:25:21

https://keepass.info/help/kb/kdbx_4.html
https://keepassxc.org
https://metacpan.org/pod/File::KDBX

CF2 (10)

entryH1 => {
Notes => ’’
Password => ’secret’
Title => entry-1
URL => ’’
UserName => mary
MyCustom => ’my value’

}

The import will fail if any block has duplicate resource
names.

KeePass groups are mapped into corresponding
(nested) blocks (however, the KeeShare function of
KeePassXC exports a shared database in an older
KDBX format which contains a flattened copy of any
subgroups in the main database).

5.3 Signed Files
The CF2 compiler can check PGP signatures on im-
ported files against a list of permitted user identifiers
(or a single user):

import(f1,[’user1@org’,’user2@org’])
import(f2,’user@org’)

The second argument will usually be a literal (or a
list of literals) but it may be any expression (e.g. a
reference) which evaluates to a valid string (or list of
strings).

The ptools cf2 command has several options to
configure the underlying gpg:

- -gpghome - the gpg directory (∼/.gnupg).
- -gpguser - the gpg user.
- -gpgpass - the gpg pass phrase.

Source files can be signed with a command such as:

gpg --sign --clearsign file.cf2

The resulting file will have a an additional .asc ex-
tension which can usually be removed.

The CF2 compiler can also sign the output:

ptools cf2 compile -S file.cf2

6 Writing Custom Functions
CF2 functions are implemented as independent Perl
modules. Custom functions can be created by writing
a module with the appropriate interface and placing it
in a directory contained in the function path. The func-
tion path can be set to a colon-separated list of direc-
tories with the FunctionPath (-F) command line

option. The name of the module is used as the name of
the function. The modules for the standard functions
are in the directory CF2::Functions of the distri-
bution and these can be inspected as code examples.

All external function modules should provide a basic
interface which allows them to be called as CF2 func-
tions. They may also provide an optional additional in-
terface which allows them to be used as mutation func-
tions.

6.1 The Basic Interface
The basic interface includes a prototype specification
which defines the types of the arguments, and an Eval
function which performs the evaluation. For example,
the following module defines a simple addition func-
tion:

Proto(NUMBER,NUMBER);
sub Eval($$) {
my ($args,$ctx) = @_;
return OK($args->[0]+$args->[1]);

}

The Prototype: The Proto function defines the
number and permitted types of the arguments – two
numbers in the above example. The types will be
checked before the function is called, and the follow-
ing types are supported: ANYTYPE, UNDEF, BLOCK,
LIST, SCALAR, BOOL, NUMBER, and LITERAL.
Multiple permissible types can be specified by com-
bining them with | – for example: BOOL|NUMBER.

The Evaluation Function: The Eval function is
passed two arguments: the first is the list of argument
values, the second is a internal context object – this
contains information about the context of the function
call, including the symbol table used to evaluate refer-
ences.

By default, CF2 will evaluate the arguments and con-
vert them into pure Perl data types (scalar, hashes or
lists) before passing them to the function. Flags can be
added to the types in the prototype to indicate that an
argument should be passed instead as an evaluated or
unevaluated AST node. For example:

Proto(ANYTYPE|NOEVAL,BOOL);

The AST nodes are internal data structures which con-
tain additional information, including for example, the
location of the term in the source file.

The result of the Eval function should be re-
turned using OK(result) for a successful return, or
Fail(message) to return an error. The result value
may be a Perl scalar, list or hash, or an AST node. To
return a boolean value, return one of the Perl functions

Paul Anderson 2023-10-22 15:25:21

(11)

True or False.

6.2 Mutation Functions
In addition to the basic interface, functions which
are intended to be used as mutations must provide a
Mutate function, and an indication if the function is
commutative. For example:

Commutative;
sub Mutate($$) {

my ($em,$ms,$ctx,$name) = @_;
...
}

The interface to the Mutate function is more com-
plex and is not fully described here. The arguments in-
clude the (evaluated) highest priority mutation objects
($em) and a list of any other (unevaluated) lower pri-
ority mutations objects ($ms). The function must per-
form any necessary evaluations and create an evaluated
AST node which should be returned with the OK()
function.

Revision: 2.5 2023-10-22 15:25:21

CF2 (12)

Appendix A Configuration Grammar

Configuration := Block EOF

Block := (Statement (Sep Statement) *) ?

