
PFC
Functional Parser Combinators in Perl

Paul Anderson <dcspaul@nine3.org>
nine3.org

1 PFC
PFC is a collection of functional parser combinators
inspired by Parsec1. It also includes a generator to gen-
erate combinator code from a simple EBNF grammar,
and an explorer to render an AST in interactive HTML
for exploring the parse tree.

1.1 Parser Functions
PFC functions return parser functions. For example:

a (double) quoted string
my $f = PFCString;
a keyword
(terminated by a word boundary)
my $g = PFCKeyWord(’begin’);

The resulting parser functions ($f, $g) accept a Pos
object which includes the source string and an optional
pathname (for error reporting only)2. The second argu-
ment is a PFC::Expect object which keeps track of
alternative parses:

my $p = new PFC::Pos($src,$path);
my $isok = &$f($p,new PFC::Expect);

If there is a fatal error - e.g. a filesystem error - the
parser function returns false and $@ contains a struc-
tured error message (see 1.2) which can be rendered as
a string with the Fmt() function:

die Fmt($@) unless &$f(...);

If the parser function returns true, $@ contains either
a Token object (if the parse succeeds), or an Expect
object (if the parse fails). The Token object represents
the resulting parse tree, including the value and source
location for each node. The Expect object contains
details of the alternative input symbols which would
have allowed the parse to proceed.

The method Succeeded returns true for a Token
and false for an Expect, so a parser can be invoked
on a source string $str as follows:

1https://caiorss.github.io/Functional-
Programming/haskell/Parsec_parser_
combinators.html

2The Pos constructor also accepts some additional optional ar-
guments to specify an offset within the string

my $p = new PFC::Pos($src,$path);
die Fmt($@)
unless &$f($p,new PFC::Expect);

die $@->AsString
unless ($@->Succeeded);

my $token = $@;

The Value of the resulting token depends on the par-
ticular PFC function. For terminals such as $f and $g
above, the value is the string value of the terminal. For
combinators (see below), the value is usually a list of
others tokens.

The Pos and End methods of the token return the
starting and ending position of the token in the source
stream. These can be rendered as strings with the
AsString() method.

1.2 Errors
The internal representation of an error is not always
a simple string: it may be an object, or a (recursive)
list of errors. This structured format makes it easier to
identify the error locations should we ever need them
- for example in a GUI interface. If you need a simple
string, apply the Fmt function to the error.

1.3 Combinators
PFC combinators are functions which take (references
to) other parser functions and return a function which
parses some combination of them. For example,
PFCSeq parses a sequence, so we could parse an iden-
tifier followed by a string with:

my $f = PFCSeq(\&PFCID, \&PFCString);

Other combinators (see 4) parse alternative
choices (PFCAlt), optional items (PFCOPt),
lists (PFCList) and sequences of items separated
by a given separator (PFCSepBy). The combinators
which parse sequences and lists of items return lists as
their value.

If the PFC functions require an argument, then the Perl
syntax becomes a little clumsy:

my $f = PFCSeq(
sub { PFCKeyWord(’print’); },
\&PFCString);

The PFC generator (see 2) can generate this Perl code
from a simple EBNF specification and this is recom-
mended for any non-trivial application.

Revision: 2.6 2023-11-02 14:03:42

https://caiorss.github.io/Functional-Programming/haskell/Parsec_parser_combinators.html
https://caiorss.github.io/Functional-Programming/haskell/Parsec_parser_combinators.html
https://caiorss.github.io/Functional-Programming/haskell/Parsec_parser_combinators.html

PFC (2)

1.4 WhiteSpace
The PFCLexeme combinator takes any parser func-
tion and returns a lexeme version - i.e. a parser which
skips any leading white space. However, all of the stan-
dard PFC functions except PFCRegEx are lexeme by
default.

1.5 Transforming Node Values
The default value returned by a parser is a tree with
the terminal nodes representing the text of individual
tokens, and the non-terminal nodes being lists of other
nodes (generated by combinators).

Sometimes it is useful to transform these nodes as they
are parsed, rather than delaying this until the end of the
parse. For example, a string and an identifier would
both appear as a simple terminal node in the parse tree,
but we would usually want to treat these differently.
The PFCApply function allows an arbitrary function
to transform the value of the node when it is recog-
nised.