Statement := Conditional | Import | FunCall | MacroDef | ResourceDef

MacroDef := def IDENTIFIER ((IDENTIFIER (Sep IDENTIFIER) *) ?) = Expr

ResourceDef := Qualifier * IDENTIFIER (. IDENTIFIER) * Mutation +

Qualifier := private

Mutation := MutateOp Expr

MutateOp := => | ˜> | (˜(IDENTIFIER)>)

Expr := Conjunction (|| Conjunction) *

Conjunction := Comparison (&& Comparison) *

Comparison := Concat ((<= | >= | == | != | < | >) Concat) ?

Concat := Sum (++ Sum) *

Sum := Product ((+ | -) Product) *

Product := Neg ((* | /) Neg) *

Neg := ((-) | !) * Selection

Selection := Value (. Value) *

Term := (Expr)

Value := Import | Conditional | FunCall | Undef | Scalar | SubBlock | List | Ref | Term

FunCall := IDENTIFIER ((Expr (Sep Expr) *) ?)

Import := import (Expr (Sep Expr) ?)

Conditional := if Term then Expr (else Expr) ?

Undef := ?

SubBlock := { Block }

List := [(Expr (Sep Expr) *) ?]

Ref := $ IDENTIFIER

Sep := EOL | ,
Scalar := Bool | Number | String | Literal

Bool := /(true)|(false)/
Number := /\-?\d+(\.\d+)?/
String := ’ . . . ’

Literal := /[a-zA-Z\x{80}-\x{FFFFF}][a-zA-Z0-9 \x{80}-\x{FFFFF}]*/

Paul Anderson 2023-10-22 15:25:21

(13)

References
[1] P. Anderson. Towards a high-level machine configuration system. In Proceedings of the 8th Large Installations

Systems Administration (LISA) Conference, pages 19–26, Berkeley, CA, September 1994. Usenix.
https://www.nine3.org/dcspaul/pdf/LISA8_Paper.pdf.

[2] P. Anderson. LCFG: a Practical Tool for System Configuration, volume 17 of Short Topics in System Admin-
istration. Usenix Association, 2008.
https://www.nine3.org/dcspaul/pdf/17_lcfg.pdf.

[3] P. Anderson. Composition in the l3 configuration language. April 2017.
https://www.nine3.org/dcspaul/pdf/l3composition.pdf.

[4] P. Anderson. PFC: Functional parser combinators in Perl. October 2023.
https://www.nine3.org/downloads/ptools/2.5/pfc.pdf.

[5] P. Anderson. PTools: Perl tools & applications. October 2023.
https://www.nine3.org/downloads/ptools/2.5/ptools.pdf.

[6] W. Fu, R. Perera, P. Anderson, and J. Cheney. muPuppet: A Declarative Subset of the Puppet Configuration
Language. In P. Müller, editor, 31st European Conference on Object-Oriented Programming (ECOOP 2017),
volume 74 of Leibniz International Proceedings in Informatics (LIPIcs), pages 12:1–12:27, Dagstuhl, Ger-
many, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
https://www.nine3.org/dcspaul/pdf/arxiv-puppet.pdf.

[7] J. A. Hewson, P. Anderson, and A. D. Gordon. A declarative approach to automated configuration. In
Proceedings of the 2012 LISA Conference. Usenix Association, 2012.
https://www.nine3.org/dcspaul/pdf/lisa12.pdf.

[8] A. Mikoliunaite. Usability of system configuration languages: Confusion caused by ordering. Master’s thesis,
School of Informatics, Edinburgh University, 2016.
https://www.nine3.org/dcspaul/pdf/msc_20162088.pdf.

Revision: 2.5 2023-10-22 15:25:21

https://www.nine3.org/dcspaul/pdf/LISA8_Paper.pdf
https://www.nine3.org/dcspaul/pdf/17_lcfg.pdf
https://www.nine3.org/dcspaul/pdf/l3composition.pdf
https://www.nine3.org/downloads/ptools/2.5/pfc.pdf
https://www.nine3.org/downloads/ptools/2.5/ptools.pdf
https://www.nine3.org/dcspaul/pdf/arxiv-puppet.pdf
https://www.nine3.org/dcspaul/pdf/lisa12.pdf
https://www.nine3.org/dcspaul/pdf/msc_20162088.pdf

	Background
	Introduction
	Language Formalities
	Using the CF2 Compiler

	Resource Reference
	Scalars
	Undefined Values
	Lists
	Blocks
	References
	Selectors
	Expressions
	Conditionals
	Import
	Private Resources
	External Functions
	Macros

	Mutations
	Assignment
	Merge
	External Mutation Functions
	Resolving Conflicts

	Security
	Delegation
	Sensitive Resources
	Signed Files

	Writing Custom Functions
	The Basic Interface
	Mutation Functions

	Configuration Grammar
	References