For example, the following function is a parser which
returns the upper case value of an identifier:

sub MakeUpper($$$) {
my ($v,$pos,$end) = @_;
return OK(uc($v));

}
my $f = PFCApply(\&MakeUpper,\&PFCID);

The start and end positions of the token are available
to the function but cannot be changed.

In practice, such functions would typically return dif-
ferent objects representing the different types of token.
However, these functions must not change any global
state, since the parser may backtrack over the token.

1.6 Handling Newlines and EOF
Newlines are normally treated as white-space and will
be skipped by the lexeme parsers. The function
PFCEOL succeeds only at the end of a line (and skips
to the start of the next line). PFCBOL succeeds only
if the next non-space character is at the beginning of a
line. PFCEOF succeeds only at the end of a file.

When parsing line-oriented languages, it is useful if
the line endings are not treated as white space. The
PFCOneLine combinator returns a parser which calls
its argument function with newlines not treated as
white-space.

1.7 Including Files
The PFCInclude function supports the inclusion of
other source files. The argument to PFCInclude

should be a parser function which returns a token with
a string value that will be interpreted as the pathname
of the file to include. For example:

sub Include {
PFCInclude(

PFCApply(
sub { OK($_[0]->[1]->Value); },
\&IncFile

)
)

}
sub IncFile {
PFCSeq(

sub { PFCKeyWord("#include"); }
\&Literal
sub { PFCSym(";"); }

);
}

Notice:

• The rule which parses the #include statement
(IncFile) must parse the entire statement - in-
cluding any terminator. Otherwise the terminator
will appear in the input stream following the con-
tent of included file.

• An additional function is required (the argument
to the PFCApply above) to to extract the path-
name from the parse tree of the include statement
and return it as a single string token.

• The name of the include file itself will appear
in the AST as a node immediately before the in-
cluded content.

The generator (see below) provides a simple way of
generating the code for include statements.

1.8 Lookahead
PFC grammars are LL(1)3, but two combinators are
provided which can “look ahead” to manually han-
dle productions which cannot be distinguished by just
looking at the next symbol:

PFCFollowedBy(\&f,\&g)

returns the result of parsing f(), but only if g() suc-
ceeds on the following string. Similarly

PFCNotFollowedBy(\&f,\&g)

returns the result of f() only if g() fails on the fol-
lowing string. Note that PFC can not generate a sensi-
ble “expectation” message if this combinator fails (be-
cause of the negation), so this combinator should al-

3https://www.garshol.priv.no/download/text/
bnf.html

Paul Anderson 2023-11-02 14:03:42

https://www.garshol.priv.no/download/text/bnf.html
https://www.garshol.priv.no/download/text/bnf.html

(3)

ways have a custom error message applied (see below).

Simple lookahead can also be handled using regular
expressions. For example, a digit not followed by an
equals sign:

Value := /[0-9]*(?!(\s*=))/

1.9 Custom Error Messages
The Expect object returned from a parse fail nor-
mally lists all of the tokens which would have been
acceptable at the point of failure. Sometimes, this
can be confusingly long. The PFCDescr combinator
returns a function which applies the argument parser
but returns the specified message if it fails. This al-
lows a message such as “expected a ’+’ or a
’-’ or a ’*’ or a ’/’” to be replaced with
“expected an arithmetic operator”.

2 The Generator
The Perl syntax can make the parser expressions un-
wieldy for any non-trivial language. The PFC gener-
ator takes a language description in an extended BNF
format and generates Perl code for the parser.

The following command will locate a .pfc file match-
ing the given regex (assumed to contain eBNF) in the
current project hierarchy (under $::topdir), and
create a corresponding .pm file containing the Perl
code.

ptools pfc gen regex

The generator parses the source EBNF with a parser
generated by itself. The file Grammar.pfc in the dis-
tribution is the source language for the generator.

2.1 Production Rules
The generator input consists of list of production rules
of the form:

name := expression

Each of these creates a Perl parser function with the
same name. These can be freely mixed with manually-
defined parser functions.

User-defined function names may need to
be fully qualified, since the generated output
appears in its own package.

2.2 Terminals
The following terminal expressions are supported:

• identifier - a rule name or other PFC function
(with no arguments)

• "string" - a literal value
• ’string’ - a keyword (ending on a word bound-

ary)
• /regex/ - a regular expression

The regular expression may be followed by any of the
usual Perl flags as well as /L to create a lexeme parser
(the default PFCRegEx is not lexeme).

2.3 Combinators
The standard syntax is supported for:

• sequences: A B ...

• lists A*
• non-empty lists A+
• alternatives A|B|...
• optional values A?

PFCSepBy is also supported as: A ! SEP *

A minimum number of repeats can be specified by fol-
lowing the * with an integer, and brackets (()) can be
used in expressions to group the combinators.

Lookahead is supported as:

• A˜B matches A, but only when followed by B.
• A!˜B matches A, but only when not followed by
B.

2.4 Additional Features
PFCOneLine is supported by enclosing an expres-
sion in braces ({}).

PFC Descr is supported by following an expression
with text in angle brackets (<>).

Single-line comments are supported using //.

2.5 Function application
If a Perl package is specified with the #use direc-
tive, then the generated grammar will automatically
include PFCApply for every rule where the function
PFC rule appears in the package. The default prefix
(PFC) can be changed with the #prefix directive
(this affects only rules which follow the directive).

#use MyApp::MyPackage
#prefix MyFun_

2.6 Including Files
The generator provides a convenient way of creating
the code to support file inclusion. For example, the
code in section 1.7 can be generated with the following

Revision: 2.6 2023-11-02 14:03:42

PFC (4)

rules:

Include := @ IncFile 1
IncFile := ’#include’ Literal ";"

The @name expression parses the named rule and uses
the return value as the name of the source file to be
included. By default IncFile would require an ex-
tra function application to extract the pathname from
the returned AST. However, if the named rule returns a
simple sequence (as above), then it can be followed by
a numeric index value and the corresponding element
will be extracted from the sequence without the need
for an additional function.

Notice that the statement terminator must
appear in the IncFile and not in the
Include, otherwise the terminator will ap-
pear in the input stream following the con-
tents of the included file.

The generator itself uses this mechanism to implement
the #import directive which can be used to include
other files into the grammar specification.

2.7 Latex Output
The generator can also render the grammar in Latex
suitable for inclusion in documentation:

ptools pfc latex regex -o outputfile.tex

The #section directive can be used to split large
grammars into named sections4.

#section section heading

See appendix B for the generator grammar itself ren-
dered in Latex.

3 The Explorer
The pfc tool can generate an HTML display which
allows the parse tree to be explored by folding/unfold-
ing the rules and highlighting the corresponding source
section:

ptools pfc ex regex node@path

See appendix A for example output.

The regex should match the name of the required gram-
mar file, and the corresponding .pm file should have
previously been generated using ptoolspfcgen.

The path is the pathname of the file containing the
source to be explored, and the node is the name of the

4This directive is ignored when generting code for the grammar.

AST node which represents the top-level of the source
file.

The -R option can be used to inhibit the application of
the PFCApply functions. This allows the raw parse
tree to be explored, rather than the version which has
been processed by the function applications. Func-
tions can be named PFC Forcename instead of sim-
ply PFC name to force them to be applied even when
the -R option is specified. This is necessary for exam-
ple for functions which handle inclusion/importing of
other files.

Using the argument ast instead of ex will produce
text output of the AST. The -o option can be used to
place the output in a specified file.

4 Function Reference
PFCAlt(f,. . .): Return a function to parse one of the
alternatives f. . . . The first matching alternative is re-
turned. Note that evaluation stops after the first match.
This means that (a) elements following the match will
not be recorded as possible “expectations”, and (b)
there is no backtracking so the first match is a com-
mitted choice.

PFCAngleString: Return a function to parse a string
enclosed in angle brackets (<>). Return the content of
the string.

PFCApply(t,f): Return a function to call the parser
function f and transform the resulting value with the
function t.

PFCBOL: Return a parser function which succeeds at
the beginning of as line. The function returns undef.

PFCDescr(descr,f): Return a parser function which
calls the parser function f and returns descr as the ex-
pectation if f fails. Otherwise, return the return value
of f.

PFCEOF: Return a parser function which succeeds at
the end of the source file. The function returns undef.

PFCEOL: Return a parser function which succeeds at
the end of a line. The function returns undef.

PFCFollowedBy(f,g): Return a parser function
which succeeds if f succeeds, but only if g succeeds
on the following text (the input parsed by g is not con-
sumed).

PFCHID: Return a parser function which parses an
hyphenated identifier. The function returns the name
of the identifier (string).

PFCID: Return a parser function which parses an
identifier. The function returns the name of the identi-
fier (string).

Paul Anderson 2023-11-02 14:03:42

(5)

PFCInclude(f): Call the parser function f to obtain
the pathname of a file. The function returns the result
of parsing the contents of the file.

PFCKeyWord(k): Return a parser function which
parses the text k. The text of the keyword must be fol-
lowed by a word boundary - see also PFCSym. The
function returns the keyword (string).

PFCLexeme(f): Return a parser function which
skips white-space before calling the parser function f.

PFCList(f): Return a parser function which parses a
list of tokens parsed by the function f. Note that this
is greedy and committed, so (for example) X*X will
never succeed.

PFCNotFollowedBy(f,g): Return a parser function
which succeeds if f succeeds, but only if g does not
succeed on the following text (the input parsed by g is
not consumed).

PFCOneLine(f): Return a parser function which
calls the function f while treating newlines as non-
space.

PFCOpt(f): Return a parser function which calls the
function f and succeeds (returning undef) if f fails.

PFCRegEx(re): Return a function to parse a regular
expression enclosed in slashes (/). The function re-
turns the match of the regular expression.

PFCREString: Return a function to parse a string
enclosed in slashes (/). The function returns the con-
tent of the string.

PFCSepBy(sep,f): Return a parser function which
parses a list of tokens parsed by the function f, sep-
arated by tokens parsed by the function sep. Note
that this is greedy and committed, so (for example):
X!Y*X will never succeed.

PFCSeq(f,. . .): Return a parser function which
parses a sequence of tokens parsed by f. . . .

PFCSingleString: Return a function to parse a
string enclosed in single quotes (’’). The function re-
turns the content of the string.

PFCSquareString: Return a function to parse a
string enclosed in square brackets ([]). Return the
content of the string.

PFCString: Return a function to parse a string en-
closed in double quotes (""). The function returns the
content of the string.

PFCSym(s): Return a function to parse a literal sym-
bol (text). The function returns the text string. Note
that s may not be followed by a word boundary - (see
also PFCKeyWord).

PFCType(t,f): Return a parser function which calls
the function f and attaches the string t to the resulting
token as the type (if the function succeeds). The gener-
ator uses this to add the rule names as the types. This
is then shown by the explorer when viewing the AST
node, and can be used to distinguish between (for ex-
ample) different types of node which both have strings
as their values.

Revision: 2.6 2023-11-02 14:03:42

PFC (6)

Appendix A Explorer Interface Example

Paul Anderson 2023-11-02 14:03:42

(7)

Appendix B Generator Grammar

Parser := (Directive | Rule) + EOF

Directives
Directive := (Use | ImportDirective | Prefix | Section)

ImportDirective := ImportArg(a)

Use := #use DirectiveArg

Prefix := #prefix DirectiveArg

ImportArg := #import DirectiveArg

Section := #section DirectiveArg

DirectiveArg := (" . . . " | /ˆ[ˆ:][ˆ\s]*/(d)) EOL

Rules
Rule := IDENTIFIER := (Seq)(b) EOL

Seq := Expr +

Expr := Term (| Term) *

Term := Atom (Repeat | ?) ?

Repeat := (! Atom) ? ((* Number ?) | +)

Atom := AtomVal LookAhead ? < . . . > ?

LookAhead := (˜ | !˜) AtomVal

AtomVal := BracketSeq | LineSeq | RuleRef | Include | Literal | KeyWord | RegEx

BracketSeq := (Seq)

LineSeq := { Seq }

RuleRef := IDENTIFIER

Include := @ IDENTIFIER Number ?

Literal := " . . . "

KeyWord := ’ . . . ’

RegEx := / . . . / /[a-zA-Z]+/ ?

Number := /[0-9]+/(d)

(a) The value of this rule is interpreted as a filename which is expected to include additional grammar rules.
(b) Newlines are not treated as whitespace during evaluation of this term – i.e. the term must appear on one line,

unless explicit continuation lines are given.
(d) Leading whitespace is skipped before matching this regex.

Revision: 2.6 2023-11-02 14:03:42

	PFC
	Parser Functions
	Errors
	Combinators
	WhiteSpace
	Transforming Node Values
	Handling Newlines and EOF
	Including Files
	Lookahead
	Custom Error Messages

	The Generator
	Production Rules
	Terminals
	Combinators
	Additional Features
	Function application
	Including Files
	Latex Output

	The Explorer
	Function Reference
	Explorer Interface Example
	Generator Grammar

